三角形中线等分面积应用

合集下载

三角形 等分点 连线 面积

三角形 等分点 连线 面积

三角形等分点连线面积(最新版)目录1.引言:介绍三角形等分点的概念和应用2.三角形等分点的求法3.等分点连线与三角形面积的关系4.实际应用案例5.结论:总结三角形等分点的重要性和应用价值正文一、引言在几何学中,三角形等分点是指将一个三角形分割成多个小三角形,使得这些小三角形的面积相等。

等分点的概念在解决许多几何问题时具有重要意义,特别是在研究三角形的性质和应用时。

本文将探讨三角形等分点的求法、等分点连线与三角形面积的关系以及实际应用案例。

二、三角形等分点的求法求解三角形等分点,通常需要先找到三角形的顶点,然后通过一定的方法将顶点与三角形的边相连,从而将三角形分割成多个小三角形。

常见的求法有以下几种:1.角平分线法:通过作出三角形的一个角的平分线,将这个角分成两个相等的角,然后在角的顶点作垂线,将三角形分割成两个面积相等的小三角形。

2.中线法:通过作出三角形的一个顶点的中线,将这个顶点与对边中点相连,从而将三角形分割成两个面积相等的小三角形。

3.高法:通过作出三角形的一个顶点的高,将这个顶点与对边相连,从而将三角形分割成两个面积相等的小三角形。

三、等分点连线与三角形面积的关系在三角形中,等分点连线是将一个三角形分割成多个小三角形的关键。

等分点连线与三角形面积的关系可以通过以下定理得到:1.三角形等分点连线所分割的小三角形面积之和等于原三角形面积。

2.等分点连线上的任意一点到三角形三个顶点的距离之和等于原三角形周长的一半。

四、实际应用案例三角形等分点在实际应用中具有广泛的应用价值,例如在计算机图形学、地理信息系统、建筑设计等领域。

以下是一个实际应用案例:假设有一个三角形 ABC,我们需要将其分割成面积相等的四个小三角形。

首先,我们可以通过角平分线法找到三角形 ABC 的一个角的平分线,然后将这个角分成两个相等的角。

接着,在角的顶点作垂线,将三角形分割成两个面积相等的小三角形。

最后,通过连接这两个小三角形的顶点,我们可以得到另外两个面积相等的小三角形。

三角形中的中线有什么特点

三角形中的中线有什么特点

三角形中的中线有什么特点三角形是几何学中基本的图形之一,它由三条边所组成。

而中线是连接三角形的两个顶点与对应边中点的线段。

本文将探讨三角形中的中线所具有的特点。

一、中线的定义及作用在三角形ABC中,连接顶点A与BC中点M所得的线段AM称为三角形ABC的中线。

同样地,连接顶点B与AC中点N所得的线段BN,以及连接顶点C与AB中点P所得的线段CP,都可以称为三角形ABC的中线。

中线在三角形中具有重要的几何性质和作用。

首先,中线将三角形分为两个相等面积的三角形,这点可以通过三角形的对顶边相等性和三角形面积公式加以证明。

此外,中线还能够找到三角形的重心,即三角形的几何中心。

重心是三角形的重要参考点,它对于三角形的性质和应用具有重要作用。

二、中线的特点1.中线的长度相等任意三角形的三条中线长度是相等的。

在三角形ABC中,连接顶点A与BC中点M所得的线段AM的长度等于连接顶点B与AC中点N所得的线段BN的长度,也等于连接顶点C与AB中点P所得的线段CP的长度。

这是因为中点将边等分,所以相应的中线长度相等。

2.中线的交点位于重心在三角形的中线相交于一点,这个点称为三角形的重心。

重心是三角形的几何中心,其特点是其到三角形三个顶点的距离之和最小。

在三角形ABC的中线AM、BN和CP相交于一点G,这个点G就是三角形ABC的重心。

3.重心将中线按1:2的比例分割连接重心G与顶点A的线段AG可以将中线BN和CP分别按1:2的比例分割。

即,线段AG的长度是线段BN的1/3,线段AG的长度是线段CP的2/3。

类似地,连接重心G与顶点B的线段BG将中线AM和CP按1:2的比例分割,连接重心G与顶点C的线段CG将中线AM和BN按1:2的比例分割。

4.中线对角线互补三角形的每条中线都与其他两条中线构成两条对角线。

这两条对角线互相垂直且互相平分。

也就是说,在三角形ABC中,中线AM与中线BN构成的线段MN即是中线CP的中点,又是BC的中点,并且MN与CP垂直且平分。

专题22 三角形中位线定理应用问题(解析版)

专题22 三角形中位线定理应用问题(解析版)

专题22 三角形中位线定理应用问题1.三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线。

2.三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

3.对三角形中位线的深刻理解(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.【例题1】(2020•福建)如图,面积为1的等边三角形ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则△DEF 的面积是( )A .1B .12C .13D .14 【答案】D【解析】根据三角形的中位线定理和相似三角形的判定和性质定理即可得到结论.∵D ,E ,F 分别是AB ,BC ,CA 的中点,1214∴DE =12AC ,DF =12BC ,EF =12AB ,∴DF BC =EF AB =DE AC =12,∴△DEF ∽△ABC ,∴S △DEFS △ABC =(DE AC )2=(12)2=14, ∵等边三角形ABC 的面积为1,∴△DEF 的面积是14.【对点练习】(2019内蒙古赤峰)如图,菱形ABCD 周长为20,对角线AC 、BD 相交于点O ,E 是CD 的中点,则OE 的长是( )A .2.5B .3C .4D .5【答案】A .【解析】∵四边形ABCD 为菱形,∴CD =BC ==5,且O 为BD 的中点, ∵E 为CD 的中点,∴OE 为△BCD 的中位线,∴OE =CB =2.5。

【点拨】掌握菱形特点,根据三角形中位线定理解决问题。

【例题2】(2020•临沂)如图,在△ABC 中,D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,H 为AF 与DG 的交点.若AC =6,则DH = .【解析】1.【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB ,解得EF =2,则DH =12EF =1. 【解析】∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴△BEF ∽△BAC ,∴EF AC =BE AB ,即EF 6=BE 3BE ,解得:EF =2,∴DH =12EF =12×2=1,【对点练习】(2019广西梧州)如图,已知在△ABC 中,D 、E 分别是AB 、AC 的中点,F 、G 分别是AD 、AE 的中点,且FG =2cm ,则BC 的长度是 cm .【答案】8.【解析】利用三角形中位线定理求得FG=DE,DE=BC.如图,∵△ADE中,F、G分别是AD、AE的中点,∴DE=2FG=4cm,∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE=8cm【点拨】连续两次应用三角形中位线定理处理本题,是关键。

三角形的中线与面积的三个重要结论

三角形的中线与面积的三个重要结论

三角形的中线与面积的三个重要结论三角形的中线与三角形的面积有着密切的关系,下面就来探讨一下这个话题.一、三角形的中线与面积1、三角形的一条中线与面积如图1,AD 是三角形ABC 的中线,则ABD S 三角形=ACD S 三角形=21ABC S 三角形.证明:因为AD 是三角形的中线,所以BD=CD ,过点A 作AE ⊥BC ,垂足为E ,则ABD S 三角形=21×BD ×AE,ACD S 三角形=21×CD ×AE ,所以ABD S 三角形=ACD S 三角形, 所以ABD S 三角形=ACD S 三角形=21ABC S 三角形. 由此得到如下结论:1、等底同高的两个三角形面积相等.2、三角形的一条中线分原来三角形所成的两个三角形面积相等.2、三角形的二条中线与面积如图2,AD ,BE 是三角形ABC 的中线,则①BDF S 三角形=AEF S 三角形;②ABF S 三角形=CDFE S 四边形; ③ABF S 三角形=CDFE S 四边形=2BDF S 三角形=2AEF S 三角形=31ABC S 三角形.证明:因为AD 、BE 是三角形的中线,所以ABD S 三角形=ACD S 三角形,ABE S 三角形=BCE S 三角形, 所以BDF S 三角形+ABF S 三角形=AEF S 三角形+CDFE S 四边形---(1),AEF S 三角形+ABF S 三角形=BDF S 三角形+CDFE S 四边形——-(2),(1)—(2)得 BDF S 三角形-AEF S 三角形=AEF S 三角形-BDF S 三角形,所以BDF S 三角形=AEF S 三角形; 因为BDF S 三角形+ABF S 三角形=AEF S 三角形+CDFE S 四边形,所以ABF S 三角形=CDFE S 四边形;如图2,连接CF ,易得BDF S 三角形=CDF S 三角形=AEF S 三角形=CEF S 三角形,所以ABF S 三角形=CDFE S 四边形=2BDF S 三角形=2AEF S 三角形=31ABC S 三角形. 由此得到如下结论:1、三角形的两条中线分原来三角形所成的四个图形中,对顶的两个图形面积相等.2、三角形的两条中线分原来三角形所成的四个图形中,四边形的面积等于不对顶三角形面积的2倍.3、三角形的三条中线与面积如图3,AD ,BE,CF 是三角形ABC 的中线,设△BGD 的面积为1S ,△BGF 的面积为2S ,△AGF 的面积为3S ,△AGE 的面积为4S ,△CGE 的面积为5S ,△CGD 的面积为6S ,△ABC 的面积为S.则1S =2S =3S =4S =5S =6S =61S.证明:因为AD 是三角形ABC 的中线,所以BD=CD ,因为三角形ABD 和三角形ACD 的高相同,所以三角形ABD 的面积和三角形ACD 的面积相等,即1S +2S +3S =4S +5S +6S .因为三角形BGD 和三角形CGD 的高也是相同的,所以两个三角形的面积相等即1S =6S .所以2S +3S =4S +5S .因为三角形BGF 和三角形AGF 的高相同,BF=AF ,所以AFh BFh 2121 ,其中h 是点G 到AB 的距离,所以2S =3S ,同理可证4S =5S ,所以23S =24S ,所以3S =4S , 所以2S =3S =4S =5S ,同理可证1S =2S =3S =6S .所以1S =2S =3S =4S =5S =6S .因为三角形ABC 的面积为S ,所以1S =2S =3S =4S =5S =6S =61S. 由此我们得到如下结论:三角形的三条中线分三角形成六个小三角形,则六个小三角形的面积相等,等于三角形面积的六分之一.二、结论在解题中的应用例1 (2015•广东省)如图4,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若三角形ABC 的面积为12,则图中阴影部分面积是 .分析:这是三条中线分割三角形的情形,每一个小三角形的面积是相等,且等于原来三角形面积的61,2个就是面积的31. 解:因为三角形ABC 的面积为12,所以阴影部分的面积为31×12=4. 例2 三角形的一条中线把其面积等分,试用这条规律完成下面问题:(1)把一个三角形分成面积相等的4块(至少给出两种方法);(2)在一块均匀的三角形草地上,恰好可放养84只羊,如图5,现被两条中线分成4块, 则四边形的一块(阴影部分)恰好可放养几只羊?分析:抓住等底同高的两个三角形面积相等,依托三角形的中线性质,完成求解.解:(1)此题的答案不是唯一的,只要分割的方法合理就可以,下面给出了几种分割方法,供同学们学习时,参考.(2)根据中线分割图形与原来三角形面积之间关系知道,四边形的面积是整个图形面积的三分之一,因为是均匀分布,所以这块面积应该有 31×84=28(只)羊. 例3 如图6 所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且ABC S =42cm ,则S 阴影等于________.解:因为点D 是BC 的中点,所以ACD ABD S S =12ABC S =12×4=2. 因为点E 是AD 的中点,所以BED S S 12ABD S =12×2=1. 所以ED S S 12ACD S =12×2=1. 所以BEC S =BED S +ED S =1+1=2,因为点F 是EC 的中点,所以S =12BEC S =12×2=1. 所以S 阴影等于1. 例4 已知三角形ABC 的面积为a ,请边阅读,边完成问题的解答:1、如图7,延长BC 到D ,使得CD=BC ,则阴影部分的面积为 .2、如图8,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,则阴影部分的面积为 .3、如图9,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,延长AB 到F ,使得AB=FB ,则阴影部分的面积为 .4、如图10,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,延长AB 到F ,使得AB=FB ,,连接DF ,则阴影部分的面积为 ;三角形DEF 的面积是 .分析:依据条件,结合三个结论,认真分析,就能轻松完成解答.解:1、如图7,AC是三角形ABD的中线,所以阴影面积与三角形ABC的面积相等,所以应该填a;2、如图8,当我们连接AD时,不难发现三角形ACD的面积与三角形AED的面积相等,所以阴影部分的面积为2a;3、如图9,三角形AEF的面积与三角形CDE的面积是相等,所以阴影部分的面积是4a;4、如图10,三角形BFD的面积等于三角形CDE的面积,所以阴影部分的面积为6a;三角形DEF的面积为阴影部分的面积加三角形ABC的面积,所以是7a,也就是说此时三角形的面积是原来三角形ABC面积的7倍.我们不妨把得到的三角形DEF叫做三角形ABC的膨胀三角形,当CD=BC 时,膨胀三角形的面积是原来三角形面积的7倍,这个数字7我们不妨叫做三角形DEF的膨胀系数,感兴趣的读者,可以思考当延长线段是已知边长的2倍时,膨胀三角形的面积多大,膨胀系数多大?其中一般性的规律是什么?。

三角形的中线

三角形的中线

三角形的中线三角形是几何学中最基本的图形之一,它由三条线段组成,连接三个顶点。

而三角形的中线则是连接三角形的顶点与对应边中点的线段。

本文将详细论述三角形的中线,介绍其特性和应用。

一、中线的定义和特性中线是指从三角形的一个顶点到对边中点的线段。

一个三角形具有三个顶点,因此共有三条中线,它们分别连接一个顶点与对边的中点。

1. 中线长度关系对于任意一个三角形ABC,其三条中线分别为AD、BE和CF。

根据中点定理可知,中点是一条线段的两个等分点。

因此,中线将对边等分,即AD=BD、BE=CE和CF=AF。

2. 中线交点三条中线的交点被称为三角形的重心,记为G。

重心是三角形的一个重要特点,它将三角形分为六个小三角形,其中每个小三角形的面积都相等。

3. 重心与中线长度的关系重心G将每条中线分成两段,记为m和n。

根据重心定理可知,重心将每条中线分为1:2的比例,即m: n = 1: 2。

因此,重心离顶点的距离是离对边中点的距离的两倍。

二、中线的应用1. 构造中线在很多几何问题的解决过程中,中线是一个常用的构造工具。

通过使用尺规作图或者使用直尺和量角器进行测量,可以准确地构造出三角形的中线。

2. 求取中线长度已知三角形的三个顶点坐标,可以通过计算得出三条中线的长度。

根据中线的定义,我们可以使用中点公式来求取对边的中点坐标,进而计算出中线的长度。

3. 判断重心位置在一些问题中,需要判断给定的三角形的重心相对位置。

通过计算重心离三个顶点的距离,可以得出重心相对位置的信息。

如果重心距离某个顶点较近,则说明该顶点所在的边较长,反之则较短。

4. 证明三角形性质在几何证明中,中线也是一个常用的手段。

通过利用中线的性质,可以证明一些三角形的性质,如等腰三角形、全等三角形等。

5. 三角形的划分重心将三角形划分成六个小三角形,每个小三角形的面积相等。

这一特性在一些几何问题中有着重要的应用,如在计算三角形的面积或者寻找三角形的重心时。

三角形的中线与面积的三个重要结论

三角形的中线与面积的三个重要结论

三角形的中线与面积的三个重要结论三角形的中线与三角形的面积有着密切的关系,下面就来探讨一下这个话题.一、三角形的中线与面积1、三角形的一条中线与面积如图1,AD 是三角形ABC 的中线,则ABD S 三角形=ACD S 三角形=21ABC S 三角形.证明:因为AD 是三角形的中线,所以BD=CD ,过点A 作AE ⊥BC ,垂足为E ,则ABD S 三角形=21×BD ×AE,ACD S 三角形=21×CD ×AE ,所以ABD S 三角形=ACD S 三角形, 所以ABD S 三角形=ACD S 三角形=21ABC S 三角形. 由此得到如下结论:1、等底同高的两个三角形面积相等.2、三角形的一条中线分原来三角形所成的两个三角形面积相等.2、三角形的二条中线与面积如图2,AD ,BE 是三角形ABC 的中线,则①BDF S 三角形=AEF S 三角形;②ABF S 三角形=CDFE S 四边形; ③ABF S 三角形=CDFE S 四边形=2BDF S 三角形=2AEF S 三角形=31ABC S 三角形.证明:因为AD 、BE 是三角形的中线,所以ABD S 三角形=ACD S 三角形,ABE S 三角形=BCE S 三角形, 所以BDF S 三角形+ABF S 三角形=AEF S 三角形+CDFE S 四边形---(1),AEF S 三角形+ABF S 三角形=BDF S 三角形+CDFE S 四边形——-(2),(1)—(2)得 BDF S 三角形-AEF S 三角形=AEF S 三角形-BDF S 三角形,所以BDF S 三角形=AEF S 三角形; 因为BDF S 三角形+ABF S 三角形=AEF S 三角形+CDFE S 四边形,所以ABF S 三角形=CDFE S 四边形;如图2,连接CF ,易得BDF S 三角形=CDF S 三角形=AEF S 三角形=CEF S 三角形,所以ABF S 三角形=CDFE S 四边形=2BDF S 三角形=2AEF S 三角形=31ABC S 三角形. 由此得到如下结论:1、三角形的两条中线分原来三角形所成的四个图形中,对顶的两个图形面积相等.2、三角形的两条中线分原来三角形所成的四个图形中,四边形的面积等于不对顶三角形面积的2倍.3、三角形的三条中线与面积如图3,AD ,BE,CF 是三角形ABC 的中线,设△BGD 的面积为1S ,△BGF 的面积为2S ,△AGF 的面积为3S ,△AGE 的面积为4S ,△CGE 的面积为5S ,△CGD 的面积为6S ,△ABC 的面积为S.则1S =2S =3S =4S =5S =6S =61S.证明:因为AD 是三角形ABC 的中线,所以BD=CD ,因为三角形ABD 和三角形ACD 的高相同,所以三角形ABD 的面积和三角形ACD 的面积相等,即1S +2S +3S =4S +5S +6S .因为三角形BGD 和三角形CGD 的高也是相同的,所以两个三角形的面积相等即1S =6S .所以2S +3S =4S +5S .因为三角形BGF 和三角形AGF 的高相同,BF=AF ,所以AFh BFh 2121 ,其中h 是点G 到AB 的距离,所以2S =3S ,同理可证4S =5S ,所以23S =24S ,所以3S =4S , 所以2S =3S =4S =5S ,同理可证1S =2S =3S =6S .所以1S =2S =3S =4S =5S =6S .因为三角形ABC 的面积为S ,所以1S =2S =3S =4S =5S =6S =61S. 由此我们得到如下结论:三角形的三条中线分三角形成六个小三角形,则六个小三角形的面积相等,等于三角形面积的六分之一.二、结论在解题中的应用例1 (2015•广东省)如图4,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若三角形ABC 的面积为12,则图中阴影部分面积是 .分析:这是三条中线分割三角形的情形,每一个小三角形的面积是相等,且等于原来三角形面积的61,2个就是面积的31. 解:因为三角形ABC 的面积为12,所以阴影部分的面积为31×12=4. 例2 三角形的一条中线把其面积等分,试用这条规律完成下面问题:(1)把一个三角形分成面积相等的4块(至少给出两种方法);(2)在一块均匀的三角形草地上,恰好可放养84只羊,如图5,现被两条中线分成4块, 则四边形的一块(阴影部分)恰好可放养几只羊?分析:抓住等底同高的两个三角形面积相等,依托三角形的中线性质,完成求解.解:(1)此题的答案不是唯一的,只要分割的方法合理就可以,下面给出了几种分割方法,供同学们学习时,参考.(2)根据中线分割图形与原来三角形面积之间关系知道,四边形的面积是整个图形面积的三分之一,因为是均匀分布,所以这块面积应该有 31×84=28(只)羊. 例3 如图6 所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且ABC S =42cm ,则S 阴影等于________.解:因为点D 是BC 的中点,所以ACD ABD S S =12ABC S =12×4=2. 因为点E 是AD 的中点,所以BED S S 12ABD S =12×2=1. 所以ED S S 12ACD S =12×2=1. 所以BEC S =BED S +ED S =1+1=2,因为点F 是EC 的中点,所以S =12BEC S =12×2=1. 所以S 阴影等于1. 例4 已知三角形ABC 的面积为a ,请边阅读,边完成问题的解答:1、如图7,延长BC 到D ,使得CD=BC ,则阴影部分的面积为 .2、如图8,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,则阴影部分的面积为 .3、如图9,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,延长AB 到F ,使得AB=FB ,则阴影部分的面积为 .4、如图10,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,延长AB 到F ,使得AB=FB ,,连接DF ,则阴影部分的面积为 ;三角形DEF 的面积是 .分析:依据条件,结合三个结论,认真分析,就能轻松完成解答.解:1、如图7,AC是三角形ABD的中线,所以阴影面积与三角形ABC的面积相等,所以应该填a;2、如图8,当我们连接AD时,不难发现三角形ACD的面积与三角形AED的面积相等,所以阴影部分的面积为2a;3、如图9,三角形AEF的面积与三角形CDE的面积是相等,所以阴影部分的面积是4a;4、如图10,三角形BFD的面积等于三角形CDE的面积,所以阴影部分的面积为6a;三角形DEF的面积为阴影部分的面积加三角形ABC的面积,所以是7a,也就是说此时三角形的面积是原来三角形ABC面积的7倍.我们不妨把得到的三角形DEF叫做三角形ABC的膨胀三角形,当CD=BC 时,膨胀三角形的面积是原来三角形面积的7倍,这个数字7我们不妨叫做三角形DEF的膨胀系数,感兴趣的读者,可以思考当延长线段是已知边长的2倍时,膨胀三角形的面积多大,膨胀系数多大?其中一般性的规律是什么?。

三角形中线等分面积专题

三角形中线等分面积专题

AB 到点 F ,使
让学生灵活运用所 获得的结论, 解决问 题,考查学生对结论 的理解。 增强学生把新知识 转化旧知识的能力。 从不同角度识别图 形的能力。 加强交流学习其他 同学思维上的优势。
BF AB ,连接 FD , EF ,得到 DEF (如图
4).若阴影部分的面积为 S3 ,则 S3 =
,
教学 重点与难点
设计思路
教与学的方法
重点: 结论的推导和灵活运用
难点: 从复杂图形中找出含有中线的三角形这一基本图形
.
从学生学过的三角形面积入手,自己动手推导出三个结论,然后利用结论
推导三角形中重要的重心图的结论,最后联系中考
.对于四边形的面积问题
转化为三角形面积问题 .在课的结尾联系生活实际,让孩子打开思路 ,应用所
(用含 a 的代数式表示) .
学生画图,求面积。 五 拓展与应用
如图 5,已知四边形 ABCD 的面积是 a , E、 F、
G面积?
转化思想方法的应 用。 让学生灵活运用所 获得的结论, 解决问 题,考查学生对结论 的理解。 学生把新知识转化 旧知识的能力。 从不同角度识别图 形的能力。
E
A
A
B
C
D
结论:若底相等,则面积之比等于高之比
B
HFC
D
3.已知 S ABD 30, S ACD 12 ,问:线段 BD 与线
段 CD 的比值是多少?得出什么结论?
A
B
C D
学生动手画出
ABC , ECD 的高,
写出证明过程, 并能得 出结论,小组合作, 互 相检查书写规范与否。 学生到前面讲解
A
线等分三角形的面积 , 即如图 1 ,已知 AD 为 ABC 的 BC 边上的中线 ,则 S ABD S ADC

三角形的中线中线的性质和应用

三角形的中线中线的性质和应用

三角形的中线中线的性质和应用三角形是初中数学中的基础概念之一。

在三角形中,中线是一条连接一个顶点与其对边中点的线段。

每个三角形都有三条中线,互相交于一个点,我们称之为重心。

本文将探讨三角形的中线中线的性质和应用。

一、三角形中线的定义与性质1. 定义:三角形的中线是一条连接一个顶点与其对边中点的线段。

2. 性质1:三角形的三条中线互相交于一个点,这个点被称为三角形的重心。

重心划分每条中线的长度比为2:1,即重心到顶点的距离是重心到中点距离的两倍。

3. 性质2:三角形的重心离每条边的距离相等。

4. 性质3:三角形的中线长度满足关系式:m₁+m₂+m₃=3m(其中,m₁、m₂、m₃分别表示三角形的三条中线的长度,m表示三角形的周长)。

二、三角形中线中线的应用1. 面积计算:利用三角形中线中线的性质,我们可以简化计算三角形面积的步骤。

设三角形的三条边长分别为a、b、c,三条中线的长度分别为m₁、m₂、m₃,则三角形的面积S可以通过以下公式计算得到:S = 1/4 * √(2a²+2b²-c²) * √(2a²+2c²-b²) * √(2b²+2c²-a²)这个公式称为三角形中线长公式,可以大大简化我们计算三角形面积的过程。

2. 相似三角形比较:利用三角形中线对应线段相等的性质,我们可以判断两个三角形是否相似。

如果两个三角形的中线等分对应边的比例相等,那么这两个三角形就是相似的。

例如,如果一个三角形的一个中线等分了对应边,而另一个三角形的对应中线等分了对应边的同一比例,那么这两个三角形就是相似的。

3. 证明三角形性质:三角形中线中线的性质也可以用来证明其他三角形的性质。

例如,我们可以利用中线的长度比是2:1,来证明三角形重心到两边距离的关系。

假设三角形ABC的重心为G,连接AG、BG、CG分别和边BC、AC、AB交于点D、E、F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲例说三角形中线等分面积的应用如图1,线段AD 是△ABC 的中线,过点A 作AE ⊥BC ,垂足为E ,则S △ABD =12BD·AE ,S △ADC =12DC·AE ,因为BD =DC ,所以S △ABD =S △ADC 。

因此,三角形的中线把△ABC 分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题。

一、求图形的面积例1、如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.分析:因为E 、F 分别是BC 和CD 的中点,则连接CG 后,可知GF 、GE 分别是△DGC 、△BGC 的中线,而由S △BCF=S △DCE=4ab,可得S △BEG=S △DFG,所以△DGF 、△CFG 、△CEG 、△BEG 的面积相等,问题得解。

解:连接CG ,由E 、F 分别是BC 和CD 的中点,所以S △BCF=S △DCE=4ab,从而得S △BEG=S △DFG,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等且等于31×4ab =12ab ,因此S 四边形ABGD=a b -4×12ab =32ab。

例2、在如图3至图5中,△ABC 的面积为a .(1)如图2, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图3,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图4的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图6).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示).发现:像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图1图2AE图4DABC F 图5 图3AB图6),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍.应用:去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图5).求这两次扩展的区域(即阴影部分)面积共为多少m 2?分析:从第1个图可以发现AC 就是△ABD 的中线,第2个图通过连接DA ,可得到△ECD 的中线DA ,后面扩展的部分都可以通过这样的方法得到三角形的中线,从而求出扩展部分的面积,发现规律。

解:(1)由CD=BC ,可知AC 就是△ABD 的中线,中线AC 将△ABD 的分成两个三角形△ABC 、△ACD ,这两个三角形等底等高,所以它们的面积相等;所以S 1=a ;(2)若连接DA ,则DA 就是△ECD 的中线,中线AD 将△ECD 分成△CDA 、△EDA ,它们的面积相等;所以S 2=2a ;(3)根据以上分析,可知△BFD 、△CED 、△EAF 面积都为2a ;所以S 2=6a ;发现:由题意可知扩展一次后的△DEF 的面积是S △DEF =S 3+S △ABC =6a +a =7a ;即扩展一次后的△DEF 的面积是原来△ABC 面积的7倍。

应用:由以上分析可知 扩展一次后S 总1=7a , 扩展二次后S 总2=S 总1=72a , 扩展三次后S 总3=S 总2=73a , 拓展区域的面积:(72-1)×10=480(m 2)说明:本题是从一个简单的图形入手,逐步向复杂的图形演变,引导我们逐步进行探索,探索出有关复杂图形的相关结论,这是我们研究数学问题的一种思想方法:从特殊到一般的思想。

所以我们在平时的学习中,要注意领会数学思想和方法,使自己的思维不断升华。

二、巧分三角形例3、如图7,已知△ABC ,请你用两种不同的方法把它分成面积之比为1:2:3的三个三角形.分析:可以把三角形先两等份,再把其中一个再两等份,所以联想到作三角形的中线。

解:方法1:取BC 的中点E ,然后在BE 上取点D ,使BD 13BE ,则AD 、AE 把△ABC 分成面积之比为1:2:3的三个三角形(如图8).图6D E AB CF HM图7图8图954321方法2:在BC 边上截取DC 31=BC ,连结AD ,然后取AB 的中点P ,连结BP 、CP ,则△PAC 、△PAB 、△PBC 的面积之比为1:2: 3(如图9).想一想:方法2中,这三个三角形的面积之比为什么是1:2:3? 二、巧算式子的值例2 在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n 表示),设计了如图10所示的几何图形.请你利用这个几何图形求2341111122222n ++++⋅⋅⋅+的值. 分析:由数据的特征:后面的数为前面一个数的21,联想到将三角形的面积不断的平分,所以可以构造如图10的图形进行求解。

解:如图10,设大三角形的面积为1,然后不断的按顺序作出各个三角形的中线,根据三角形的中线把它分成两个面积相等的三角形可知,图中三角形除了最后一个小三角形,其余部分的面积为234111111222222n n ++++⋅⋅⋅++, 因此2341111111222222n n ++++⋅⋅⋅+=-.说明:此题运用“数形结合思想”,借助三角形的面积来求数的运算,简捷、巧妙.三角形内角和定理及外角性质的应用三角形三个内角的和等于180°,这是三角形内角和定理.三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于与它不相邻的任何一个内角,这是三角形外角性质.三角形内角和定理及外角性质应用广泛,下面以例说明. 一、求三角形的内角例2 (08太原)在△ABC 中,∠B =40°,∠C =80°,则∠A 的度数为( ) A .30° B .40° C .50° D .60° 解:由三角形内角和定理,得∠A =180°-∠B -∠C =180°-40°-80°=60°,答案选D . 例3 (08东营)如图1,已知∠1=100°,∠2=140°,那么∠3=__. 解:∠4=180°-∠1=180°-100°=80°, ∠5=180°-∠2=180°-140°=40°,由三角形内角和定理,得∠3=180°-∠4-∠5=180°-80°-40°=60°,答案选D . 图1 说明:在求出∠4=80°后,也可根据三角形外角性质,得∠2=∠4+∠3,所以∠3=∠2-∠4=140°-80°=60°.二、判断三角形的形状例1 (08陕西)一个三角形三个内角的度数之比为2:3:7,这个三角形一定是( ) A .直角三角形 B .等腰三角形 C .锐角三角形 D .钝角三角形 解:设三个内角分别为2k ,3k ,5k ,由三角形内角和定理,得图10CBA21O D Al 1l 2BC 21312CB l 2l 1AD E (a ∥b )b a 122121C B DA 122k +3k +5k =180°.解得k =15°,所以2k =30°,3k =45°,7k =105°,所以这个三角形是钝角三角形,答案选C .三、求角平分线的夹角例4 (08沈阳)已知△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线交于点O ,则∠BOC 的度数为__.解:如图2,由BO 平分∠ABC ,得∠1=12∠ABC ; 由CO 平分∠ACB ,得∠2=12∠ACB .所以∠1+∠2=12(∠ABC +∠ACB )=12(180°-∠A ) 图2=12(180°-60°)=60°. 四、求三角形的外角例5 (08贵州)如图5,直线l 1∥l 2,AB ⊥l 1,垂足为D ,BC 与直线l 2相交于点C ,若∠1=30°,则∠2=___.解:如图6,延长AB 交l 2于点E .因为l 1∥l 2,由两直线平行,内错角相等,得∠BEC =∠3. 由AB ⊥l 1,得∠3=90°.所以∠BEC =90°. 由三角形外角性质,得∠2=∠BEC +∠1=90°+30°=120°.图5 图6说明:本题也可延长CB 交l 1于点F ,构造△FBD 进行求解,完成请同学们完成.五、比较角的大小例5 (08凉山)下列四个图形中∠2大于∠1的是( )A B C D解:A 选项中,利用两直线平行,内错角相等及对顶角相等,可得∠1=∠2;B 选项,根据三角形的外角性质,可得∠2大于∠1.C 选项中的∠2与∠1的大小关系无法确定;D 选项中,由对顶角相等,可得∠1=∠2.答案选B .全等三角形水平测试(1)湖北 薛建辉一、试试你的身手1.如图所示,沿直线AC 对折,△ABC 与△ADC 重合,则△ABC ≌__________,AB 的对应边是________,AC 的对应边是____________,∠BCA 的对应角是__________.A D2.如图所示,△ACB ≌△DEF ,其中A 与D ,C 与E 是对应顶点,则CB 的对应边是________,∠ABC 的对应角是__________.3.△ABC 和A B C '''∆中,若AB A B ''=,BC B C ''=,则需要补充条件________可得到ABC A B C '''∆≅∆4.如图所示,AB ,CD 相交于O ,且AO =OB ,观察图形,图中已具备的另一相等的条件是________,联想到SAS ,只需补充条件________,则有△AOC ≌△________.5.如图所示,有一块三角形镜子,小明不小心破裂成Ⅰ、Ⅱ两块,现需配成同样大小的一块.为了方便起见,需带上________块,其理由是__________. 6.如图所示,若只有AD ⊥BD 于点D 这个条件,要证△ABD ≌△ACD ,则需补充的条件是________或__________或__________.7.如图,在△ABC 中,∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE 的度数为__________.二、相信你的选择1.下列说法:①全等三角形的形状相同;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长.面积分别相等,其中正确的说法为( ) A.①②③④ B.①③④ C.①②④ D.②③④ 2.下列结论错误的是( )A.全等三角形对应角所对的边是对应边 B.全等三角形两条对应边所夹的角是对应角 C.全等三角形是一个特殊三角形AC OD B B A ?? A B C D A BC DED.如果两个三角形都与另一个三角形全等,那么这两个三角形也全等 3.下面各条件中,能使△ABC ≌△DEF 的条件的是( )A.AB =DE ,∠A =∠D ,BC =EF B.AB =BC ,∠B =∠E ,DE =EF 0.AB =EF ,∠A =∠D ,AC =DF D.BC =EF ,∠C =∠F ,AC =DF4.在△ABC 和△DEF 中,AB =DE ,∠A =∠D ,若证△ABC ≌△DEF ,还要补充一个条件,错误的补充方法是( )A.∠B =∠E B.∠C =∠F C.BC =EF D.AC =DF 5.下列说法正确的是( )A.两边一角对应相等的两个三角形全等 B.两角一边对应相等的两个三角形等 C.两个等边三角形一定全等 D.两个等腰直角三角形一定全等6.如图所示,BE ⊥AC ,CF ⊥AB ,垂足分别是E .F ,若BE =CF ,则图中全等三角形有( ) A.1对 B.2对 C.3对 D.4对7.如图,AB =DB ,BC =BE ,欲证△ABC ≌△DBC ,则需补充的条件是( ) A.∠A =∠D B.∠E =∠C C.∠A =∠C D.∠1=∠2 三、挑战你的技能1.如图,若∠DAB =∠CBA ,请你再添加一对相等的条件,使△ABD ≌△CAB ,并说明三角形全等的理由.2.(1)完成下面的证明:如图,AB =AC ,E ,F 分别是A C ,AB 的中点,那么△ABE ≌△ACF . 证明:E F Q ,分别是AC ,AB 的中点,12AE AC ∴=,12AF AB =( ) AB AC =Q ,AE AF ∴= 在ABE △和ACF △中 ______________()______________()______________()=⎧⎪=⎨⎪=⎩,,, ABE ACF ∴≅△△.(2)根据(1)的证明,若连结BC .请证明:△EBC ≌△FCB .A B C D E 1 2A B C F E A B C D ABEFA3.如图,已知:BE =DF ,AE =CF ,AE ∥CF ,求证:AD ∥BC .4.如图,已知:CE ⊥AD 于E ,BF ⊥AD 于F ,(1)你能说明△BDF 和△CDE 全等吗?(2)若能,请你说明理由,若不能,在不用增加辅助线的情况下,请添加其中一个适当的条件,这个条件是__________,来说明这两个三角形全等,并写出证明过程.四、拓广探索飞翔建筑公司在扩建二汽修建厂房时,在一空旷地上发现有一个较大的圆形土丘,经分析判断很可能是一座王储陵墓,由于条件限制,无法直接度量A ,B 两点间的距离,请你用学过的数学知识,按以下要求设计测量方案. (1)画出测量方案(2)写出测量步骤(测量数据用字母表示)(3)计算AB 的距离(写出求解或推理过程,结果用字母表示)AB CD E FA BC DEF A B参考答案:一、1.△ADC ,AD ,AC ,∠DCA 2.EF ,∠DFE 3.B B AC A C '''∠=∠=或 4.∠AOC =∠BOD ,OC =OD ,△BOD 5.Ⅰ,有两边及其夹角对应相等的两个三角形全等 6.∠BAD =∠CAD ,AB =AC ,BD =CD 7.100° 二、1.D 2.C 3.D 4.C 5.B 6.C 7.D三、1.需要再添加的条件为:∠DBA =∠BAC (A S A )或∠DAC =∠CBD (A S A )或AD =BC (S A S ) 2.(1)中点定义,()()(SAS)()AE AF A A AB AC =⎧⎪∠=∠⎨⎪=⎩已证公共角,已知 (2)证明:ABE ACF ≅Q △△,BE CF ∴=;又E Q ,F 分别为AC ,AB 的中点,12EC AC ∴=,12BF AB =,AB AC =Q ,EC BF ∴=,在EBC △和FCB △中,BE CF BC CB EC FB =⎧⎪=⎨⎪=⎩,,EBC FCB ∴≅△△. 3.证明:AE CF Q ∥,AEB DFC ∴=∠∠,180180AEB DFC ∴-=-oo∠∠,AED BFC ∴=∠∠,BE DF =Q ,BE EF DF EF ∴-=-,BF DE ∴=.在ADE △和CBF △中,AE CF AED BFC DE BF =⎧⎪=⎨⎪=⎩,,∠∠ADE CBF ∴≅△△,ADE CBF ∴=∠∠,AD BC ∴∥.4. (1)不能,(2)添加的条件为:BD =DC 或DF =DE 或BF =CE .选:BD =DC . 证明:CE AD Q ⊥,BF AD ⊥,90CED BFD ∴==o∠∠,在CED △和BFD △中, ()()CDE BFD CDE BDF CE BD =⎧⎪∠=∠⎨⎪=⎩已证对顶角相等∠∠,CED BFD ∴≅△△.四、(1)如图所示 (2)在地上找到可以直接到达点A ,B 的一点O ,在AO 的延长线上取一点以,并测得OC =OA ,在BO 的延长线上取一点在,并测得OD =OB ,这时测得CD 的长为A ,则AB 的长就是A . (3)理由:由测法可得.OC =OA ,OD =OB ,∠COD =∠AOB ,所以△COD ≌△AOB ,所以CD =AB =A .AB。

相关文档
最新文档