算术平方根、平方根知识点辅差01

合集下载

平方根基础知识

平方根基础知识

平方根基础知识【要点梳理】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数的平方等于,即,那么这个正数叫做的算术平方根(规定0的算术平方根还是0);,读作“的算术平方根”,叫做被开方数.要点诠释:有意义时,≥0,≥0.2.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.平方与开平方互为逆运算. (≥0)的平方根的符号表达为是的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质x a 2x a =x a a a a a a 2x a =x a a a a 0)a ≥a 0||000a a a a a a >⎧⎪===⎨⎪-<⎩知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位..【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是()A.5是25的算术平方根B.l 是l 的一个平方根C.的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为=5,所以本说法正确;B.=±1,所以l 是l 的一个平方根说法正确;C.4,所以本说法错误;D.因为=0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)没有平方根.( )(2.( )(3)的平方根是.( ) ()20a a =≥250=25= 2.5=0.25=()24-9-4=±21()10-110±(4)是的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2;(4)是的算术平方根. 2、 填空:(1)是的负平方根.(2表示的算术平方根,. (3的算术平方根为. (4,则,若,则 .【思路点拨】(3就是的算术平方根=,此题求的是的算术平方根. 【答案与解析】(1)16;(2)(3) (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1) (225--4254=254254-=3=x =3=x =181191911;164138-(3(4【答案】(1)15;(2)15;(3)-0.3;(4) 3的取值范围是______________.【答案】≥; 【解析】+1≥0,解得≥.【总结升华】当式子有意义时,一定表示一个非负数,即≥0,≥0.举一反三:【变式】(2020春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根. 【答案】解:∵+(3x+y ﹣1)2=0,∴, 解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、求下列各式中的x 值(1)169x 2=144(2)(x ﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x ﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】655x x 1-x x 1-a a解:(1)169x 2=144,两边同时除以169,得开平方,得x=(2)(x ﹣2)2﹣36=0,移项,得 (x ﹣2)2=36开平方,得 x ﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为,长为3,由题意得,·3=13233=1323=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.2144169x =x x x x 2x 21x =±x。

八年级复习平方根与算术平方根知识点

八年级复习平方根与算术平方根知识点
八 年 课 级 时 数 一 学 上 册

第 11章 数的开方 •知识点1.平方根 •(1)定义:什么叫做平方根? •如果一个数的平方等于a,那么这个数就叫做a的 平方根。 • 即:如果X2=a ,那么x 叫做a的平方根 •(2)什么叫做算术平方根? • a的平方根怎么表示? •正数a的正的平方根叫做a的算术平方根,记为 √a,读作“a的算术平方根”。另一 可以记作± √ a,a称为被开方数。
•±√1.21、±√1
1 256
•(4)计算√(-8)2 、 ±√│-49│
•(5)考点
①√a(a的取值范围a≥0)
②√a(√a的取值范围√a ≥0) ③ √a2=|a|={a a≥0 •-a a<0
•有关平方根和开平方的简单计算 •(1)求个数的平方根 •25 、0.09、9∕4 、169
•(2)把下列各数开平方 •125、8、64∕27、0.009 •(3)计算√121、-√36、
•(3) 一个正数的平方根有几个?零的平根有几 个?负数的平方根呢?
•一个正数有两个平方根,它们互为相反数; •0有一个平方根,它是0本身; •负数没有平方根。 • (4)平方和开平方运算有什么区别和联系?
•区别: •①平方运算中,已知的是底数和指数,求的是幂。 •在开平方运算中,已知的是指数和幂,求的是底。 • ②平方运算中的底数可以是任意数,平方的结果是唯一的 •在开平方运算中,开方的数的结果不一定是唯一的。 •联系:二者互为运算

算术平方根、平方根知识点教学教材

算术平方根、平方根知识点教学教材

算术平方根、平方根知识点学科教师辅导讲义知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小. 规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分. 例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0); (2)平方与开平方是互逆运算;2.平方根与算术平方根的区别与联系例2.求下列各数的平方根和算术平方根:(1)0.0009 (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根. 规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a 也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( ) A.2 B.-1 C.1 D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.162.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是()26-的算术平方根 D.0没有算术平方根3.下列整数中,与 最接近的是( )A.4B.5C.6D.74.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间 5.81的平方根是( )A.3±B.3C.9±D.9 6.下列语句正确的是( )A.-2是-4的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )A.-8B.8±C.2±D.8±或2±二、填空题 1.化简:(1)412= ; (2) = . 2.大于2且小于5的整数是 . 3.使式子11=-x 成立的未知数x 的值是 。

算术平方根、平方根知识点辅差

算术平方根、平方根知识点辅差

知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.例2.求下列各数的平方根和算术平方根:(1)0.0009 (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )A.2B.-1C.1D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.162.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是()26-的算术平方根 D.0没有算术平方根 3.下列整数中,与 最接近的是( )A.4B.5C.6D.74.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间5.81的平方根是( )A.3±B.3C.9±D.96.下列语句正确的是( )A.-2是-4的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )A.-8B.8±C.2±D.8±或2±二、填空题1.化简:(1)412= ; (2) = . 2.大于2且小于5的整数是 .3.使式子11=-x 成立的未知数x 的值是 。

2022年初中数学同步 7年级下册 第07课 算数平方根与平方根(学生版)-

2022年初中数学同步 7年级下册 第07课  算数平方根与平方根(学生版)-

第07课 算数平方根与平方根课程标准1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.知识点01 平方根和算术平方根的概念1.算术平方根的定义如果一个 的平方等于,即,那么这个正数x 叫做的 (规定0的算术平方根还是 );的算术平方根记作 ,读作“ ”,叫做 . 注意:(1)当式子有意义时,一定表示一个 ,即 , . (2) 没有算数平方根;(3)算数平方根等于本身的数有: ; (4)算数平方根 等于原来的数; (5)注意a 运算结果的非负性; 2.平方根的定义如果,那么 叫做 的平方根.求一个数的平方根的运算,叫做 .平方与开平方互为 . (≥0)的平方根的符号表达为 ,其中是的 . 注意:(1) 才有平方根; (2) 没有平方根;(3)平方根等于本身的数是: ;(4)一个正数有 个平方根,他们 ; (5)平方根 等于原来的数;知识点02 平方根和算术平方根的区别与联系x a 2x a =a a a a a a a 2x a =a a a a a 目标导航知识精讲1.区别:(1)定义不同;(2)结果不同:和 2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0. 注意:算术平方根平方根定义若正数x ,2x a =, x 叫做a 的算术平方根,若数x ,2x a =, x 叫做a 的平方根,a 的范围 表示正数有一个算术平方根,是正数正数有 个平方根,它们互为相反数0的算术平方根是 0的平方根是 没有算术平方根没有平方根知识点03 平方根的性质(1)2a = (2)2()a =知识点04 平方根小数点位数移动规律被开方数的小数点向右(左)每移动两位,算术平方根的小数点向右(左)移动 位。

例如:,,,.考法01 算数平方根与平方根的计算【典例1】16的算术平方根是___________. 【典例2】9的平方根是_________. 【典例3】81的平方根是____.a ±a 62500250=62525= 6.25 2.5=0.06250.25=能力拓展的平方根是.考法02 利用平方根解方程【典例4】求下列各式中的x值:(1)169x2=144;(2)(x-2)2-36=0.【即学即练】利用平方根求下列x的值:(1)(x+1)2=16.(2)3(x+2)2=27(3)64(x+1)2﹣25=0.考法03 平方根和算数平方根的逆运算【典例5】已知2a﹣1的平方根为±3,3a+b﹣1的算术平方根为4,求a+2b的平方根.【即学即练】已知2a+1的平方根是±3,5a+2b-2的算术平方根是4,求:3a-4b的平方根.【即学即练】如果一个正数m的两个平方根分别是2a-3和a-9,求2m-2的值.【即学即练】已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.考法04 算数平方根结果的非负性+【典例6】已知2a b(1)求2a-3b的平方根;(2)解关于x的方程2420+-=.ax b【即学即练】-17|=0,求x+y的算术平方根.考法05 算数平方根小数点移动规律【典例7】观察下表,按你发现的规律填空=的值为_______.3.873【即学即练】.【即学即练】 1.414 4.472≈,≈_______.【即学即练】10.02=考法06 平方根的性质应用【典例8】实数a ,b 在数轴上对应点的位置如图所示,化简a _________________【即学即练】实数a 、b =______.【即学即练】已知实数a 在数轴上的位置如图,则化简|1﹣_____.考法07 算数平方根的估算【典例9__________.【即学即练】a ,小数部分为b ,则________,_________a b ==.【即学即练】已知a ,b 为两个连续的整数,且,则a +b =____.【即学即练】已知a ,b 为两个连续的整数,且a <b ,则a +b =___________.考法08 找规律【典例10】请先在草稿纸上计算下列四个式子的值:④326++=__________.【即学即练】===……请你将发现的规律用含自然数n(n≥1)的等式表示出来__________________. 【即学即练】归纳并猜想:(1)211+的整数部分为____;(2)222+的整数部分为____;(3)233+的整数部分为____;(4)猜想:当n为正整数时,2n n+的整数部分为____,并把小数部分表示出来为____.【即学即练】观察分析下列数据,并寻找规律:2,5,8,11,14,17,…,根据规律可知第n个数据应是__________.题组A 基础过关练1.4的算术平方根为()A.2±B.2C.2±D.22.下列说法中错误的是()A.12是0.25的一个平方根B.正数a的两个平方根的和为0C.916的平方根是34D.当0x≠时,2x-没有平方根3.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a b-+的结果为()A.2a+b B.-2a+b C.b D.2a-b4.已知2|1|0++-=a b,那么()2017a b+的值为( )A.-1B.1C.20173D.20173-5.若320,a b-++=则a b+的值是()A.2B.1C.0D.1-6.下列计算正确的是()A.9=±3B.38-=﹣2C.2(3)-=﹣3D.235+=分层提分7.916的平方根是34±,用式子表示正确的是( )A .34B .34=± C 34= D 34± 8.一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间B .3与4之间C .4与5之间D .5与6之间9.一个正数a 的平方根是2x ﹣3与5﹣x ,则这个正数a 的值是( ) A .25B .49C .64D .8110.若2m -4与3m -1是同一个数的平方根,则m 的值是( ) A .-3B .-1C .1D .-3或1题组B 能力提升练11.16的平方根是 .12.已知a 、b 满足(a ﹣1)2,则a+b=_____. 13.一个正数的平方根分别是1x +和5x -,则x =__.14a b ,则a b + 15.若(x ﹣1)2=4,则x=_____.1610.1= 3.41==__________________.17.代数式-3_______,这时a 与b 的关系是_______.18;……,则第n (n 为正整数)个等式是__. 题组C 培优拔尖练19.解方程. (1)24289x = (2)()29316x += (3)()22640x --=20.已知2a -1的算术平方根是3,3a+b -1的平方根是±4,c a+2b -c 的平方根.21.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c (1)求a ,b ,c 的值;(2)求3a b c -+的平方根.22.实数a b 、.在数轴上的位置如图所示,请化简:a b -.23.有两个十分喜欢探究的同学小明和小芳,他们善于将所做的题目进行归类,下面是他们的探究过程. (1)解题与归纳①小明摘选了以下各题,请你帮他完成填空.= ;= ;= ;= ;= ;= ;②归纳:对于任意数a,= ③小芳摘选了以下各题,请你帮她完成填空.2= ;2= ;2= ;2= ;2= ; 2= ;④归纳:对于任意非负数a,有2= (2)应用根据他们归纳得出的结论,解答问题.数a ,b -224.观察下列式子变形过程,完成下列任务:111n n n +=-+ 1111n n =+-+(1)(2)1199++。

平方根(基础)知识讲解

平方根(基础)知识讲解

平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【高清课堂:389316 平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);aa的算术平方根”,a叫做被开方数.要点诠释:a0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为0)a≥a的算术平方根.知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质||00a aa aa a>⎧⎪===⎨⎪-<⎩()2a a=≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.5,所以本说法正确;B.1,所以l 是l 的一个平方根说法正确;C.4,所以本说法错误;D.因为0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(24=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(24=;(4)25是425的算术平方根.2、 填空: (1)4-是 的负平方根.(2表示 的算术平方根,= .(3的算术平方根为 .(43=,则x = ,若3=,则x = .【思路点拨】(3181的算术平方根=19,此题求的是19的算术平方根.【答案与解析】(1)16;(2)11;164(3)13(4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化. 举一反三:【变式1】下列说法中正确的有():①3是9的平方根.② 9的平方根是3.③4是8的正的平方根.④8-是64的负的平方根.A.1个 B.2个 C.3个 D.4个【答案】B;提示:①④是正确的.【变式2】求下列各式的值:(1)(2(3(4【答案】(1)15;(2)15;(3)-0.3;(4)6 553x的取值范围是______________.【答案】x≥1-;【解析】x+1≥0,解得x≥1-.【总结升华】a0,a≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y﹣1)2=0,求5x+y2的平方根.【答案】解:∵+(3x+y﹣1)2=0,∴,解得,,∴5x+y2=5×1+(﹣2)2=9,∴5x+y2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。

算术平方根、平方根知识点汇编

算术平方根、平方根知识点汇编

学科教师辅导讲义知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.平方根与算术平方根的区别与联系例2.求下列各数的平方根和算术平方根:(1)0.0009 (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根. 规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )A.2B.-1C.1D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.162.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是()26-的算术平方根 D.0没有算术平方根 3.下列整数中,与 最接近的是( )A.4B.5C.6D.74.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间5.81的平方根是( )A.3±B.3C.9±D.96.下列语句正确的是( )A.-2是-4的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )A.-8B.8±C.2±D.8±或2±二、填空题1.化简:(1)412= ; (2) = .2.大于2且小于5的整数是 .3.使式子11=-x 成立的未知数x 的值是 。

最新算术平方根、平方根知识点

最新算术平方根、平方根知识点

学科教师辅导讲义知识点2:估算估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.规律小结确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.例2.如果17-=m ,那么m 的取值范围是( )A.10<<mB.21<<mC.32<<mD.43<<m知识点3:平方根、开平方的概念及符号表示延伸拓展1.平方根的理解(1)被开方数a 一定是非负数(即正数或0);(2)平方与开平方是互逆运算;2.例2.求下列各数的平方根和算术平方根:(1)0.0009 (2)8125(3)25-)(知识点4:平方根的性质平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a也叫做a 的算术平方根.注:一个正数的平方根有两个,而它的算术平方根只有一个.例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )A.2B.-1C.1D.0随堂巩固一、选择题.1. 4的算术平方根是( )A.2B.-2C.±2D.162.下列说法正确的是( )A.5是25的算术平方根B.16是4的算术平方根C.-6是()26-的算术平方根 D.0没有算术平方根 3.下列整数中,与 最接近的是( )A.4B.5C.6D.74.一个正方形的面积是15,估计它的边长大小在( )A.2与3 之间B.3与4 之间C.4与5之间D.5与6之间5.81的平方根是( )A.3±B.3C.9±D.96.下列语句正确的是( )A.-2是-4的平方根B.2是()22-的算术平方根C.()22-的平方根是2D.4的平方根是2或-27.252=a ,3=b ,则a+b 的值是( )A.-8B.8±C.2±D.8±或2±二、填空题1.化简:(1)412= ; (2) = . 2.大于2且小于5的整数是 .3.使式子11=-x 成立的未知数x 的值是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算术平方根、平方根知识点辅
差01
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
知识点2:估算
估算算术平方根的大小主要是利用逼近法,即利用与被开方数最接近的完全平方数来估计这个被开方数的算术平方根的大小.
规律小结
确定一个无限不循环小数的整数部分,一般采用估算法(估算到个位);确定其小数部分的方法是:首先确实其整数部分,然后利用这个数减去它的整数部分.
例2.如果17-=m ,那么m 的取值范围是( )
A.10<<m
B.21<<m
C.32<<m
D.43<<m
知识点3:平方根、开平方的概念及符号表示
延伸拓展 1.平方根的理解
(1)被开方数a 一定是非负数(即正数或0);
(2)平方与开平方是互逆运算;
2.
例2.求下列各数的平方根和算术平方根:
(1) (2)8125
(3)25-)

知识点4:平方根的性质
平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根.
规律小结:一个正数a 的平方根有两个记作a ±,表示a 的正的平方根和负的平方根,其中正的平方根a 也叫做a 的算术平方根.
注:一个正数的平方根有两个,而它的算术平方根只有一个.
例3.一个正数x 的两个平方根分别是31-+a a 与,则a 的值为( )
随堂巩固
一、选择题.
1. 4的算术平方根是( )
±
2.下列说法正确的是( )
是25的算术平方根 是4的算术平方根
是()2
6-的算术平方根 没有算术平方根 3.下列整数中,与 最接近的是( )
4.一个正方形的面积是15,估计它的边长大小在( )
与3 之间 与4 之间 与5之间 与6之间
5.81的平方根是( )
A.3± C.9±
6.下列语句正确的是( )
是-4的平方根 是()22-的算术平方根 C.()22-的平方根是2 D.4的平方根是2或-2 7.252=a ,3=b ,则a+b 的值是( )
B.8±
C.2±
D.8±或2±
二、填空题
1.化简:(1)4
12= ; (2)2.大于2且小于5的整数是 .
3.使式子11=-x 成立的未知数x 的值是 。

4.已知一个正数的平方根是23-x 和65+x ,则这个数是
5.已知m,n 为两个连续的整数,且n m <<11,则n m += .
三、解答题
1.求下列各式的值.
(1)225 (2)0004.0- (3)4112± (4)()21.0--
2.解下列方程.
30
(1)0252=-x (2)81162=x (3)016252=-x (4)()041212=--x。

相关文档
最新文档