平方根知识点汇总讲义
(完整版)数的开方知识点汇总

数的开方知识点汇总安皋二中八年级数学组一、平方根、算术平方根1、平方根的定义:如果一个数的平方等于a那么这个数就叫做数a的平方根。
即如果x2= a那么x就是a有平方根。
2、平方根的性质:(1)正数有两个平方根,它们互为相反数。
(2)0的平方根是0(3)负数没有平方根(因为任何数的平方都是一个非负数)3、平方根的表示方法一个非负数a的平方根可表示为±a,读作正负根号a其实它的完整写法是±2a我们称2是根指数,a叫做被开方数,叫根号,我们平常省略了根指数2。
3、算术平方根(1、)定义:一个正数的正的平方根叫做这个数的算术平方根。
(2)表示方法:一个非负数a的算术平方根可表示为a,读作根号a,(3)算术平方根的性质:①正数有一个正的算术平方根。
②0的算术平方根是0③负数没有平方根,当然也没有算术平方根。
(4)a的双重非负性①首先,a要有意义,首先被开方数必须是一个非负数。
②其次,a表示一个非数的算术平方根,它的值不可能是一个负数,即它的值是一个非负数。
综上:a中a≥0 a≥0(5)初中所学的三类非负数ⅰ:绝对值非负即|a|≥0ⅱ:偶次方非负即a偶次≥0ⅲ:算术平方根非负即当a≥0时a≥04、立方根(1、)定义:如果一个数的立方等于a那么这个数就叫做a的立方根。
即如果x3=a那么x就是a的立方根。
(2、)立方根的表示方法:一数a的立方根表示为3a,读作三次根号a其中3叫做根指数,a叫被开方数。
(当根指数是2时可以省略,是3或其数时不能省略)(3、)立方根的性质:任何数都有立方根且只有一个正数的立方根是一个正数,0的立方根是0,负数的立方根是一个负数。
5、数的开方中的几个公式:(1)2a||a= (a为任意实数)(2、)(a)2=a (a≥0)(3、)(3a)3= a(a为任意实数)(4、)a33(a为任意实数)a=(5、)-3a=3a-(a为任意实数)6、实数与数轴(1、)无理数的定义:无限不循环小数叫无理数(2、)实数的定义:有理数和无数统称为实数。
(完整版)平方根知识点总结讲义

平方根 知识点总结【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -1),解方程即可求解.【答案与解析】解:依题意得 2m -4=-(3m -1),解得m =1;∴m 的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22212111a -=⨯-=②当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义?2x 4x -11x x +-1x - 【答案与解析】解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠1x - 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知4322232b a a =-+-+,求11a b +的算术平方根. 【答案】解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=, ∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+49257535==⨯=; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴36119x ==±(2)∵()21289x +=∴1289x +=∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b 是实数,26|20a b ++=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +-=260a +≥,|20b -≥,∴260a +=,20b -=.∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:2110x y -+=,求20112012x y +的值. 【答案】2110x y -+=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ 50x = ∴ 长方形纸片的长为350cm .∵ 50>49,507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.。
平方根与立方根知识点总结

平方根与立方根知识点总结1. 平方根平方根是指一个数的平方等于给定数的正数解。
以√a表示a的平方根,其中a为非负实数。
1.1 平方根的概念对于非负实数a,如果存在一个非负实数x,使得x的平方等于a,则这个非负实数x被称为a的平方根。
平方根的记号为√a。
1.2 平方根的性质- 平方根不一定是一个整数,可以是一个无理数或者有理数。
- 非负实数的平方根有两个解,一个是正数,另一个是负数,但我们在常见的情况下只讨论正数平方根。
- 非负实数的平方根可以通过求解方程x^2 = a得到。
2. 立方根立方根是指一个数的立方等于给定数的正数解。
以³√a表示a的立方根,其中a为实数。
2.1 立方根的概念对于实数a,如果存在一个实数x,使得x的立方等于a,则这个实数x被称为a的立方根。
立方根的记号为³√a。
2.2 立方根的性质- 立方根不一定是一个整数,可以是一个无理数或者有理数。
- 实数的立方根有两个复数解和一个实数解,其中实数解为正数立方根。
- 实数的立方根可以通过求解方程x^3 = a得到。
3. 计算平方根与立方根3.1 通过近似方法计算- 对于非完全平方数和非完全立方数,可以通过近似方法利用计算器或者数学软件计算得到一个接近真实值的结果。
3.2 通过公式计算- 对于完全平方数,可以利用公式进行计算。
例如,对于一个完全平方数a,其平方根可以通过√a = a的1/2次方得到。
- 对于完全立方数,可以利用公式进行计算。
例如,对于一个完全立方数a,其立方根可以通过³√a = a的1/3次方得到。
4. 应用场景平方根和立方根在日常生活和科学领域中有广泛的应用。
4.1 数学- 在代数中,求解方程的过程中常常需要计算平方根和立方根。
- 在概率统计中,方差和标准差的计算中,需要使用平方根。
- 在计算几何中,勾股定理的应用需要计算平方根。
4.2 自然科学- 物理学中,运动速度、加速度等的计算中,需要使用平方根。
平方根知识点总结

平方根知识点总结
1. 平方根的定义
平方根是一个数字的平方的正值的那个根。
通常使用符号√来表示。
例如,√4 = 2,因为2的平方等于4。
2. 平方根的性质
a) √(a×b) = √a×√b
b) √(a/b) = √a/√b (b≠0)
c) (√a)^2 = a
d) (√a)^n = a^(n/2) (n为偶数)
e) √(a^n) = a^(n/2) (n为偶数)
3. 无理数和有理数的平方根
a) 完全平方数的平方根是有理数,例如√4 = 2,√9 = 3。
b) 非完全平方数的平方根是无理数,例如√2,√5,√π。
4. 计算平方根的方法
a) 对于有理数,可以通过长除法计算平方根的近似值。
b) 对于无理数,可以使用牛顿迭代法或其他数值方法来近似计算平方根。
c) 科学计算器和计算机可以快速精确地计算平方根。
5. 平方根在几何中的应用
平方根在计算三角形的边长、面积和体积等几何运算中有广泛应用。
例如,勾股定理就涉及到直角三角形的两条直角边的平方根和。
平方根是一个基本的数学概念,在各个学科领域中都有重要的应用。
掌握平方根的基本性质和计算方法,对于进一步学习高等数学和相关领域知识很有帮助。
(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
(完整版)数的开方知识点汇总

7、实数与数轴的关系
任意一个数对应了数轴上的一个点,数轴上任意一上 点对应了一个实数,因此实数与数轴上的点是—对 应关系。
iii:算术平方根非负即当a>0时-,a>0
4、立方根
(1、)定义:如果一个数的立方等于a那么这个数就 叫做a的立方根。即如果x3=a那么x就是a的立方根。
(2、)立方根的表示方法:
一数a的立方根表示为3a,读作三次根号a其中3叫做根指数,a叫被开方数。
(当根指数是2时可以省略,是3或其数时不能省略) (3、)立方根的性质:
(3)算术平方根的性质:
1正数有一个正的算术平方根。
20的算术平方根是0
3负数没有平方根,当然也没有算术平方根。
(4), a的双重非负性
1首先,石要有意义,首先被开方数必须是一个非 负数。
2其次,心表示一个非数的算术平方根,它的值不 可能是一个负数,即它的值是一个非负数。
综上:,a中a>0,a>0
(5)初中所学的三类非负数i:绝对值非负即|a|>0丘:偶次方非负即a偶次>0
数的开方知识点汇总
安皋二中八年级数学组
一、平方根、算术平方根
1、平方根的定义:如果一个数的平方等于a那么这个数就叫做数a的平方根。即如果x2= a那么x就是a有平方根。
2、平方根的性质:
(1)正数有两个平方根,它们互为相反数。
(2)0的平方根是0
(3)负数没有平方根(因为任何数的平方都是一个非负数)
3、平方根的表示方法
一个非负数a的平方根可表示为土..a,读作正负根号a
其实它的完整写法是土2a我们称2是根指数,a叫做
被开方数,、叫根号,我们平常省略了根指数2。
平方根和立方根讲义

专题1: 平方根和立方根【基础知识梳理】 一、算术平方根1、算术平方根定义: 一般地,如果一个正数x 的平方等于a ,即2x =a ,那么这个正数x 叫做a 的算术平方根.a 的算术平方根记为a ,读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式2x =a (x ≥0)中,规定x =a ,x 就是a 的算术平方根。
例1:下列说法中正确的是( )A.25是5的算术平方根B.5是25的算术平方根C.5是25的算术平方根D.25是5的算术平方根 例2:81的算术平方根是 。
例3:若a+2有算术平方根,则a= 。
例4:若一个圆的面积为236cm π,则这个圆的直径为 cm 。
小结:(1)只有非负数才有算术平方根(2)一个非负数的算术平方根只有一个且仍旧为非负数。
2、你对正数a 的算术平方根a 的结果有怎样的认识呢?a 的结果有两种情:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
例如7525和=,25是完全平方数,7不是完全平方数。
3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?一般来说,被开放数扩大(或缩小)n 倍,算术平方根扩大(或缩小)n 倍,例如502500,525== 二、平方根1、平方根的定义:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。
即:如果2x =a ,那么x 叫做a 的平方根。
求一个数的平方根的运算,叫做开平方,即a x ±=。
例如:9的平方根是±3,±3的平方等于9,所以平方与开平方互为逆运算. 例5:求下列各数的平方根。
(1) 100 (2)169 (3) 0.25 (4)412 (5)49.0例6:求下列各式中的x 的值。
81)2(16)4(845.021)3(0100)2(225)1(2222=+==-=x x x x2、平方根的性质:讨论:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?正数有两个平方根,即正数进行开平方运算有两个结果,这两个平方根互为相反数;0的平方根只有一个0;负数没有平方根,即负数不能进行开平方运算;符号:非负数a 的算术平方根可用a 表示;负的平方根可用-a 表示;平方根则表示为a ±,这里的0≥a例7下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由. (1)-64 (2)0 (3)(-4)2(4)10-2例8:(1)下列运算正确的是( ) (2) :下列计算正确的是( )18324.148686.12144.3)3(.222±=±=+=+=--=-D C B A例9:若13++-x x 有意义,则x 的取值范围是 。
平方根与立方根知识点总结

平方根与立方根知识点总结一、平方根1、定义如果一个数的平方等于 a,那么这个数叫做 a 的平方根。
即若 x²=a,则 x 叫做 a 的平方根,记为±√a。
例如,因为 5²= 25,(-5)²= 25,所以 25 的平方根是 ±5。
2、性质(1)一个正数有两个平方根,它们互为相反数。
例如,正数 9 的平方根是 ±3。
(2)0 的平方根是 0。
(3)负数没有平方根。
3、开平方求一个数 a 的平方根的运算,叫做开平方。
开平方与平方互为逆运算。
例如,求 16 的平方根,即求解方程 x²= 16,可得 x = ±4。
4、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作√a。
例如,4 的算术平方根是 2,记作√4 = 2。
5、重要公式(1)(√a)²= a(a≥0)(2)√a² =|a|当a≥0 时,√a² = a;当 a<0 时,√a² = a。
例如,√5² = 5,√(-3)²= 3。
二、立方根1、定义如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
即若 x³=a,则 x 叫做 a 的立方根,记为³√a。
例如,因为 2³= 8,所以 8 的立方根是 2,记作³√8 = 2。
2、性质(1)正数的立方根是正数。
(2)负数的立方根是负数。
(3)0 的立方根是 0。
3、开立方求一个数 a 的立方根的运算,叫做开立方。
开立方与立方互为逆运算。
例如,求-27 的立方根,即求解方程 x³=-27,可得 x =-3,即³√-27 =-3。
4、重要公式(1)(³√a)³= a(2)³√a³ = a例如,(³√5)³= 5,³√(-3)³=-3 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根知识点汇总讲义
————————————————————————————————作者:————————————————————————————————日期:
2
平方根 知识点总结
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根.
2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方
根.
【要点梳理】
要点一、平方根和算术平方根的概念
1.算术平方根的定义
如果一个正数x 的平方等于a ,即2
x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a 的算术平方根记作a ,读作“a 的算术平方根”,a 叫做被开方数.
要点诠释:当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0.
2.平方根的定义
如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ±≥,其中a 是a 的算术平方根.
要点二、平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2)结果不同:a ±和a
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术
平方根;负数没有平方根.
(2)正数的两个平方根互为相反数,根据它的算术平方根可以
立即写出它的另一个平方根.因此,我们可以利用算术平方
根来研究平方根.
要点三、平方根的性质 2(0)||0
(0)(0)
a a a a a a a >⎧⎪===⎨⎪-<⎩ ()()20a a a =≥
要点四、平方根小数点位数移动规律
被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.
【典型例题】
类型一、平方根和算术平方根的概念
1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.
【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -
1),解方程即可求解.
【答案与解析】
解:依题意得 2m -4=-(3m -1),
解得m =1;
∴m 的值为1.
【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:
【变式】已知2a -1与-a +2是m 的平方根,求m 的值.
【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22
212111a -=⨯-=
②当2a -1+(-a +2)=0时,a =-1,
所以m =()()22221[2(1)1]39a -=⨯--=-=
2、x 为何值时,下列各式有意义? (1)2x ; (2)
4x -; (3)11x x ++-; (4)13
x x --. 【答案与解析】
解:(1)因为20x ≥,所以当x 取任何值时,2x 都有意义. (2)由题意可知:40x -≥,所以4x ≥时,
4x -有意义. (3)由题意可知:1010x x +≥⎧⎨
-≥⎩解得:11x -≤≤.所以11x -≤≤时11x x ++-有意义.
(4)由题意可知:1030
x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.
所以当1x ≥且3x ≠时,
13x x --有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.
举一反三:
【变式】已知4322232b a a =-+-+,求
11a b +的算术平方根. 【答案】
解:根据题意,得320,230.
a a -≥⎧⎨-≥⎩则23a =,所以
b =2,∴1131222a b +=+=, ∴11a b
+的算术平方根为112a b +=. 类型二、平方根的运算
3、求下列各式的值. (1)2222252434-+;(2)111200.36900435
--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序. 【答案与解析】
解:(1)2222252434-+49257535==⨯=; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72
=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.
类型三、利用平方根解方程
4、求下列各式中的x .
(1)23610;x -= (2)()2
1289x +=; (3)()2
932640x +-=
【答案与解析】
解:(1)∵23610x -=
∴2361x =
∴36119x =±=±
(2)∵()21289x +=
∴1289x +=±
∴x +1=±17
x =16或x =-18.
(3)∵()2
932640x +-= ∴()2
64329
x += ∴8323
x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)
(3)小题中运用了整体思想分散了难度.
举一反三:
【变式】求下列等式中的x :
(1)若2 1.21x =,则x =______; (2)2
169x =,则x =______; (3)若2
9,4
x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用
5、已知a 、b 是实数,且26|2|0a b ++-=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】
解:∵a 、b 是实数,26|2|0a b ++-=,260a +≥,|2|0b -≥,
∴260a +=,20b -=.
∴a =-3,2b =
. 把a =-3,2b =代入2(2)1a x b a ++=-,得-x +2=-4,∴x =6.
【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.
举一反三: 【变式】若2110x y -+
+=,求20112012x y +的值. 【答案】 解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.
①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.
②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.
6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm
的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符
合要求的长方形纸片.
【答案与解析】
解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得
32300x x ⋅=.
26300x =.
250x =.
∵ x >0,
∴ 50x =.
∴ 长方形纸片的长为350cm .
∵ 50>49, ∴507>.
∴ 35021>, 即长方形纸片的长大于20cm .
由正方形纸片的面积为400 2
cm , 可知其边长为20cm ,
∴ 长方形的纸片长大于正方形纸片的边长.
答: 小丽不能用这块纸片裁出符合要求的长方形纸片.
【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.。