三视图求体积面积

合集下载

立体几何三视图及体积表面积的求解

立体几何三视图及体积表面积的求解

立体几何三视图及体积表面积的求解一、空间几何体与三视图1. (吉林省实验中学2013—2014年度高三上学期第四次阶段检测)一个长方体截去两个三棱锥,得到的几何体如图1所示,则该几何体的三视图为( )A B C D【答案】C【解析】正视图是含有一条左下到右上实对角线的矩形;侧视图是含有一条从左上到右下的实对角线的矩形,故选C2. (广州2014届高三七校第二次联考)如图为几何体的三视图,根据三视图可以判断这个几何体为( ) A .圆锥B .三棱锥C .三棱柱D .三棱台【答案】C【解析】由三视图知,这是一个横放的三棱柱3.(黄冈中学2014届高三十月月考数学试卷)如图,一个棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为( )【答案】:D【解析】为。

4. (江西省稳派名校学术联盟2014届高三12月调研考试)如图所示是一个几何体的三视图,若该几何体的体积为,则主视图中三角形的高x 的值为( )212 2A32B32 C22 D2A. B. C. 1 D.【答案】C 【解析】5.(石家庄2014届高三第一次教学质量检测)用一个平面去截正方体,有可能截得的是以下平面图形中的 .(写出满足条件的图形序号)(1)正三角形 (2)梯形 (3)直角三角形 (4)矩形 【答案】(1)(2)(4) 【解析】6.(黄冈中学2014届高三十月月考数学试卷)一个底面是等腰直角三角形的直棱柱,侧棱长与底面三角形的腰长相等,其体积为4,它的三视图中俯视图如右图所示,侧视图是一个矩形,则这个矩形的对角线长为 .【答案】123432【解析】:设底面的等腰直角三角形的腰长为,则侧棱长也为,则,解得,则其,宽为。

二、空间几何体的体积和表面积1.(湖北省黄冈中学2014届高三数学(文)期末考试)某空间组合体的三视图如图所示,则该组合体的体积为()A .48 B .56 C .64 D .72【答案】C【解析】该组合体由两个棱柱组成,上面的棱柱体积为24540创=,下面的棱柱体积为46124创=,故组合体的体积为642.(四川省泸州市2014届高三数学第一次教学质量诊断性考试)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( ) A .B .C .D .a a 3142V a ==2a =2=3. (2014年福建宁德市普通高中毕业班单科质量检查)一个几何体的三视图如图所示,则该几何体的侧面积为()A.8+B.10C.8+.123. (承德市联校2013-2014年第一学期期末联考)把边长为2的正方形ABCD沿对角线BD折起,连结AC,得到三棱锥C-ABD,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.32B.12C.1 D.22【答案】B【解析】由两个视图可以得到三棱锥如图:其侧视图的面积即t R ACEV的面积,由正方形的边长为2得==1AE CE,故侧视图面积为125.(安徽省六校教育研究会2014届高三2月联考)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是()(A) (B)(C)(D)8【答案】D【解析】由三视图可得三棱锥如图所示:底面是边长为4的正三角形,AD BDC ^平面,故四个面的面积中,最大的面积是ABC V 的面积为142创4. (宁夏银川一中2014届高三年级月考)如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( )A .2+3.2+2.8+5.6+3【答案】A【解析】由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积.5. (湖南省2014届高三第五次联考数学)已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A. 16pB. 4pC. 8pD. 2pπ+π+π+π+1212(1)2S ππ=⨯⨯++32π=+7.(西安铁一中2014届高三11月模拟考试试题)一个几何体的三视图如图所示,则其外接球的表面积是( )A. B.【答案】B【解析】由三视图知:该几何体为长方体,长方体的棱长分别为3、4、5,所以长方体的体对角线为,所以外接球的半径为,所以外接球的表面积为。

高中数学讲义:三视图——几何体的体积问题

高中数学讲义:三视图——几何体的体积问题

三视图——⼏何体的体积问题一、基础知识:1、常见几何体的体积公式:(:S 底面积,:h 高)(1)柱体:V S h=×(2)锥体:13V S h =×(3)台体:(1213V S S h =++×,其中1S 为上底面面积,2S 为下底面面积(4)球:343V R p =2、求几何体体积要注意的几点(1)对于多面体和旋转体:一方面要判定几何体的类型(柱,锥,台),另一方面要看好该几何体摆放的位置是否是底面着地。

对于摆放“规矩”的几何体(底面着地),通常只需通过俯视图看底面面积,正视图(或侧视图)确定高,即可求出体积。

(2)对于组合体,首先要判断是由哪些简单几何体组成的,或是以哪个几何体为基础切掉了一部分。

然后再寻找相关要素(3)在三视图中,每个图各条线段的长度不会一一给出,但可通过三个图之间的联系进行推断,推断的口诀为“长对正,高平齐,宽相等”,即正视图的左右间距与俯视图的左右间距相等,正视图的上下间距与侧视图的上下间距相等, 侧视图的左右间距与俯视图的上下间距相等。

二、典型例题:例1:已知一个几何体的三视图如图所示,则该几何体的体积为_________思路:从正视图,侧视图可判断出几何体与锥体相关(带尖儿),从俯视图中可看出并非圆锥和棱锥,而是两者的一个组合体(一半圆锥+ 三棱锥),所以12V V V =+圆锥棱锥,锥体的高计算可得h =(利用正视图),底面积半圆的半径为6,三角形底边为12,高为6(俯视图看出),所以1126362S =××=三角形,2636S p p =×=圆,则13V S h =×=三角形棱锥,13V S h =××=圆圆锥,所以12V V =+=+圆锥棱锥答案:+例2:已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为 .思路:观察可发现这个棱锥是将一个侧面摆在地面上,而棱锥的真正底面体现在正视图(梯形)中,所以()1424122S =×+×=底,而棱锥的高为侧视图的左右间距,即4h =,所以1163V S h =×=底答案:16例3:若某几何体的三视图如图所示,则此几何体的体积是________.思路:该几何体可拆为两个四棱柱,这两个四棱柱的高均为4(俯视图得到),其中一个四棱柱底面为正方形,边长为2(正视图得到),所以2112416V S h =×=×=,另一个四棱柱底面为梯形,上下底分别为2,6,所以()2126282S =+×=,228432V S h =×=×=。

三视图与几何体的体积与面积交汇题型解析与训练

三视图与几何体的体积与面积交汇题型解析与训练
知其 是 立方 体 的一半 , 知选 ( ) 可 C. 解 法 2: 当俯视 图是 A时 , 正方 体 的体 积是 I 当俯 视 图是 B时 , 几何体 是 圆柱 , ; 该 底面 积是
积为 2 +
詈 : ×÷ = ,为,体 是 ; I 竹 () 詈高 1 积 詈当 s 则
俯视 图是 C时 , 几何 体是直 三棱 柱 , 该 故体 积是



其它要素 , 单凭 观察与判断是得不 出结论 的 , 解析 : 该几何体是 由二个长方体组 成 , 下 面体积为 1 3× × 3=9 上面的长方体体积为 3 ,
X3XI=9 因此其 几何 体 的体 积 为 l m . , 8c
题 型 三 由几 何 体 的体 积 或 面 积及 三 视
解法 1 由题意可知当俯视图是 A时 , : 即每 个视 图是边长为 l的正方形 , 那么此几何体是
3×( ×2×0 )=3 答案 : 3
n=
|| 爸
Q 潜 4 |

3・
三角形( 如图2所示)腰长为 l求该 四棱锥的 , ,
体积. 解析: 由于 正视 图 ( 主视 图)和侧 视 图 ( 左 视 图)为两个 全 等 的等 腰 直 角 三 角形 , 可 知 则 四棱锥 底 面 为 正 方 形 , 四个 侧 面 为 正 三 角 形 ,

2 四棱锥 的底面边长为 ̄ , , / 高为 , 以体积 2 所

( ) 耵+ √ B 4 23
( )4T+ D 1

1已知 一个 四棱 锥 的正视 图 ( 视 图 )和 . ・ 主
侧视图( 左视 图)为两个完全相同的等腰直角
分析: 由几何体 的三视图可知 : 空间几 该 何体为一圆柱 和一正四棱锥组成 的. 解: 圆柱 的底 面半 径为 1 高为 2 体 积为 , 。

2020春人教版九年级数学下册 第29章 点拨习题 29.2.3 三视图——求几何体的表面积和体积

2020春人教版九年级数学下册 第29章 点拨习题 29.2.3  三视图——求几何体的表面积和体积
【答案】B
11.如图所示是某几何体的三视图. (1)指出该几何体的名称;
解:该几何体是正六棱柱. (2)画出该几何体的侧面展开图并求出其面积;
解:画图略.S 侧=4×2×6=48(cm2).
(3)求出该几何体的体积. 解:V= 43×22×6×4=24 3(cm3).
12.如图是一个几何体的三视图(单位:厘米). (1)写出这个几何体的名称;

7.(2019·荆州)某几何体的三视图如图所示,则下列说法错.误.的 是( D ) A.该几何体是长方体 B.该几何体的高是 3 C.底面有一边的长是 1 D.该几何体的表面积为 18 平方单位
【点拨】该几何体的表面积为 2×(1×2+2×3+1×3)=22(平方单位).
8.(2019·滨州)如图,一个几何体由 5 个大小相同、棱长为 1 的 小正方体搭成,下列说法正确的是( A ) A.主视图的面积为 4 B.左视图的面积为 4 C.俯视图的面积为 3 D.三种视图的面积都是 4
9.(中考·荆州)如图是某几何体的三视图,根据图中的数据,求
得该几何体的体积为( D )
A.800π+1 200
B.160π+1 700
C.3 200π+1 200
D.800π+3 000
【点拨】由三视图可知,该几何体是由一个圆柱和一个长方体组
成的,圆柱的底面直径为 20,高为 8;长方体的长为 30,宽为 20,
解:这个几何体是圆锥.
(2)如果一只蚂蚁要从这个几何体中的点 B 出发,沿表面爬到 AC 的中点 D,请你求出蚂蚁爬行的最短路程. 解:如图,将圆锥侧面展开,线段 BD 的长为所求的最短路程. 由条件易得∠BAB′=120°,C 为B︵B′的中点,所以∠BAD=60°. 连接 BC,易得△ABC 为等边三角形, 又因为 D 为 AC 的中点,所以 BD⊥AC. 易得 BD=3 3厘米.

第8讲三视图

第8讲三视图

第8讲三视图,体积与表面积的计算[知识梳理]1.空间几何体的结构特征2.空间几何体的三视图1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的表面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积3.常见几何体的侧面展开图及侧面积题型一空间几何体的三视图(高频考点题,多角度突破)考向一已知几何体,识别三视图1.(东北四市联考)如图,在正方体ABCD­A1B1C1C1中,P是线段CD的中点,则三棱锥P­A1B1A的侧视图为()考向二已知三视图,判断几何体的形状2.一个几何体的三视图如图所示,则该几何体的直观图可以是()考向三已知三视图中的两个视图,判断第三个视图3.(石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该棱锥的侧视图可能为()【针对补偿】1.(济南模拟)如图,多面体ABCD­EFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是()2.(北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.32B.2 3 C.22D.23.(南昌一模)如图,在正四棱柱ABCD­A1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥P­BCD的正视图与侧视图的面积之比为()A.1∶1 B.2∶1 C.2∶3 D.3∶2[知识自测]1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π2.(全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π3.正三棱柱ABC ­A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A ­B 1DC 1的体积为______.题型一 空间几何体的表面积与侧面积(基础拿分题,自主练透)(1)(课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为______.【针对补偿】1.(全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A.17π B.18π C.20π D.28π2.(黑龙江省大庆中学期中)一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.6 3 B.8 C.8 3 D.12题型二空间几何体的体积(高频考点题,多角突破)考向一求以三视图为背景的几何体的体积1.(课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90π B.63π C.42π D.36π考向二不规则几何体的体积3.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.23 B.33 C.43 D.32考向三 柱体与锥体的内接问题4.(2015·湖南卷)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为⎝ ⎛⎭⎪⎫材料利用率=新工件的体积原工件的体积( )A.89πB.827π C.24(2-1)3π D.8(2-1)3π【针对补偿】3.(新课标全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.134.(山东)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为______.题型三 球与几何体的切接问题 考向一 正方体(长方体)的外接球1.(天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.考向二 直三棱柱的外接球2.已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310【针对补偿】5.(广州市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20π B.205π3C .5πD.55π6[A 基础巩固练]1.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 2.(山西省高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为37,则侧视图中线段的长度x 的值是( )A.7 B .27 C .4D .53.(课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π45.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+125。

由三视图求面积、体积-高中数学知识点讲解

由三视图求面积、体积-高中数学知识点讲解

由三视图求面积、体积1.由三视图求面积、体积【知识点的认识】1.三视图:观测者从不同位置观察同一个几何体,画出的空间几何体的图形,包括:(1)主视图:物体前后方向投影所得到的投影图,反映物体的高度和长度;(2)左视图:物体左右方向投影所得到的投影图,反映物体的高度和宽度;(3)俯视图:物体上下方向投影所得到的投影图,反映物体的长度和宽度.2.三视图的画图规则:(1)高平齐:主视图和左视图的高保持平齐;(2)长对正:主视图和俯视图的长相对应;(3)宽相等:俯视图和左视图的宽度相等.3.常见空间几何体表面积、体积公式圆柱:푆圆柱=2휋푟(푟+푙)(1)表面积公式:{圆锥:푆圆锥=휋푟(푟+푙)圆台:푆圆台=휋(푟2+푟′2+푟푙+푟′푙) 球:푆球=4휋푟2柱体:푉柱=푆ℎ1锥体:푉锥=푆ℎ(2)体积公式:{台体:푉台=(푆+푆푆′+푆′)ℎ33球:푉球=4휋푟31/ 3【解题思路点拨】1.解题步骤:(1)由三视图定对应几何体形状(柱、锥、球)(2)选对应公式(3)定公式中的基本量(一般看俯视图定底面积,看主、左视图定高)(4)代公式计算2.求面积、体积常用思想方法:(1)截面法:尤其是关于旋转体及与旋转体有关的组合体问题,常用轴截面进行分析求解;(2)割补法:求不规则图形的面积或几何体的体积时常用割补法;(3)等体积转化:充分利用三棱锥的任意一个面都可以作为底面的特点,灵活求解三棱锥的体积;(4)还台为锥的思想:这是处理台体时常用的思想方法.【命题方向】三视图是新课标新增内容之一,是新课程高考重点考查的内容.解答此类问题,必须熟练掌握三视图的概念,弄清视图之间的数量关系:正视图、俯视图之间长相等,左视图、俯视图之间宽相等,正视图、左视图之间高相等(正俯长对正,正左高平齐,左俯宽相等),要善于将三视图还原成空间几何体,熟记各类几何体的表面积和体积公式,正确选用,准确计算.例:某几何体三视图如图所示,则该几何体的体积为()A.8﹣2πB.8﹣πC.8 ―휋2D.8 ―휋41分析:几何体是正方体切去两个圆柱,根据三视图判断正方体的棱长及切去的圆柱的底面半径和高,把数据代入4正方体与圆柱的体积公式计算.1解答:由三视图知:几何体是正方体切去两个圆柱,4正方体的棱长为 2,切去的圆柱的底面半径为 1,高为 2,∴几何体的体积V=23﹣2 ×14×π×12×2=8﹣π.故选:B.点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.。

由三视图确定几何体的面积或体积

由三视图确定几何体的面积或体积
3.最后根据已知数据,求出展开图的面积(体积).
2
HOMEWORK PRACTICE
练一练
1、学会根据物体的三视图描述出几何体的基本形状或实物原型,并计算表面积或
体积。
2、经历探索简单的几何体活动,培养动手实践能力,发展学生逆向思维能力。
02
练一练
根据物体的三视图描述物体的形状.
02
练一练
1.如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么
3.在水平面内得到的由左向右观察物体
的视图,叫做左视图。
俯视图



01
三视图知识点回顾
将三个投影面展开在一个平面内,
得到这个物体的一张三视图.
主视图

投影规则:
主俯长对正、主左高平齐、俯左宽相等

左视图和俯视图的宽要相等。


即:主视图和俯视图的长要相等
主视图和左视图的高要相等
左视图
俯视图
01
01
三视图知识点回顾
我们用三个互相垂直的平面(例如:墙角处的三面墙面)作为投影面,
其中正对着我们的叫正面,正面下方的叫水平面,右边的叫做侧面.
对于一个物体(例如一个正方体)在三
个投影面内进行正投影,
1.在正面内得到的由前向后观察物体的
视图,叫主视图。
主视图
正面
2.在水平面内得到的由上向下观察物
体的视图,叫做俯视图。
定制作每个密封罐所需钢板的面积 (图中尺寸单位:mm).
100mm
50mm
50mm
由展开图可知,密封罐由两个正六边形和6个正方形组成。
01
利用三视图计算实物面积

人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积

人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积
6 502 (1 3 ) 2799(0 mm2) 2
2. 如图是一个几何体的三视图,则这个几何体
的A侧.18面cm积2 是( A )
B.20cm2
C. 18 6

3 4


10 2
2


cm
D. 18

75 2
3

解析:由三视图可得,几何体是三棱柱,几何体的侧面积 是三个矩形的面积和,矩形的长为3cm,宽为2cm,∴侧面 积为3×3×2=18cm2.
=

300

240

1 2
=36000(cm2
)
S侧面面积= 300 200=60000(cm2 )
S帐篷表面积=36000 +60000 =96000(cm2)
课堂小结
由三视图确定几何体的表面积或体积,一般步骤为: ① 想象:根据各视图想象从各个方向看到的几何体形状; ② 定形:综合确定几何体(或实物原型)的形状; ③ 展开图:画出展开图,求展开面积。
由三视图描述实物形状,画出物体表面展开图
由三视图确定几何体的表面积或是体积, 首先要确定该几何体的形状。
1.根据下列几何体的三视图,画出它们的展开图。
(1)
(2)
(3)
典例解析
例1 某工厂要加工一批密封罐,设计者给出了密封
罐的三视图,请你按照三视图确定制作每个密封罐所
需钢板的面积.
50
100 50
第3课时 由三视图确定几何体的 表面积或体积
R·九年级下册
复习导入
由三视图描述几何体(或实物原型),一般先根据各视图想象从 各个方向看到的几何体形状, 然后综合起来确定几何体(或实物原 型)的形状, 再根据三视图“长对正、高平齐、宽相等”的关系, 确定轮廓线的位置,以及各个方向的尺寸.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三视图求表面积体积1.一个三棱锥的三视图如下图所示,则该几何体的体积为A. 1B. 433C. 2D.8332.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球表面积为()A. 30πB. 29πC. 292πD. 216π3.某四棱锥的三视图如图所示,该四棱锥的侧面积为A. 8B. 162C. 10D. 624.某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为A. 43π B. 3π C. 3 D. π 5.若一个正四面体的表面积为1S ,其切球的表面积为2S ,则12S S =( ) A. 6πB. 63C. 43D. 43 6.已知直三棱柱111ABC A B C -中, 90BAC ∠=︒,侧面11BCC B 的面积为4,则直三棱柱111ABC A B C -外接球表面积的最小值为( )A. 4πB. 8πC. 16πD. 32π7.已知三棱锥P ABC -的三条侧棱两两互相垂直,且5,7,2AB BC AC ===,则此三棱锥的外接球的体积为( )A. 83πB. 82C. 163πD. 323π 8.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积是 ( )A. 72πB. 4πC.92πD. 5π9.某四棱锥的三视图如图所示,俯视图是一个等腰直角三角形,则该四棱锥的体积是()A. 43B.223C.233D.8310.某一简单几何体的三视图如图所示,该几何体的外接球的表面积是()A. 13πB. 16πC. 25πD. 27π11.一个几何体的三视图如图所示,该几何体的体积为()A. 24π-B. 243π-C. 483π-D. 883π-12.一个几何体的三视图如图所示,则该几何体的体积为()A. 43B. 42C. 4D. 43313.某几何体的三视图如图所示, 则其体积为( )A. 3πB. 6πC. 36πD. 33π 14.三棱锥A BCD -接于半径为2的球O , BC 过球心O ,当三棱锥A BCD -体积取得最大值时,三棱锥A BCD -的表面积为A. 643+B. 823+C. 463+D. 843+15.一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在同一个球面上,则该球的接正方体的表面积为( )A. 196 B. 383 C. 578 D. 19316.一个四面体的三视图如图所示,则该四面体的外接球的表面积为()A. 43πB. 4πC. 23πD. 2π17.某棱锥的三视图如图所示,则该棱锥的外接球的表面积为()A. πB. 2πC. 3πD. 4π18.一个几何体的三视图如图所示(其中正视图的弧线为四分之一圆周),则该几何体的表面积为( )A. 726π+B. 724π+C. 486π+D. 484π+19.某几何体的三视图如图所示(在如图的网格线中,每个小正方形的边长为1),则该几何体的表面积为( )A. 48B. 54C. 64D. 6020.某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则三棱锥的体积为A. 32B. 327C. 167D. 64721.已知过球面上,,A B C三点的截面和球心的距离等于球半径的一半,且2AB BC CA===,则球面积是()A. 169π B.83π C.649π D. 4π22.已知某空间几何体的三视图如图所示,则该几何体的体积是()A. 16B. 32C. 48D. 14423.某几何体的三视图如图所示,则其体积为()A. 8B. 10C. 12D. 1424.如图为某几何体的三视图,求该几何体的切球的表面积为()A. 4πB. 3πC. 4πD. 43π 25.某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A. 25+B. 225+C. 45+D. 526.如图是一个四面体的三视图,三个正方形的边长均为2,则四面体外接球的体积为( )A. 32B. 43πC. 433D. 83π27.某几何体的三视图如图所示,则刻几何体的体积为()A. 23B. 43C. 53D. 7328.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A. 163πB. 3πC. 29πD. 169π 29.(数学(文)卷·2017届省六中高三上学期第二次月考第9题) 《九章算术》中,将底面是直角形的直三棱柱称之为“堑堵” ,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该 “堑堵”的侧面积为( )A. 2B. 422+C. 442+D. 462+30.已知一个几何体的三视图如图所示,则该几何体的体积为( )A. 323B.163C.83D.4331.某几何体的三视图如图所示,则该几何体的体积为A. 883π+ B.1683π+C. 8163π+ D.16163π+32.某几何体的三视图如图所示,则该几何体的体积为()A. 2B. 1C. 13D.1633.一个几何体的三视图如图所示,则这个几何体的体积为()A. B. C. D.34.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为()A. 2B. 4C.D.35.如图,在正方形网格纸上,粗实线画出的是某多面体的三视图及其部分尺寸.若该多面体的顶点在同一球面上,则该球的表面积等于()A. B. C. D.36.如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,若该几何体的顶点都在球的球面上,则球的表面积为()A. B. C. D.参考答案1.C【解析】由三视图可得到如图所示几何体,该几何体是由正方体切割得到的,利用传统法或空间向量法可求得三棱锥的高为3,∴该几何体的体积为()213223234⨯⨯=.点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图. 2.B【解析】由三视图所提供的图形和数据可知:该几何体是一个底面是两直角边分别为2,4直角三角形,高为3的三棱锥,则其外接球的直径为22224329d =++=,其表面积229429S ππ=⨯=⎝⎭,应选答案B。

3.B222222+=面积为142241622⋅⋅= 点睛:本题主要考查由三视图求几何体的侧面积. 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整. 4.C【解析】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在正方体中,所以我们可以在正方体中寻找此四面体,如图所示,四面体ABCD 满足题意,所以此四面体的外接球即为此正方体的外接球, 由题意可知,正方体的棱长为1,所以外接球的半径为32R =, 所以此四面体的外接球的体积34333V π=⨯⨯=⎝⎭,故选C. 点睛:本题的考点是由三视图求几何体的体积,需要由三视图判断空间几何体的结构特征,并根据三视图求出每个几何体中几何元素的长度,代入对应的体积公式分别求解,考查了空间想象能力;由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球的体积. 5.B【解析】设四面体ABCD 的棱长为a 底面中心将高分为21:两段,所以底面中心到顶点的距离为233,3=可得正四面体的高为22163h a a =-=,所以正四面体的体积21623ABC V S=⨯=,设正四面体的切球半径为r ,则2126431212ABC S r a r a ⨯⨯⨯=⇒=,,所以切球表面积22246a S r ππ==,所以正四面体的表面积211246ABCSS SS=⨯=∴==,点睛:本题主要考察四面体的性质、球的表面积公式和多面体外接球接球的问题,此题可以好好总结.6.B【解析】设12,2441BC x BB y xy xy==⇒=⇒=,在直三棱柱111ABC A B C-中,90BAC∠=︒,所以外接球半径为≥=,所以外接球的表面积最小值为248Rππ=点睛:考察立体几何中外接球问题,最值问题的基本不等式思想的运用7.B【解析】由题意可知:可将三棱锥放入长方体中考虑,则长方体的外接球即三棱锥的外接球,故球的半径为长方体体对角线的一半,设PA x=,则2222275471PB PC BC x x x+==⇒-+-=⇒=,故1,2,PA PB PC R===⇒==得球的体积为:3433Rπ=8.D【解析】根据三视图可得该几何体由一个圆柱和一个半球组成,故该几何体表面积为:1+2++4=54πππππ⨯点睛:将三视图还原为立体图形便可很容易解决,要注意面积公式的准确性9.A【解析】由已知中的某四棱锥的三视图,可得该几何体的直观图如图所示,其底面面积为2222S ==,高2h =1433V Sh ==,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.10.C【解析】由三视图可知,该几何体为长方体,其长宽高分别为3,2,2外接球的直径,且长为98852R ++==, R 为外接球半径,故外接球表面积为24π25πR =.11.C【解析】由三视图,可知该几何体是由一个棱长为2的正方体挖去一个半径为2 的八分之一球,则该几何体的体积为331442π28π833V =-⨯⨯=-;故选C. 12.C【解析】由三视图复原几何体可得:它是一个侧放的四棱锥,它的底面是直角梯形,一条侧棱的长垂直于底面,高为2,这个几何体的体积:12+422=432⨯⨯⨯.故选C. 点睛:根据几何体求体积,主要熟悉椎体的计算公式即可. 13.C【解析】 由题意得,根据给定三视图,该几何体表示底面半径为1的半圆,高为3的半个圆锥,所以几何体的体积为22111131323236V r h πππ=⨯=⨯⨯⨯=,故选C 。

相关文档
最新文档