第6章钢结构偏心受力构件

合集下载

轴心受力构件

轴心受力构件

第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。

这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。

根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。

一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。

轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。

轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。

因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。

4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。

表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。

在螺栓连接轴心受力构件中,需要特别注意。

4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。

受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。

第三版钢结构课后题答案第六章

第三版钢结构课后题答案第六章

6.1 有一两端铰接长度为4m 的偏心受压柱,用Q235的HN400×200×8×13做成,压力设计值为490kN ,两端偏心距相同,皆为20cm 。

试验算其承载力。

解(1)截面的几何特征:查附表7.2 (2)强度验算:(3)验算弯矩作用平面内的稳定: b /h =200/400=0.5<0.8,查表4.3得: 对x 轴为a 类,y 轴为b 类。

查附表4.1得:x 0.9736ϕ=构件为两端支撑,有端弯矩且端弯矩相等而无横向荷载,故mx 1.0β=(4)验算弯矩作用平面外的稳定: 查附表4.2得:y 0.6368ϕ=对y 轴,支撑与荷载条件等与对x 轴相同故:由以上计算知,此压弯构件是由弯矩作用平面外的稳定控制设计的。

轧制型钢可不验算局部稳定。

6.2 图6.25所示悬臂柱,承受偏心距为25cm 的设计压力1600kN 。

在弯矩作用平面外有支撑体系对柱上端形成支点[图6.25(b)],要求选定热轧H 型钢或焊接工字型截面,材料为Q235(注:当选用焊接工字型截面时,可试用翼缘2—400×20,焰切边,腹板—460×12)。

解:设采用焊接工字型截面,翼缘204002⨯-焰切边,腹板—460×12,(1)截面的几何特征, (2)验算强度:因为:20069.720b t -==<,故可以考虑截面塑性发展。

(3)验算弯矩作用平面内的稳定: 查表4.3得:对x 、y 轴均为b 类。

查附表4.2得:784.0x =ϕ()222EX 22x 206000215.2101.1 1.164.39611kNEA N ππλ⨯⨯⨯'==⨯=对x 轴为悬臂构件,故0.1mx =β;(4)弯矩作用平面外的稳定验算: 查附表4.2,749.0y =ϕ()958.0440003.7007.1235.4400007.12y2yb =-=-=f λϕ构件对y 轴为两端支撑,有端弯矩且端弯矩相等而无横向荷载,故取0.1,0.1tx ==ηβtx xy b 1x362322160010 1.0 1.0400100.749215.2100.958407810N 201.5N mm 205mmN M A W f βηϕϕ+⨯⨯⨯⨯=+⨯⨯⨯⨯=<=∴此压弯构件是由弯矩作用平面内的稳定控制设计的。

钢结构轴心受力构件计算

钢结构轴心受力构件计算

钢结构轴心受力构件计算3.1 轴心受力构件概述在钢结构中,轴心受力构件的应用十分广泛,如桁架、塔架和网架、网壳等杆件体系。

这类结构的节点通常假设为铰接,当无节间荷载作用时,杆件只受轴向力(轴向拉力或轴向压力)的作用,称为轴心受力构件(轴心受拉构件或轴心受压构件)。

图3-1所示为轴心受力构件在工程上应用的一些实例。

图3-1 轴心受力构件在工程中的应用(a)桁架;(b)塔架;(c)网架轴心受力构件常用的截面形式可分为实腹式和格构式两大类。

(1)实腹式构件制作简单,与其他构件的连接也比较方便,常用的截面形式很多,可直接选用轧制型钢截面,如圆钢、钢管、角钢、工字钢、H 型钢、T 型钢等[图3-2(a)];也可选用由型钢或钢板组成的组合截面[图3-2(b)];在轻型结构中则可采用冷弯薄壁型钢截面[图3-2(c)]。

以上这些截面中,截面紧凑(如圆钢)或对两主轴刚度相差悬殊者(如单槽钢、工字钢),一般适用于轴心受拉构件,而受压构件通常采用较为开展、组成板件宽而薄的截面。

(2)格构式构件[图3-2(d)]容易使压杆实现两主轴方向的稳定性。

这种构件的刚度大、抗扭性好,用料较省。

格构式截面一般由两个或多个型钢肢件组成,肢件之间采用缀条或缀板连成整体,缀条和缀板统称为缀材。

图3-2 轴心受力杆件的截面形式(a)轧制型钢截面;(b)焊接实腹式组合截面;(c)冷弯薄壁型钢截面;(d)格构式截面3.2 轴心受力构件的强度及刚度轴心受拉构件的设计除根据结构用途、构件受力大小和材料供应情况选用合理的截面形式外,还要对所选截面进行强度和刚度验算。

强度要求就是使构件截面上的最大正应力不超过钢材的强度设计值,刚度要求就是使构件的长细比不超过容许长细比。

轴心受压构件在设计时,除使所选截面满足强度和刚度要求外,还应使其满足构件整体稳定性和局部稳定性的要求。

整体稳定性要求是使构件在设计荷载作用下不致发生屈曲而丧失承载能力;局部稳定性要求一般是使组成构件的板件宽厚比不超过规定限值,以保证板件不会屈曲,或者使格构式构件的分肢不发生屈曲。

新070 新规范--偏心受压构件正截面承载力

新070 新规范--偏心受压构件正截面承载力

水平裂缝,但未形成明显的主裂缝,而受压区临
近破坏时受压边出现纵向裂缝。 破坏较突然,无明显预兆,压碎区段较长。 破坏时,受压钢筋应力一般能达到屈服强度,但 受拉钢筋并不屈服,截面受压边缘混凝土的压应
受压破坏图1)
变比拉压破坏时小。
6.1 偏心受压构件正截面的破坏形态
第五章 偏心受力构件正截面承载力
6.1 偏心受压构件正截面的破坏形态
第6章 偏心受压构件正截面承载力
1 破坏形态
受拉破坏(大偏心受压破坏) 发生条件:相对偏心距 e0 / h0 较大, 受拉纵筋 As 不过多时。
受拉边出现水平裂缝 继而形成一条或几条主要水平裂缝 主要水平裂缝扩展较快,裂缝宽度增大 使受压区高度减小
受拉钢筋的应力首先达到屈服强度
1 ——偏心受压构件的截面曲率修正系数,当 1
N ——构件截面上作用的偏心压力设计值;
>1.0时,取 1
0
=1.0;
2 ——构件长细比对截面曲率的影响系数,当 l
h
15
时,取 2 =1.0。
《规范》规定:当矩形截面 l0 5 或任意截面 l0 其中为 i 截面回转半径。
h
两个主轴都有偏心距
偏心受压构件:作用在构件截面上的轴向力 为压力的偏心受力构件 偏心受拉构件:作用在构件截面上的轴向力 为拉力的偏心受力构件
6.1 偏心受压构件正截面的破坏形态
第6章 偏心受压构件正截面承载力
实际工程中的偏心受力构件: 单层厂房的柱子 框架结构中的框架柱 剪力墙结构中的剪力墙
桥梁结构中的桥墩
第6章 偏心受压构件正截面承载力
矩形截面对称配筋偏心受压构件正截面受压承载力计算
1 基本计算公式及适用条件 (1)大偏心受压构件: 1)应力图形 2)基本公式

偏心受力构件承载力

偏心受力构件承载力

承载力分析的方法
解析法
基于力学原理和数学公式,通过计算得出构件的承载力。 解析法适用于简单结构和规则截面。
有限元法
利用数值计算方法,将构件离散化为有限个单元,通过求 解单元的应力分布来得到构件的承载力。有限元法适用于 复杂结构和不规则截面。
试验法
通过试验手段对实际构件进行加载测试,直接测得其承载 力。试验法具有较高的精度和可靠性,但成本较高。
ABCD
数值分析
利用数值计算方法,如有限元分析、有限差分法 等,对构件进行受力分析和性能评估。
人工智能
利用人工智能算法,如遗传算法、模拟退火算法 等,对设计方案进行智能优化。
优化设计的实施步骤
需求分析
明确设计需求和目标,分析构件的工作环境 和受力特点。
建立模型
根据需求分析结果,建立描述构件性能的数学 模型。
偏心受力构件
指在承受外力时,外力作用点与构件 重心不重合的构件。
承载力的计算方法
01
02
03
解析法
通过数学公式和物理原理, 计算出结构或构件的承载 力。
试验法
通过实际试验,测量出结 构或构件的承载力。
经验法
根据工程经验,估算结构 或构件的承载力。
承载力的影响因素
材料性能
材料的弹性模量、泊松比、抗拉压强度等性能参数对承载力有直接影 响。
根据计算结果,评估构件的承 载能力和稳定性,对不满足要
求的构件进行优化设计。
04 偏心受力构件的优化设计
优化设计的目标
提高构件承载能力
通过优化设计,使构件在承受偏心荷 载时具有更高的承载能力,减少因荷 载过大而导致的破坏。
降低成本
在满足承载力要求的前提下,通过优 化设计降低材料消耗和制造成本,提 高经济效益。

钢结构设计原理L6-3偏心受力构件PPT课件

钢结构设计原理L6-3偏心受力构件PPT课件

工程实例三:某工业厂房的偏心受力分析
总结词
工业厂房、偏心受力、结构优化设计
详细描述
某工业厂房在设计中需要承受较大的设备和生产载荷,通过对厂房进行偏心受力分析和结构优化设计 ,确保厂房在使用过程中能够保持稳定和安全。
THANKS
感谢观看
02
在钢结构中,偏心受力构件通常 是指承受轴向力且截面形心与轴 线不重合的柱子,如钢框架中的 钢柱。
偏心受力构件的类型
按偏心方向分类
分为单向偏心和双向偏心受力构件。单向偏心受力构件是指仅在一个方向上存 在偏心的构件,而双向偏心受力构件则是在两个方向上都存在偏心的构件。
按偏心量大小分类
可分为小偏心和大偏心受力构件。小偏心受力构件是指偏心距较小,截面承载 力未充分利用的构件,而大偏心受力构件则是偏心距较大,截面承载力已接近 或达到极限状态的构件。
总结词
大型桥梁、偏心受力、稳定性分析
详细描述
某大型桥梁在设计中需要考虑偏心受力,通过对桥梁的稳定性进行详细分析,确保桥梁在承受偏心载荷时能够保 持安全和稳定。
工程实例二:某高层建筑的偏心受力分析
总结词
高层建筑、偏心受力、抗震性能分析
详细描述
在高层建筑设计过程中,需要考虑地 震等自然灾害的影响,通过对高层建 筑进行偏心受力分析和抗震性能评估, 提高建筑的稳定性和安全性。
钢结构设计原理L6-3偏心 受力构件PPT课件
• 偏心受力构件简介 • 偏心受力构件的受力分析 • 偏心受力构件的稳定性分析 • 偏心受力构件的抗震设计 • 偏心受力构件的优化设计 • 偏心受力构件的实例分析
01
偏心受力构件简介
偏心受力构件的定义
01
偏心受力构件是指在其轴向荷载 作用下,其截面形心与轴线不重 合的柱形构件。

第6章 偏心受力构件

第6章 偏心受力构件
分肢1的1-1轴线平面),则视为 M全y 部由该分肢承受。 • (3)刚度验算
• 如前所述一般也只按 验算。注意当弯矩绕虚轴作用时,应 按换算长细比验算。大小,均应设置横隔,横隔 的设置方法与轴心受压格构柱相同。格构柱分肢的 局部稳定也同实腹式柱。
b1 15 235
t
fy
§6-5 偏心受力构件的设计
6.5.1 框架柱的计算长度
6.5.3 格构式压弯构件的截面设计
1.截面的初步选择
图6.16是格构式压弯构件的常用截面形式,当弯矩不 大时,可以用双对称的截面形式(图6.16a、b、d);如 果弯矩较大时,可以用单轴对称的截而(图6.24c),并 将较大的肢件放在压力较大的一侧。如前所述,由于格 构式压弯构件中存在着较大的剪力,故多采用缀条式构 件。缀条一般采用单角钢。
(b)、(c)],对此种构件应进行下列计算:
①弯矩作用平面内的整体稳定性计算
弯矩绕虚轴作用的格构式压弯构件,由于截面中部空心,不
能考虑塑性的深入发展,故弯矩作用平面内的整体稳定计算
适宜采用边缘屈服准则
N
mxM x
f
x A
W1x 1 x N
N
' Ex
• ②分肢的稳定计算
• 弯矩绕虚轴作用的压弯构件,在弯矩作用平面外的整体稳定性一 般由分肢的稳定计算得到保证,故不必再计算整个构件在平面外 的整体稳定性。
分肢2





分肢1


图6.17
• •
③ 缀材的计算
计算压弯构件的缀材时,应取构件实际剪力和按式 V
Af
fy
85 235
计算所得剪力两者中的较大值。其计算方法与格构式轴心受压构件相同。 • 2)弯矩绕实轴作用的格构式压弯构件 • 当弯矩作用在与缀材面相垂直的主平面内时〔图6.24 (d)〕,构件绕实轴产生

钢结构设计原理-第6章-拉弯和压弯构件概要

钢结构设计原理-第6章-拉弯和压弯构件概要

(6.2.2)
第6.3节 压弯构件的稳定
本目录
1. 弯矩作用平面内的稳定性 2. 弯矩作用平面外的稳定 3. 双向弯曲实腹式压弯构件的整体稳定 4. 压弯构件的局部稳定
基本要求
1. 理解实腹式压弯构件的整体稳定性的概念 2. 2. 了解在弯矩作用平面内与弯矩作用平面外失
稳破坏的情况与验算方法
6.3.1 弯矩作用平面内的稳定性
本章目录
6.1 概述 6.2 拉弯和压弯构件的强度 6.3 压弯构件的稳定 6.4 压弯构件(框架柱)的设计 6.5 框架柱的柱脚
基本要求
1.了解拉弯和压弯构件的构造特点和构造要求。 2.掌握拉弯和压弯构件的破坏形式和计算方法。
第6.1节 概述
本节目录
1. 拉弯构件 2. 压弯构件
基本要求
1 . 建立拉弯构件与压弯构件的概念 2 . 了解设计计算的内容
加挠度将使各截面的弯矩增大,如果假定构件的挠曲
线与正弦曲线的半个波段相一致,则中央截面的最大
弯矩为:
Mmax1NM/NE
(6.3.3)
在式中
NE,为2E 欧拉/Il2 临界力。
称为1弯矩放大系数。 1 N / NE
2.允许截面发展一定的塑性
如前所述,以点A'(图6.3.2)作为承载力极限状态 时,该点对应的极限弯矩为:
压弯构件整体破坏的形式有以下三种:(1)因端部弯矩很 大或有较大削弱而发生强度破坏,(2)在弯矩作用平面内发 生弯曲屈曲,(3)在弯矩作用平面外发生弯扭屈曲。
组成截面的板件在压应力作用下也可能发生局部屈曲。
第6.2节 拉弯和压弯构件的强度
本节目录
1.拉弯和压弯构件的强度和刚度计算
基本要求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

min 63.9 116.0 52.1N/mm2
max min 179 .9 52 .1 0 max 179 .9
平面外稳定公式
tx M x N f y A bW1x
y—弯矩作用平面外轴心受压构件稳定系数 —截面影响系数:箱形截面0.7, 其他截面1.0 b—均匀弯曲的受弯构件整体稳定系数(附录3) tx—弯矩作用平面外的等效弯矩系数
1)弯矩作用平面外有支承,由支点弯矩定 无横向荷载作用时 0.65 0.35 M 2
178.5N/mm2
f 215N/mm2
满足强度条件
2017/10/20 21
《钢结构》— 原理与设计
3. 弯矩作用平面内的稳定验算 x 55.3 b类截面 x 0.831
无端弯矩,有横向荷载:mx=1.0 2 EA 2 2.06105 14080 5 N Ex 85 . 1 10 N 2 2 1.1x 1.1 55.3 N mx M x x A xW1x 1 0.8 N / N Ex
《钢结构》— 原理与设计
第6章 拉弯和压弯构件
6.1 6.2 6.3 6.4 拉弯和压弯构件概述 拉(压)弯构件的强度和刚度 压弯构件的稳定 框架柱的设计要点
2017/10/20
1
《钢结构》— 原理与设计
6.1 拉弯和压弯构件概述
基本概念
外力因素
• 轴向拉力或轴向压力 • 弯矩:轴向力偏心、端弯矩、横向荷载
6
《钢结构》— 原理与设计
单偏心
N Mx f An xWnx
双偏心
My N Mx f An xWnx yWny
不考虑塑性发展的情况
• 当压弯构件受压翼缘外伸宽度b与厚度t之比
235 b 235 13 15 时 取x=1.0 fy t fy
• 需要计算疲劳的拉(压)弯构件,宜x =y =1.0 • 弯矩绕虚轴作用的格构式拉(压)弯构件,=1.0
214.4N/mm2
2017/10/20
f 215N/mm2
面外稳定满足要求
23
《钢结构》— 原理与设计
5. 局部稳定验算
6 N M x h0 900103 375 10 max 320 9 A Ix 2 14080 1.034710 63 .9 116 .0 179.9N/mm2
解 截面性质
A 320 12 2 640 10
14080 mm2
1 9 4 3 3 1 . 0347 10 mm I x (320 664 310 640 ) 12 1 1 3 I y 12 320 2 640103 6.5589107 mm4 12 2017/10/20 19 12
2017/10/20 7
《钢结构》— 原理与设计
拉弯和压弯构件的刚度
刚度计算公式
• 控制长细比来保证构件的刚度 • 计算公式 l0 [ ]
i l0 x [ ] 或 x ix
y
l0 y iy
[ ]
容许长细比
• 拉弯构件按轴心受拉构件取值 • 压弯构件按轴心受压构件取值
N mx M x f A xW2 x 1 1.25N / N Ex
1
对无翼缘端的毛截面模量
2
弯矩平面外整体稳定
公式来源
• 轴心受压构件整体稳定 公式协调 引进修正系数 • 受弯构件的整体稳定 2017/10/20
N f A
Mx f bWx
13
《钢结构》— 原理与设计
f 310 N/mm2
满足强度条件
刚度验算
l0 x 6000 x 66 .7 [ ] 350 ix 89.9 l0 y 6000 y 259 .7 [ ] 350 23.1 iy
满足刚度条件
10
2017/10/20
《钢结构》— 原理与设计
6.3 压弯构件的稳定
弯矩平面内长细比<30取30,>100取100
箱形截面
2017/10/20
• 两块腹板受力可能不一致 • 高厚比限值取工字形的0.8倍
17
《钢结构》— 原理与设计
T形截面腹板
• 弯矩使腹板自由边受拉
235 热轧剖分 h0 (15 0.2 ) T型钢 tw fy
焊接T形 h0 235 (13 0.17 ) 截面 tw fy
《钢结构》— 原理与设计
4. 弯矩作用平面外的稳定验算
y 73.2 b类截面 y 0.731
计算段BC有端弯矩,有横向荷载,产生同向 曲率:tx=1.0;另外=1.0 2 73.22 y
44000
1.07
0.948
b 1.07
44000
3 6 tx M x N 900 10 1 . 0 375 10 1.0 y A bW1x 0.73114080 0.948 3.1166106
拉弯 构件
2017/10/20
压弯 构件
2
《钢结构》— 原理与设计
荷载偏心形式
• 弯矩作用在一个主平面内,单向偏心(单向 拉弯构件、单向压弯构件) • 弯矩作用在两个主平面内,双向偏心(双向 拉弯构件、双向压弯构件)
拉弯压弯构件的应用
单层工业厂房
• 厂房排架柱:压弯构件 • 屋架上下弦杆 有节间荷载作用时
2017/10/20
表5.1 表5.2
8
《钢结构》— 原理与设计
例题6.1
某拉弯构件,Q345钢,热轧普通工字钢I22a, 截面无削弱。承受轴向拉力设计值800 kN,横 向均布荷载设计值7 kN/m(不含构件自重)。 试验算其强度和刚度。 解答: 附表1.1 附表8.4
fx 309 cm3
重力 0.33 kN/m
22a号 工字钢
2017/10/20
ix 8.99 cm, iy 2.31 cm
9
《钢结构》— 原理与设计
强度验算
N 800 kN 1 M (7 1.2 0.33) 6 2 33.28 kN.m 8 3 6 N M 800 10 33 . 28 10 292 .5 N/mm2 2 3 An xWnx 42.12810 1.05 30910
《钢结构》— 原理与设计
6.3.2 压弯构件的局部稳定
翼缘宽厚比
工字形和T形截面
翼缘外伸部分宽厚比
b 235 13 t fy b 235 15 t fy
当构件按弹性设计时(x=1.0)
箱形截面
b 235 13 t fy b0 235 40 t fy 2017/10/20
16
• 弯矩使腹板自由边受压 1.0 : h0 15 235 0
tw fy
圆管截面
径厚比
2017/10/20
D 235 100 t fy
h0 235 18 0 1.0 : tw fy
18
《钢结构》— 原理与设计
例题6.2
• 图示为Q235钢焰切边工字形截面柱,两端铰 支,中间1/3长度处有侧向支承,截面无削弱, 外力设计值如图所示。试验算此压弯构件的 承载力。
2017/10/20
《钢结构》— 原理与设计
6.2 拉(压)弯构件的 强度和刚度
拉(压)弯构件的强度
强度公式
• 理论上:以截面出现塑性铰的应力作为强 度极限,强度相关曲线为凸曲线 • 实用上:相关曲线简化为直线 • 公式形式:叠加轴力公式和弯曲公式
2017/10/20
N f An
Mx f xWnx
6.3.1 压弯构件的整体稳定
弯矩平面内整体稳定
计算方法
面 内 • 边缘屈服准则—理论公式 弯 • 极限承载能力准则—数值计算 曲 失 采用公式 稳 面 外 弯 扭 失 稳
2017/10/20
• 边缘屈服准则理论公式的形式 • 数值计算结果进行修正(引进修正系数)
11
《钢结构》— 原理与设计
M1 维用 值大于分子 的平 有端弯矩和横向荷载同时作用时,产生反向曲 毛面 率取0.85,产生同向曲率时取1.0 截内 面对 无端弯矩但有横向荷载取1.0 模较 量 大 2)悬臂构件、分析内力未考虑二阶效应的无支
撑纯框架和弱支撑框架柱,取1.0
2017/10/20
12
《钢结构》— 原理与设计
对于T形及槽形截面压弯构件,当弯矩作用在对称 平面内且使翼缘端1受压时,无翼缘端2可能由于拉 应力较大而首先屈服。为了使其塑性不致深入过大, 对此种情况,尚应对无翼缘侧进行计算。
上弦压弯构件
2017/10/20
下弦拉弯构件
3
《钢结构》— 原理与设计
钢结构柱
• 框架柱:压弯或拉弯 • 工作平台柱 • 刚架立柱 门式刚架 三铰刚架
2017/10/20
4
设计计算内容
拉弯构件
• 强度计算 • 刚度计算
《钢结构》— 原理与设计
压弯构件
• 强度计算 • 刚度计算 • 整体稳定(面内、面外) • 局部稳定(验算板件宽厚比) 钢柱拉 弯断裂 5
《钢结构》— 原理与设计
腹板高厚比
0 0 1.6 :
腹板计算高度边缘的最大压应力
工字形及H形截面 0 max min
max
h0 235 (16 0 0.5 25) tw fy
腹板计 算高度 边缘的 最小压 应力
h0 235 (48 0 0.5 26 .2) 1.6 0 2.0 : tw fy
面内整体稳定的公式 欧拉临界力除以 抗力分项系数1.1 N mx M x f x A xW1x 1 0.8N / N Ex 2 EA N Ex mx—等效弯矩系数 1.12 x 1)框架柱和两端支承的构件 端弯矩,同向曲率 受弯 无横向荷载作用时 取同号,反向曲率 压矩 M2 mx 0.65 0.35 纤作 取异号。分母绝对
相关文档
最新文档