24.2.1比例线段 学案
24.2(2)比例线段(黄金分割)

标题:24.2比例线段(2)关键词:比例中项、黄金分割描述:教学目标1.会运用同高(或等高)的两个三角形的面积之比等于对应底边的比,进行三角形的面积比与线段比的转化.2.在比例线段性质的证明与运用过程中,体会方程思想的作用.3.会找出一条线段的黄金分割点,找出一个图形中的黄金分割点.4.经历黄金分割点的探索过程,从中体会转化、分类讨论的思想方法.教学重点及难点黄金分割的意义.熟练并灵活运用黄金分割的意义解题.学科:初中九年级>数学第一学期>24.2(2)语种:汉语媒体格式:教学设计.doc课件.ppt学习者:学生资源类型:文本类、课件类素材教育类型:初中教育>初中九年级作者:方忠平单位:上海市风华初级中学地址:共和新路2800号(200072)Email:********************24.2比例线段(2)上海市风华初级中学方忠平41教学内容分析本课主要是两个部分.第一部分是线段的比例中项问题;第二部分是黄金分割及黄金数的有关知识.教学目标1. 会运用同高(或等高)的两个三角形的面积之比等于对应底边的比,进行三角形的面积比与线段比的转化.2. 在比例线段性质的证明与运用过程中,体会方程思想的作用.3. 会找出一条线段的黄金分割点,找出一个图形中的黄金分割点.4.经历黄金分割点的探索过程,从中体会转化、分类讨论的思想方法.教学重点及难点重点:黄金分割的意义.难点:熟练并灵活运用黄金分割的意义解题.教学用具准备投影仪、笔记本,预习本教学流程设计教学过程一、 情景引入1.观察(1) 请同学们欣赏一段芭蕾舞表演, 对学生视觉上形成美的冲击.师:“芭蕾舞在跳法上和其他舞种有什么区别吗?” 生:“要掂起脚尖.”师:“你们想知道这是为什么吗?”让学生有了强烈的求知欲.(2) 展示四个国家的国旗.中华人民共和国朝鲜新西兰新加坡2.思考师:请问这四面国旗中有共同图案吗?若有,请指出来.师:为什么都会选择五角星这个图案呢?除了政治因素外,还有一个非常重要的原因就是:五角星是一个非常完美的图案. 古希腊数学家毕达哥拉斯有一句名言:“凡是美的东西,都具有共同的特征,这就是部分与部分以及部分与整体之间的协调一致.”下面就让我们从数学的角度来探究五角星中部分与部分以及部分与整体之间存在着怎样的一种关系.[说明] 通过创设情境“四个国家的国旗中都有五角星这个图案”,就会使同学们认识到五角星这个图案不一般,也就会非常想知道五角星中部分与部分以及部分与整体之间到底蕴涵着怎样的一种关系.有了探究的欲望,就会很乐意完成下面的做一做. 3.讨论度量点C 到点A 、B 的距离,计算和的值,你发现了什么?AB AC ACBC [说明」(通过学生亲自动手操作、计算,最终发现了=,即部AB AC ACBC 分与部分之比等于部分与整体之比,符合毕达哥拉斯的审美观点,很自然地就引出了黄金分割的概念.)二、学习新课1.概念辨析例题1如图,线段AB 的长度是,点P 为线段AB 上的一点,l ,求线段AP 的长.ABAPAP PB如果点P 把线段AB 分割成AP 和PB (AP>PB )两段,其中AP 是AB 和PB 的比例中项,那么称这种分割为黄金分割,点P 称为线段AB温组形,组部每作教育下简合的黄金分割点AP 与AB 的比值为,近似值为0.618,这个比值215 称做黄金分割数(简称黄金数).师:下面就让我们来解决刚才的问题,若由黄金分割点来看,理想身材的黄金分割点是肚脐,即一个人的上半身的长度与下半身的长度的比值或下半身的长度与整个身高的比值越接近0.618,就会越给別人有一种美的感觉.但是很可惜,一般人的这个比值大约只有0.58到0.60左右(腿长的人会有较高的比值),由此可见,芭蕾舞演员掂起脚尖跳舞是为了提高这个比值,增加美感.现实生活中这样的例子也很多,比如:女性穿高跟鞋,会让人体看起来更美些.黄金分割是古希腊数学家毕达哥拉斯发现的,古希腊人把它广泛应用于艺术创作当中,其中最经典的作品就是雕像——维纳斯女神,她的上半身和下半身的比率正是0.618.[说明]当学生了解了黄金分割的概念之后,再来解决芭蕾舞演员跳舞要掂起脚尖的问题,并欣赏雕像-----维纳斯女神,能使学生感受到黄金分割的美学价值.2.例题分析问题一(1) 线段AB 有没有除点P 以外的黄金分割点呢?(2) 点D 应满足怎样的条件?(3) 在五角星中点D 是线段AB 的黄金分割点吗?(4) 你还发现了什么?[说明](这四个问题是有层次性的,问题(1)的结论是显然的,但学生得到的方法却是多样的,有的是凭直觉,有的是利用轴对称得到的,有的是采用旋转方法得到的;问题(2)进一步强化了黄金分割的概念;有了问题1的铺垫,问题(3)、(4)的结论很容易得出,这时学生就真正体会到了五角星确实是一个完美的图形,进一步感受到了黄金分割的美.)问题二师:下面我们再来了解黄金分割在现实生活中的应用.请同学们观察两幅照片,哪一更具有美感呢?师:你们知道这是为什么吗?因为绝对的对称会给人单调、静止、缺乏活力的感觉,为了打破这种感觉,我们在构图的时候,就需要灵活地运用黄金分割来构图,把画面的上下左右用黄金分割来做出4条线,人们发现4条线交汇的4个点是人们的视觉最敏感的地方,被反复证明的是当被摄主体处于或发布在这4个点附近最容易得到“眼球”,在摄影理论里把这4个点称为“趣味中心”.[说明]学生选择图(2)完全是一种直觉,并不明白其中的原因,当把上述道理讲给学生听时,他们对黄金分割的美学价值有更深的认识.问题三师:下面再来看看黄金分割在建筑上的应用.(展示巴黎埃斐尔铁塔、上海东方明珠电视塔、古埃及金字塔三幅图片,讲述其中蕴涵的黄金分割比例,体会黄金分割在建筑上的应用价值和人文价值.)问题四师:同学们已经了解到线段的黄金分割是完美的分割,事实上现实生活中还有另外一种有趣的黄金分割现象.请同学们在下面十个矩形(请若干个同学来找出他认为最合乎美的矩形,最后大部分同学将目标锁定在第①、⑤、⑧和⑩这四个矩形上,此时告诉他们这四个矩形分别是5×8,8×13,13×21,21×34的矩形,请他们用计算器算出这四个矩形的宽与长的比值(结果保留3个有效数字),结果分别是:0.625,0.615,0.619,0.618,这时同学们惊奇地发现这四个矩形的宽与长的比值均接近于黄金比,从而引出黄金矩形的概念.[说明]黄金矩形的概念并不是直接告诉学生的,而是通过亲身经历这么一个活动过程,自己感悟到合乎美的矩形和黄金分割的内在联系.)矩形的宽与长的比为黄金比,这样的矩形称之为黄金矩形.师:古希腊人已经发现黄金矩形是最合乎美的矩形,他们将建筑物的门、窗的轮廓都设计成黄金矩形的形状,其中最著名的就是巴特农神庙.如果把巴特农神庙的轮廓抽象为矩形ABCD ,以矩形ABCD 的宽为边在其内部作正方形AEFD ,那么我们可以惊奇的发现,,点E 是AB 的黄金分割点吗?矩形ABCD 的宽与长的比是BCABBE BC =黄金比吗?[说明]这里涉及到比例变形的一些技巧,要给学生时间进行充分的交流.最终发现巴特农神庙的轮廓为黄金矩形,展示了黄金分割的文化价值.师:黄金矩形之所以称为黄金矩形,并不仅仅因为它的宽与长的比等于黄金比,更重要的是:由上述方法作图后得到的新的矩形BCFE 也为黄金矩形(原因留给同学们课后思考).巴特农神庙之所以神奇,并不仅仅因为它的的轮廓恰好为黄金矩形,它有更深层次的美.[说明]动画演示巴特农神庙在构造上不断符合黄金矩形的神奇现象. 通过动画演示巴特农神庙在构造上不断符合黄金矩形的神奇现象,同学们已经被巴特农神庙中所蕴涵的建筑艺术所折服,使学生再一次感受到了黄金分割和黄金矩形的美学价值.3.问题拓展例题2已知:如图,四边形ABCD 的对角线AC 、BD 交于点O ,求证:.AOD BOC S S ∆∆=OACOOB DO =证略尝试:(1)作顶角为的等腰三角形ABC;036(2)分别量出底边BC 与腰AB 的长度;(3)作的平分线,交AC 于点D ,量出的底边CD 的长度.B ∠BCD ∆最后,分别求出与的底边与腰的长度的比值(精确ABC ∆BCD ∆到0.001)问:比值是多少?所以我们把顶角为的三角形称为黄金三角形.它具有如下的o 36性质:(1);618.0≈ABBC(2)设BD 是的底角的平分线,则也是黄金三角形,ABC ∆BCD ∆且点D 是线段AC 的黄金分割点;(3)如再作的平分线,交BD 于点E ,则也是黄金三C ∠CDE ∆角形,如此继续下去,可得到一串黄金三角形.巩固练习已知点C 是线段AB 的黄金分割点AC =,且AC >BC ,求555-线段AB 与BC 的长.课堂小结1、今天我们共同研究了什么数学知识?2、和以往的数学知识相比,今天的内容有什么不同?作业布置书后练习1、2、3,练习册24.2(2)教学设计说明本节课的研究对象是“黄金分割”,我采用从“美学”——“数学”的逻辑顺序去阐述这个课题,能够极大的提高学生探究的兴趣.并且引用了四个生活中的例子,使学生在不断享受“美”的过程中掌握知识,体验数学的社会功能.。
(课件)24.2相似图形的性质(成比例线段)

a 各等于多少? ab
、
习题和24.2
3.判断下列各组线段是否是成比例线段: (1) 2厘米,3厘米,4厘米,1厘米; (2) 1.5厘米,2.5厘米,4.5厘米,6.5厘米; (3) 1.1厘米,2.2厘米,3.3厘米,4.4厘米; (4) 1厘米,2厘米,2厘米,4厘米.
∴ ad=bc, 在等式两边同加上ac, ∴ ad+ac=bc+ac, ∴ ac-ad=ac-bc, ∴ a(c-d)=(a-b)c, 两边同除以(a-b)(c-d), a c ∴ ab cd
.
a b , 2.已知: 线段a、b、c满足关系式 b c 且b=4,那么ac=______.
之间有关系_______________
图 24.2.1
像这样,对于四条线段a、b、c、d,如果 其中两条线段的长度的比等于另外两条线段的 a c 比, 如 b d (或a∶b=c∶d),那么,
这四条线段叫做成比例线段,简称比例 线段.此时也称这四条线段成比例.
例1判断下列线段a、b、c、d是否是成比例线段:
a c ab cd ; 例2 证明:(1)如果 ,那么 b d b d
a c 证明(1)∵ b d
在等式两边同加上1, a c ∴ 1 1 b d
∴
ab cd b . d
(2)
a c (2) ∵ b d
a c a c 如果 ,那么 a b c d b d
(1)a=4,b=6,c=5,d=10; 5 1 a 4 2 c 解 (1) ∵ b 6 3 d 10 2
a c , ∴ bቤተ መጻሕፍቲ ባይዱd
,
,
∴ 线段a、b、c、d不是成比例线段.
沪教版(上海)初中数学九年级第一学期 24.2 比例线段-黄金分割 课件

比例的等比性质:
如果
a
,b
c d
k
(b,
d
0)
那么
ac a c _b___d___b____d_.
k
a k b a kb
c k d c kd
a c kb kd k bc bd
例1 在梯形ABCD中,对角线AC与BD相交于点
O,SAOD
SBOC ,求证:
DO OB
CO OA
想一想:将条件 SAOD SBOC 换成DC//AB,其它条 件不变,能证明原来的结论正确吗?
AC AD
1.如图,在△ ABC中,点D、E分别在AB、AC
上,且 AD AE
DB EC
.已知S △ ADE=1,S △ DBC=12,
求S △ ABC.
H
3.已知四条线段长分别为1厘米, 2 厘米,2厘米,
x厘米,它们是成比例线段,则x=
厘米.
例2 如图,线段AB的长度为l,点P是线段AB上一 点, PB AP (线段AP是PB、AB的比例中项),
我们做过调查,如果市场上有的电视频主要 有两种,一种是宽:长为3∶4的,另一种是 9∶16的.这两个比值都很接近0.618,也就 是因为黄金矩形是最美的.
画家们发现,按 0.618∶1来设计腿长与 身高的比例,画出的人 体身材最优美,
现今的女性,腰身以下 的长度平均只占身高的 0.58,因此古希腊维纳 斯女塑像及太阳神阿波 罗的形象都通过故意延 长双腿,使之与身高的 比值为0.618,
B P1
∵点P1称为AB的 黄金分割点 (点P1靠近B)
P1B AP1 5 1 0.618 (黄金数) AP1 AB 2
∵点P2称为AB的 黄金分割点 (点P2靠近B)
242(1)比例线段

24.2比例线段一、教学目标:1.理解两条线段的比、比例线段的概念.2.掌握比例线段的基本性质.3.理解比例的合比性质、等比性质.4.培养学生学习数学、应用数学的能力.二、教学重、难点:重点:理解比例线段的概念.掌握比例线段的基本性质.难点:比例的合比性质、等比性质的理解.三、课前预习1.比例的基本性质:如果那么,dc b a = ; 2.比例的合比性质:=+=bb a dc b a ,那么如果 ;=-b b a 。
比例的等比性质:如果=++==db c a ,那么k d c b a= = 3.下列各组线段成比例的是( )。
A. 1cm ,3cm ,2cm ,4cmB. 1cm ,20cm ,5cm ,25cmC. 4cm cm 2cm 6,3,cmD. 4cm ,8cm ,6cm ,12cm四、新授新课探索一(1)思考 四个数a,b,c,d,若21,k dc k b a ==,请问在什么情况下,就说这四个数成比例?k1=k2时,就说这四个数成比例.如果两个数的比值与另两个数的比值相等,就说这四个数成比例.通常我们把a,b,c,d 四个实数成比例表示成a:b=c:d,或dc b a =。
其中b,c 称做内项,a,d 称做外项.新课探索一(2)两条线段的长度的比叫做两条线段的比.求两条线段的比时,对这两条线段一定要用同一长度单位来度量.两条线段的比值总是正数.在四条线段中,如果其中两条线段的比与另两条线段的比相等,那么这四条线段叫做成比例线段,简称比例线段(proportional segments).根据DE 是△ABC 的中位线的条件,你能找出成比例线段吗?线段DE,BC,AD,AB 是比例线段.新课探索一(3)如果a,b,c,d 是比例线段,即dc b a =(或d c b a ::=),那么线段d a ,是比例外项,线段b 、c 是比例内项,线段d 是a,b,c 的第四比例项。
比例线段有以下基本性质: 如果d c b a=,那么bc ad =寻找一下上述变化规律.新课探索二(1)比例线段除了具有上述性质以外,还有其他性质吗?思考 如果线段d c b a ,,,满足d c b a =,那么dd c b b a d d c b b a -=-+=+,是否成立? 新课探索二(2)比例的合比性质:新课探索二(3)请运用上述设比值为k 的思想方法来说明:比例的等比性质:等比性质可以推广到任意有限多个相等的比的情形.例如:注意 在实数范围内,式中的分母不能为零,如b+d ≠0,b1+b2+b3≠0.新课探索三五、课内练习六、本课小结比例线段1.两条线段的长度的比叫做两条线段的比.2.在四条线段中,如果其中两条线段的比与另两条线段的比相等,那么这四条线段叫做成比例线段,简称比例线段(proportional segments).如果a,b,c,d 是比例线段,即dc b a = (或a:b=c:d), 那么线段a,d 是比例外项, 线段b,c 是比例内项, 线段d 是a,b,c 的第四比例项.3.比例线段的性质:(1)比例线段的基本性质: 如果dc b a =,那么ad=bc. (可写出有关a,b,c,d 成立的8个比例式.)(2)比例的合比性质:(3) 比例的等比性质:。
24.2(2)比例线段(教案)

24.2 比例线段(2)—用面积证比例线段奉教院附中 陈嫚 2016.9.6 教学目标:会运用同高(或等高)的两个三角形的面积之比等于对应底边的比,进行三角形的面积比与线段比的转化;理解平行线、三角形等积、比例线段这三者间的联系。
学习重点:让学生通过例题的学习,体验在一定条件下三角形面积比与线段比相互转化的过程。
学习难点:利用三角形的面积比与线段比的相互转化解题。
教学环节 教学过程设计意图一、 知识回顾1.填空(1)如图(1),点D 是BC 边的中点,则=∆∆ACDABDS S ___________. (2)如图(2),点D 是BC 边上一点,且DC:BD=1:2,则=∆∆ABDADCS S . (3)如图(2),若,23=∆∆ABD ABC S S 则BDBC= .要求: ①学生独立完成②师生共同批阅③思考:上述过程体现了一个怎样的转化过程?利用同高的两个三角形的面积之比与对应底边的比相互转化,形成思维基础。
从学生已有的基础出发,引出课题二、 新课学习1.如图,在梯形ABCD 中,AB//CD,对角线AC,BD 相交于点O,则图中哪几对三角形的面积相等? 若AD,BC 延长相交于点P,则图中还有面积相等的三角形吗?将课本例题抽丝剥茧,从学生思维角度入手,锻炼学生的思维能力和探讨交流的好习惯。
思考:你能利用上述面积之比与线段之比可转化的思想方法,证明OACOOB DO =吗?要求:①老师巡视②同学之间可以小组讨论解决问题③师生共同解题,板演变式:已知:在四边形ABCD 中,对角线AC,BD 相交于点O ,且OACO OBDO =求证:AB//CD 、AOD BOC S S ∆∆=要求:学生自主探究,学生板演,写出证明过程.通过变式的训练让学生对新知的相互转化有更深的理解。
三、 新知检测1. 已知:如图,四边形ABCD 的对角线AC 与BD 相交于点O.求证:.AOB COBAOD CODS S S S ∆∆∆∆=2.已知,AD,BE 是△ABC 的两条高.求证:BC BEAC AD=.3.如图,在△ABC 中,AD 平分∠BAC,请利用线段之比可转化为面积之比的思想方法,求证:ACABDC BD =.检测同学们对“同高的两个三角形的面积之比与对应底边的比的相互转化”的掌握程度。
近年学年九年级数学上册24.2比例线段(1)教案沪教版五四制(2021学年)

2017学年九年级数学上册24.2 比例线段(1)教案沪教版五四制编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017学年九年级数学上册24.2 比例线段(1)教案沪教版五四制)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017学年九年级数学上册 24.2 比例线段(1)教案沪教版五四制的全部内容。
比例线段屋架跨度的一半OP长为5米,高度以上就是本文的全部内容,可以编辑修改。
高尔基说过:“书是人类进步的阶梯。
”我希望各位朋友能借助这个阶梯不断进步。
物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。
很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。
用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。
The above isthe whole content of this article,Gorky said: "thebook is theladder of human progress." I hope you can m ake progresswith the help of this ladder. Material lif eis extremely rich, science and technology are developing rapidly, all of which gradually change theway of people's study and leisure. Manypeople are no longer eager to pursue a document, but as long as you still have such a small persi stence, you will continue togrow and progress. When the co mplex world leads us to chase out, reading an article ordoing a problemmakes us calm down and return toourselves. With learning, we can activate our imagination and thinking,establishour belief, keep our pure spiritualworld and r esist the attack of the external world.。
上海教育版数学九上24.2《比例线段》word教案

24.2(1)比例线段教学内容分析本课主要由两部分组成.第一部分是有关线段比例的基本概念和性质及相关的计算.第二部分是比例的拓展性质. 教学目标设计1.知道两条线段比的意义.2.理解比例线段及其有关概念.3.知道比例线段的性质.4. 掌握合比和等比性质,能结合具体图形进行简单的比例线段变形. 教学重点及难点重点:比例线段的概念及它的初步应用 难点:合比、等比性质的运用. 教学用具准备投影仪、笔记本,预习本. 教学流程设计教学过程设计一、 情景引入1.观察图形的相似与线段的比及比例有密切的关联.同学们学习了两条线段比的有关知识,这节课我们来学习和研究比例线段的有关问题.(板书课题) 2.思考在学习新知识之前,我们先回想一下两条线段比的定义及求法,请同学们求下面两条线段的比.引例:如图:AB =50,BC =25,''20A B =, ''10B C =.求 '''',AB A B BC B C.DABC[说明]两个数相除又叫做两数的比,记作ab或:a b ,其中a 叫比的前项,b 叫比的后项.解:∵50225AB BC ==, ''''20210A B B C ==,∴ C B B A BC AB ''''=.二、学习新课1.概念辨析在同一长度单位下,两条线段长度的比就是两条线段的比在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段.四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即a b =cd,那么这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段.线段d 是a 、b 、c 的第四比例项. 提问:比例的基本性质是什么——两个外项的积等于两个内项的积.(1)请同学们想一想,由::a b c d =能否得到ad bc =?为什么? 反过来,若a d=bc ,那么能否得到a :b=c :d 呢B 'A ''(2)由a :b=b :c 可得b 2= a c由b 2= a c 可得a :b=b :c ,线段 b 叫a 、c 的比例中项. (3)由此可以看出:利用比例的基本性质,可以实现比例式与等积式的互化. [说明](1)定义告诉我们判定四条线段成比例线段的方法: (其中的一个比例式)⇒=dcba a 、b 、c 、d 四条线段成比例; (2)定义告诉我们若已知四条线段成比例,则一定有比例式, a 、b 、c 、d 四条线段成比例dc b a =⇒(3)因为两条线段的比是它们的长度的比,实质上就是两个数的比.由于成比例的数具有比例的基本性质,所以成比例的四条线段也具有比例的基本性质. 2.例题分析例题1 已知a 、b 、c 、d 是四条线段,它们的长度如下,试判断它们是不是成比例线段?⑴a =1mm , b=0.8cm , c=0.02cm , d=4cm;⑵711=a cm , b=0.4cm , c=40cm , cm d 213=. [说明] 解题小结:①统一单位;②从大到小(从小到大)排列; ③通过求比例或求积判断.⑴方法二、利用比例的基本性质 ∵dc=4×0.02=0.08, a b=0.1×0.8=0.08, ∴a b=dc,∴a 、b 、c 、d 四条线段成比例. 第⑵小题让学生练习. 补充练习:(1)已知线段a =30mm ,b =2cm ,c =45cm ,d =12mm ,试判断a 、b 、c 、d 是否成比例线段.(2)已知a 、b 、c 、d 是比例线段,其中a =6cm ,b =8cm ,c =24cm,则线段d 的长度是多长?学生练习:判断下列四条线段是否成比例⑴a=2, b=5 , c=15 , d=32;⑵a=2 , b=3, c=2 , d=3;⑶a=4, b=6 , c=5, d=10;⑷a=12, b=8, c=15, d=10. 3.问题拓展合比性质:引导学生运用类似的方法推导出比例的等比性质:如果a cb d=,那么a c a ckb d b d+===+等比性质可以推广到任意有限多个相等的比的情况如果,那么 .证明:设;则 ,∴ .等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握.三、巩固练习例题2(1)已知: ,求证: .证明:方法一:∵ ,∴方法二:∵,∴即11811,8a ab b=∴=(2)(拓展)已知:()0a cb d b d=±≠ ,求证: . 证明:a c b d =,a b c d∴= a c b dc d ++∴=(1 同理a cb dc d--=(2) 由(1)÷(2)得:a cb da cb d++=--. 例题3 已知:EC AE DB AD = 求证:(1)ECACDB AB =; (2)AEACAD AB =四、课堂小结1.今天我们研究了什么内容,又哪些收获呢?2.这些内容和过去的知识有没有联系,有怎样的联系呢?3.你有没有不明白的地方呢?如果要你自学你能够胜任吗五、作业布置基础练习:书后练习1、2、3,4练习册24.2(1)拓展练习(1)求 ①②③(2)求下列各式中的x . ①② ③ ④(3)把cd ab 21=写成比例式,下列写法不正确的是 A 、b d ca 2=B 、b d c a =2C 、b d c a =2D 、bc d a =2 七、教学设计说明学生在六年级时已经学过比例的基本性质,本课首先利用类比的方法使学生得到了线段的有关比和比例的基本性质.在此过程中特别强调线段的比实际也是和数字有关的,帮助学生能够过渡好.通过简单练习、巩固.然后再向大家介绍了比例的其他性质,作为拓展内容只需学生们了解即可,课后供大家研究.本堂课既做到面向全体学生,又做到了分层递进,作业也是从这个方面安排的.。
沪教版九年级(上)数学一课一练及单元测试卷和参考答案

第16题图
三、解答题
17.若 与 是相似形,点A与点 ,点B与点 ,点C与点 分别是对应顶点, , ,AB=2, =5,BC=3, =6求 的度数与边AC, 的长
18如图所示ቤተ መጻሕፍቲ ባይዱ相似四边形中,求未知边x,y的长度和角 的大小
(A) 8 (B) 6 (C) 10 (D) 4
3.如图,已知梯形ABCD中,AB//CD,如果S△ODC: S△OBC=1:2,S△ODC:S△OBA()
(A)1:2(B)1:3(C)1:4(D)1:6
第3题图第4题图第5题图
4.如图,已知AB⊥BD,ED⊥BD,垂足分别为B、D,AE与BD相交于点C,则下列各式错误的是()
(A)1:7(B)1:6 (C). 1:5 (D). 1:3
第4题图第5题图第6题图
5.如图,在△ABC中,AD是角平分线,DE//AC,已知AB=12,AC=6,则DE的长()
(A)3(B)4(C)5(D)6
6.在ABC中,AB//EF∥CD,AB=16,CD=48,则EF的长.为()
(A)8(B)10 (C). 12 (D). 14
21、在梯形ABCD中,AD∥BC,点E在BD的延长线上,且CE∥AB,AC与BD相交于点O,求证:OB2=OD•OE。
数学九年级上第二十四章相似三角形
24.3 三角形一边的平行线 第二课时(1)
一、选择题
1、在△ABC中,DE//BC,DF//AC, ,则 等于 ( )
(A) (B) (C) (D)
24.6 实数与向量相乘 第一课时(1)57
24.7向量的线性运算 第一课时(1)62
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.2.1《成比例线段》教学案
一、课时学习目标:
1、了解比例线段的概念。
知道与“线段的比”的区别与联系。
2、了解比例的基本性质,会进行简单的变形。
二、课前复习导学:
1、什么是相似图形?
2、问:这两张图形有什么联系?
它们是 图形,它们 的形状 , 不相同,是相似形。
为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。
三、课堂学习研讨
1、由上面的格点图可知,B A AB ''=_________,C B BC '
'=________,
这样
B A AB '
'与
C B BC '
'之间有关系_______________.
2、概括:像这样,对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比,如
d
c b a =(或a ∶b =c ∶
d ),那么,这四条线段叫做成比例线段,
简称比例线段.此时也称这四条线段成比例.
3、问题1判断下列线段a 、b 、c 、d 是否是成比例线段: (1)a =4,b =6,c =5,d =10; (2)a =2,b =5,c =152,d =35. 解:(1)∵
=b
a = ,
=d
c = ,
∴b a
d
c ∴线段a,b,c,
d 成比例线段。
(2)∵=b a
= ,
=d
c = ,
∴
b
a
d
c ∴线段a,b,c,
d 成比例线段。
图24.2.1
4、练习:判断下列线段是否是成比例线段: (1)a =2cm ,b =4cm ,c =3m ,d =6m ; (2)a =0.8,b =3,c =1,d =2.4.
5、新结论:
对于成比例线段我们有下面的结论: 如果
d
c b a =,那么a
d =bc . 如果ad =bc (a 、b 、c 、d 都不等于0),那么
d
c b
a =
.
以上结论称为比例的基本性质.
6、思考:请试着证明这两个结论。
这两个命题间有什么关系?
7、练习:(1)、如果
c
b b a =,那么b 叫做a 、
c 的比例中项,也可以写成2b = 。
(2)、已知:线段a 、b 、c 满足关系式c b
b a =
,且b =4,那么ac =______. 8、问题2 证明:(1)如果
d c b a =,那么
d d
c b b
a +=+; (2) 如果
d
c b a =,那么
d
c c
b
a a -=
-.
证明(1)
(2)
四、课堂达标练习 1、已知
2
3=b a ,那么
b
b a += 、
b
a a -= 。
2、在比例尺为1:8000的校地图上,矩形运动场的图上尺寸是cm cm 21⨯,矩形运动场的实际尺寸是多少? 。
3、 在比例尺不同的城市两张地图中,量得A 、B 、C 三地的图上距离,第一张地图中量
AB=3.6cm ,AC=3cm ,在第二张地图上量得AB=6cm ,那么第二张地图中量得AC 为多少?
五、小结与作业:
P 51习题24.2第2,3题。
教学反思:。