储能电站技术方案设计

合集下载

储能电站技术方案

储能电站技术方案

储能电站技术方案1.电池储能技术方案:电池储能是一种通过将电能转化为化学能,然后在需要时将化学能再转化为电能的方式。

目前常见的电池储能技术包括铅酸电池、镍氢电池、锂离子电池和钠硫电池等。

其中,锂离子电池因其高能量密度、长周期寿命和较低的自放电率而被广泛应用于储能电站。

电池储能电站的主要优势是容量可调度性强,快速响应,适用于小规模和分布式能源储能。

2.抽蓄水能储能技术方案:抽蓄水能储能技术是指通过把电能转化为水的潜在能量来储能。

其主要方式是利用电力将水抽到高位蓄能池,然后在需要时通过水力发电机将水释放下来,使其转化为动能产生电能。

这种储能技术具有较高的效率和大规模容量的优势,但需要具备特定的地理条件和水资源。

3.储热技术方案:储热技术利用电能将热能转化为储能形式,然后在需要时将热能转化为电能。

目前常见的储热技术包括盐蓄热、石墨蓄热和水蓄热等。

其中,盐蓄热是通过将热能转化为盐水溶液来储存热能,然后通过蒸汽和热媒体回路将热能释放出来。

储热技术能够提供长时间的储能容量和高效率的能量传输,适用于大规模储能。

4.压缩空气能储能技术方案:压缩空气能储能技术是指通过将电能使用在压缩空气上,将其压缩储存,然后在需要时释放压缩空气,驱动涡轮发电机产生电能。

压缩空气能储能技术具有高效率、容量可调度和适应规模化储能的特点。

5.超级电容器储能技术方案:超级电容器储能技术利用电荷分离的原理来储存电能。

其主要优势是充放电速度快、寿命长、效率高和适应性广。

超级电容器储能技术适用于短时储能和高功率输出需求的场景,如电网频率调整和峰值电力补充等领域。

总之,储能电站技术方案的选择应根据具体需求和特定条件来确定。

不同的技术方案在容量、效率、调度性和适应性等方面存在差异,需要综合考虑。

随着科技的发展和成本的降低,储能电站技术将逐渐成熟和普及,为能源领域的可持续发展做出贡献。

储能系统专业技术方案设计

储能系统专业技术方案设计

储能系统专业技术方案设计
一、蓄电池参数设计
1、额定容量:根据系统需求,在初步确定系统配置参数的基础上,
列出具体需要的储能电池元件容量,并选择性能指标较优的电池类型。

2、效率:系统的电池组应能够有效储存大量的能量,以有效满足系
统使用的电量需求,保证其在高强度使用过程中的稳定性。

3、充放电与循环寿命:由于系统的储能电池会经历大量的充放电循环,因此应选择有较高充放电使用寿命的电池元件。

4、温度:由于储能系统的工作环境温度会受到外界温度的影响,因
此电池元件的系统安装时应注意温度的变化。

二、充电系统设计
1、多路通道:充电系统采用多路转换,可将不同的能源转换成直流电,有效地实现储能系统的充电。

2、充电控制:采用充电控制系统,可根据储能系统的能源使用需求,对不同的能源进行精确控制和调整。

3、保护功能:防止电池元件过充过放,系统通过实现电压、电流、
温度的实时监测,采用必要的保护措施,确保充电系统的正常运行。

三、电池组管理系统设计
1、监控:利用数据采集系统对电池组的运行状态实现实时监测,实
现对电池元件的运行状态、温度、电压、电流等状态的监控。

储能电站技术方案设计

储能电站技术方案设计

储能电站技术方案设计本文档旨在介绍储能电站总体技术方案,包括设计标准、系统架构、光伏发电子系统、储能子系统、并网控制子系统和储能电站联合控制调度子系统。

同时,本文档还探讨了储能电站系统的整体发展前景。

2.设计标准储能电站的设计标准应该符合国家相关规定和标准,同时考虑到实际情况和技术水平。

在设计过程中,应该充分考虑电站的安全性、可靠性、经济性和环保性等方面的要求。

3.储能电站(配合光伏并网发电)方案3.1系统架构储能电站与光伏发电系统的配合需要考虑系统架构,包括光伏发电子系统和储能子系统。

光伏发电子系统负责发电,储能子系统负责储存电能并提供稳定的电力输出。

3.2光伏发电子系统光伏发电子系统是储能电站的重要组成部分,它通过光伏电池板将太阳能转换为电能,并通过逆变器将直流电转换为交流电。

3.3储能子系统储能子系统是储能电站的核心部分,它通过储能电池组将电能储存起来,并通过电池管理系统(BMS)对电池进行管理和控制。

3.3.1储能电池组储能电池组是储能电站的关键部分,它需要具备高能量密度、长寿命、高安全性和高性价比等特点。

目前常用的储能电池包括铅酸电池、镍氢电池、锂离子电池等。

3.3.2电池管理系统(BMS)电池管理系统(BMS)是储能电池组的重要组成部分,它负责对电池进行监测、管理和控制,保证电池的安全性、可靠性和性能。

3.4并网控制子系统并网控制子系统是储能电站与电网连接的关键部分,它负责实现电站与电网的互联互通和安全稳定运行。

3.5储能电站联合控制调度子系统储能电站联合控制调度子系统是储能电站的智能化管理系统,它负责对电站进行联合控制和调度,实现储能电站的最优化运行。

4.储能电站(系统)整体发展前景随着新能源的快速发展,储能电站作为新能源发展的重要组成部分,具有广阔的发展前景。

未来,储能电站将会越来越普及,并逐渐成为新能源发电的重要支撑。

大容量电池储能系统已经在电力系统中应用了20多年,最初主要用于孤立电网的调频、热备用、调压和备份等功能。

储能系统方案设计(一)2024

储能系统方案设计(一)2024

储能系统方案设计(一)引言概述:储能系统是一种利用电能将能量存储并在需要时释放的关键技术。

随着可再生能源的快速发展和电力需求的增加,储能系统方案设计变得越来越重要。

本文旨在探讨储能系统方案设计的关键要素及其影响因素。

正文:一、需求分析1.1 确定电力需求模式1.2 评估负载特征和功率需求1.3 分析能量需求的时间分布1.4 考虑电网平稳性要求1.5 研究电力市场条件二、性能指标确定2.1 确定能量存储容量需求2.2 确定响应速度和调节能力要求2.3 考虑效率和循环寿命要求2.4 分析可靠性和安全性指标2.5 考虑成本效益和经济指标三、技术方案选择3.1 分析储能技术的特点和适用场景3.2 评估各种储能技术的优缺点3.3 考虑储能设备的尺寸和重量限制3.4 考虑可再生能源的关联性3.5 综合各种因素选择最佳技术方案四、系统集成设计4.1 设计储能系统的整体架构4.2 优化系统组件的选择和配置4.3 设计储能系统的控制策略4.4 考虑系统的通信和监测需求4.5 确定储能系统与电力系统的接口设计方式五、系统优化与评估5.1 优化储能系统的运行控制策略5.2 考虑储能系统与电力系统的互操作性5.3 进行实验和模拟验证5.4 评估系统的性能和可靠性5.5 提出优化建议和改进措施总结:本文对储能系统方案设计的关键要素进行了细致的阐述。

需求分析、性能指标确定、技术方案选择、系统集成设计和系统优化与评估是储能系统方案设计的重要环节。

合理设计储能系统方案有助于提高能源利用效率,满足电力需求,减少对传统能源的依赖,推动可持续发展。

储能电站技术方案设计

储能电站技术方案设计

储能电站技术方案设计首先,能量储存是储能电站的核心环节。

常见的储能技术包括电池储能技术、压缩空气储能技术、超级电容器储能技术、电化学储能技术等。

电池储能技术是目前应用最广泛的一种储能技术,包括铅酸电池、锂离子电池等。

其原理是将电能转化为化学能并储存,在需要的时候再将化学能转化为电能供电使用。

压缩空气储能技术是将电能转化为压缩空气的能量,并将压缩空气储存起来。

在需要的时候,通过减压释放储存的能量,驱动发电机产生电能。

超级电容器储能技术是利用电容器存储电荷的能力进行储能。

电容器具有高能量密度、快速充电和放电、循环寿命长等特点。

电化学储能技术主要是指利用电化学反应将电能储存为化学能,在需要的时候再将化学能转化为电能。

包括氢燃料电池、金属-空气电池等。

其次,能量转换是储能电站的重要环节。

能量转换主要包括能量的输入和输出。

能量的输入主要指将外部能源转化为储能电站储存的能量形式。

能量的输出则是将储存的能量转化为电能输出供电使用。

储能电站的能量转换过程通常包括能量传输、能量变换和能量转化三个环节。

能量传输是指将外部能源传输到储能电站,常见的传输方式包括输电线路、管道等。

能量变换是指将传输过来的能量转化为储存的能量形式,如将电能转化为压缩空气或化学能。

能量转化是指将储存的能量再次转化为电能供电使用。

最后,能量释放是储能电站实现供电的关键环节。

能量释放主要包括能量的调度和能量的输出。

能量的调度是指根据需求对储存的能量进行灵活的调度和管理,以满足不同时间段和不同地点的电能需求。

能量的输出则是将调度好的能量转化为电能输出供电使用。

在储能电站的设计中,重要的是要综合考虑能源综合利用、成本效益、安全可靠性等因素。

有效地利用不同的储能技术,在不同的能量储存、转换和释放环节中进行合理组合,可以实现储能电站的高效运行和可持续发展。

总之,储能电站技术方案设计需要充分考虑能量储存、转换和释放三个环节,选择合适的储能技术,并进行合理组合和调度,以实现高效的能量供应和可持续的发展目标。

储能电站技术及方案

储能电站技术及方案

储能电站技术及方案储能电站是一种能够将能源转化成可储存的形式,并在需要时将其释放出来供应电力的设施。

随着能源转型和可再生能源的快速发展,储能电站越来越受到关注。

在这篇文章中,我将介绍一些常见的储能电站技术及方案。

1. 泵水储能电站(Pumped Storage Hydropower, PSH):这是目前应用最广泛的储能电站技术。

该技术利用山区的两个水库之间的高度差,将低峰时段的电力利用来抽水将水从低处储存在高处的水库中,高峰时段再将储存的水放下,通过涡轮发电机产生电能。

泵水储能电站的优势在于储能容量大、迅速切换、寿命长等。

3. 超级电容储能电站(Super Capacitor Energy Storage, SCES):超级电容器具有高能量密度、大功率密度和长循环寿命等特点,适合用于快速储存和释放能量。

超级电容储能电站通常用于应对瞬时峰值负荷和频率调节等需求。

4. 锂离子电池储能电站(Lithium-ion Battery Energy Storage System, LiBESS):锂离子电池是一种高能量密度和高功率密度的储能技术。

锂离子电池储能电站可以快速响应需求峰值,提供频率调节等服务。

此外,锂离子电池还可以与可再生能源发电系统相结合,平衡发电和用电的差异。

除了以上介绍的几种储能电站技术,还有其他一些新兴的储能技术及方案:5. 液流电池储能电站(Flow Battery Energy Storage System):液流电池通过将电解液储存在大型贮液罐中,实现可扩展的储能容量。

液流电池储能电站适用于长时段的储能需求,比如电网备用电源和稳定发电。

6. 热储能电站(Thermal Energy Storage, TES):热储能电站通过将能源转化为热能并储存起来,需要时将热能转化为电能。

热储能电站常用于集中供热和集中供电系统,例如太阳能热储能电站。

7. 高温超导储能电站(High-Temperature Superconducting Energy Storage, HTS-ESS):高温超导材料具有零电阻和强磁场抗性的特点,可以实现大规模的储能容量和快速响应能力。

储能电站技术方案设计

储能电站技术方案设计

储能电站技术方案设计储能电站是利用新能源发电过程中产生的过剩电能,经过转化、储存、再利用等环节,达到保障供电、平抑电价、优化能源结构等目的的一种新型能源转化技术。

储能电站的技术方案设计是一个必须经过慎重考虑和综合考虑的过程。

下面将详细介绍储能电站技术方案设计的内容和过程。

一、概述储能电站技术方案设计是储能电站建设项目的重要组成部分。

储能电站技术方案设计是根据用户需求,选择合适的技术方案,对储能电站系统的结构、工艺流程、设备选型、基础结构、建筑结构、电气系统、控制系统、灾备系统等方面进行设计。

二、设计内容1. 储能电站系统结构设计储能电站系统结构设计是储能电站技术方案设计的基础,主要是从电站的规模、场地条件、供电范围、逃生通道等因素出发,制定合理的系统结构。

包括设备布置图、流程线路图、管线和电线路等设计。

2. 设备选型及配置设计在储能电站技术方案设计中,设备选型及配置设计是储能电站系统设计的关键。

选型的设备要满足储能电站的运行要求和技术规范,保证电站的安全可靠性以及对环境的影响最小化,其中包括储能系统、发电系统、变压器、充电桩、智能控制系统等设备。

3. 设备基础结构设计设备基础结构设计是指设计储能电站设备的固定位置和支撑结构,保证设备安全、有效、稳定地运行。

主要包括设备基座、地基基础、施工细节等方面。

4. 建筑结构设计建筑结构设计是指储能电站建筑和支撑结构的设计,主要包括储能电站的海拔高度、建筑物的整体构造、外立面设计、地面承载设计等方面。

5. 电气系统设计电气系统设计是储能电站技术方案设计的重要组成部分,它是实现储能电站能量管理和监测控制的关键。

主要包括高压配电、低压配电、变电站、电气保护等方面。

6. 控制系统设计储能电站的智能控制系统是实现储能电站优化运行的关键因素,主要包括储能电站的能量管理系统、监测控制系统、SCADA系统等方面。

7. 灾备系统设计灾备系统设计是储能电站技术方案设计的重要组成部分,主要是指在设备和系统发生故障或自然灾害时能够快速响应,保证电站的连续供电和安全运行。

5MW储能电站方案书

5MW储能电站方案书

5MW储能电站方案书一、项目背景随着全球对清洁能源的需求不断增长,储能技术逐渐成为解决可再生能源波动性问题的重要手段。

现阶段,传统的5MW储能电站已无法满足大规模储能需求,因此我们的方案旨在设计一种更高效、更具可持续性的5MW储能电站方案以满足未来能源储存的需求。

二、项目概述本项目的目标是建设一座5MW储能电站,通过储能技术解决可再生能源的间断性问题。

项目将采用锂离子电池作为储能介质,并配备适当的光电转换系统,以最大程度地减少电能的损失。

同时,该方案还将采用智能化控制系统,提高储能电站的运行效率和可靠性。

三、技术方案1.储能介质选择:本项目采用锂离子电池作为主要的储能介质。

锂离子电池具有能量密度高、重量轻、循环寿命长等优点,非常适合作为5MW 储能电站的储能介质。

2.储能电池组设计:电池组的设计是储能电站方案中非常关键的一部分。

我们将采用模块化设计,以方便维护和升级。

同时,为了提高储能电池的使用寿命,我们将采用智能化的电池管理系统,对电池组进行监测、调度和保护。

3.光电转换系统:为了增加可再生能源的利用率,我们将在储能电站中配备光电转换系统。

该系统将光能转化为电能,并直接供给储能电站使用或者储存到电池组中。

这将大大提高电站的自给自足能力。

4.智能控制系统:为了实现储能电站的高效运行,我们将配备智能控制系统。

该系统将对电池组、光电转换系统和电力系统进行监测和调控,以实现最佳的能源利用效率。

四、环境影响评估本项目对环境的影响主要有两个方面:一是电池制造阶段可能会产生化学废料,对环境造成一定污染;二是电池的使用过程中可能会产生废旧电池,需要进行合理处理。

针对这些问题,我们将制定相关的环境管理措施,以减少对环境的负面影响。

五、项目效益1.提高可再生能源的利用率:5MW储能电站将帮助解决可再生能源波动性问题,实现更高效的能源利用。

2.实现电网峰谷平衡:储能电站将能够在能源需求高峰期储存电能,在低谷期释放电能,实现电网的峰谷平衡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

储能电站总体技术方案2011-12-20目录1.概述 (3)2.设计标准 (4)3.储能电站(配合光伏并网发电)方案 (6)3.1系统架构 (6)3.2光伏发电子系统 (7)3.3储能子系统 (7)3.3.1储能电池组 (8)3.3.2 电池管理系统(BMS) (9)3.4并网控制子系统 (12)3.5储能电站联合控制调度子系统 (14)4.储能电站(系统)整体发展前景 (16)1.概述大容量电池储能系统在电力系统中的应用已有20多年的历史,早期主要用于孤立电网的调频、热备用、调压和备份等。

电池储能系统在新能源并网中的应用,国外也已开展了一定的研究。

上世纪90年代末德国在Herne 1MW的光伏电站和Bocholt 2MW的风电场分别配置了容量为1.2MWh的电池储能系统,提供削峰、不中断供电和改善电能质量功能。

从2003年开始,日本在Hokkaido 30.6MW风电场安装了6MW /6MWh 的全钒液流电池(VRB)储能系统,用于平抑输出功率波动。

2009年英国EDF电网将600kW/200kWh锂离子电池储能系统配置在东部一个11KV配电网STATCOM中,用于潮流和电压控制,有功和无功控制。

总体来说,储能电站(系统)在电网中的应用目的主要考虑“负荷调节、配合新能源接入、弥补线损、功率补偿、提高电能质量、孤网运行、削峰填谷”等几大功能应用。

比如:削峰填谷,改善电网运行曲线,通俗一点解释,储能电站就像一个储电银行,可以把用电低谷期富余的电储存起来,在用电高峰的时候再拿出来用,这样就减少了电能的浪费;此外储能电站还能减少线损,增加线路和设备使用寿命;优化系统电源布局,改善电能质量。

而储能电站的绿色优势则主要体现在:科学安全,建设周期短;绿色环保,促进环境友好;集约用地,减少资源消耗等方面。

2.设计标准GB 21966-2008 锂原电池和蓄电池在运输中的安全要求GJB 4477-2002 锂离子蓄电池组通用规QC/T 743-2006 电动汽车用锂离子蓄电池GB/T 12325-2008 电能质量供电电压偏差GB/T 12326-2008 电能质量电压波动和闪变GB/T 14549-1993 电能质量公用电网谐波GB/T 15543-2008 电能质量三相电压不平衡GB/T 2297-1989 太伏能源系统术语DL/T 527-2002 静态继电保护装置逆变电源技术条件GB/T 13384-2008 机电产品包装通用技术条件GB/T 14537-1993 量度继电器和保护装置的冲击与碰撞试验GB/T 14598.27-2008 量度继电器和保护装置第27部分:产品安全要求DL/T 478-2001 静态继电保护及安全自动装置通用技术条件GB/T 191-2008 包装储运图示标志GB/T 2423.1-2008 电工电子产品环境试验第2部分:试验方法试验A:低温GB/T 2423.2-2008 电工电子产品环境试验第2部分:试验方法试验B:高温GB/T 2423.3-2006 电工电子产品环境试验第2部分:试验方法试验Cab:恒定湿热试验GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法试验Ed:自由跌落GB/T 2423.10-2008 电工电子产品环境试验第2部分:试验方法试验Fc:振动(正弦)GB 4208-2008 外壳防护等级(IP代码)GB/T 17626 -2006 电磁兼容试验和测量技术GB 14048.1-2006 低压开关设备和控制设备第1部分:总则GB 7947-2006 人机界面标志标识的基本和安全规则导体的颜色或数字标识GB 8702-88 电磁辐射防护规定DL/T 5429-2009 电力系统设计技术规程DL/T 5136-2001 火力发电厂、变电所二次接线设计技术规程DL/T 620-1997 交流电气装置的过电压保护和绝缘配合DL/T 621-1997 交流电气装置的接地GB 50217-2007 电力工程电缆设计规GB 2900.11-1988 蓄电池名词术语IEC 61427-2005 光伏系统(PVES)用二次电池和蓄电池组一般要求和试验方法Q/GDW 564-2010 储能系统接入配电网技术规定QC/T 743-2006 《电动汽车用锂离子蓄电池》GB/T 18479-2001 地面用光伏(PV)发电系统概述和导则GB/T 19939-2005 光伏系统并网技术要求GB/T 20046-2006 光伏(PV)系统电网接口特性GB 2894 安全标志(neq ISO 3864:1984)GB 16179 安全标志使用导则GB/T 17883 0.2S 和0.5S 级静止式交流有功电度表DL/T 448 能计量装置技术管理规定DL/T 614 多功能电能表DL/T 645 多功能电能表通信协议DL/T 5202 电能量计量系统设计技术规程SJ/T 11127 光伏(PV)发电系统过电压保护——导则IEC 61000-4-30 电磁兼容第4-30 部分试验和测量技术——电能质量IEC 60364-7-712 建筑物电气装置第7-712 部分:特殊装置或场所的要求太伏(PV)发电系统3.储能电站(配合光伏并网发电)方案3.1系统架构在本方案中,储能电站(系统)主要配合光伏并网发电应用,因此,整个系统是包括光伏组件阵列、光伏控制器、电池组、电池管理系统(BMS)、逆变器以及相应的储能电站联合控制调度系统等在的发电系统。

系统架构图如下:储能电站(配合光伏并网发电应用)架构图1、光伏组件阵列利用太阳能电池板的光伏效应将光能转换为电能,然后对锂电池组充电,通过逆变器将直流电转换为交流电对负载进行供电;2、智能控制器根据日照强度及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。

另一方面把多余的电能送往蓄电池组存储。

发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性;4、并网逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的380V 市电接入用户侧低压电网或经升压变压器送入高压电网。

5、锂电池组在系统中同时起到能量调节和平衡负载两大作用。

它将光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。

3.2光伏发电子系统略。

3.3储能子系统3.3.1储能电池组(1)电池选型原则作为配合光伏发电接入,实现削峰填谷、负荷补偿,提高电能质量应用的储能电站,储能电池是非常重要的一个部件,必须满足以下要求:➢容易实现多方式组合,满足较高的工作电压和较大工作电流;➢电池容量和性能的可检测和可诊断,使控制系统可在预知电池容量和性能的情况下实现对电站负荷的调度控制;➢高安全性、可靠性:在正常使用情况下,电池正常使用寿命不低于15年;在极限情况下,即使发生故障也在受控围,不应该发生爆炸、燃烧等危及电站安全运行的故障;➢具有良好的快速响应和大倍率充放电能力,一般要求5-10倍的充放电能力;➢较高的充放电转换效率;➢易于安装和维护;➢具有较好的环境适应性,较宽的工作温度围;➢符合环境保护的要求,在电池生产、使用、回收过程中不产生对环境的破坏和污染;(2) 主要电池类型比较表1、几种电池性能比较(3)建议方案从初始投资成本来看,锂离子电池有较强的竞争力,钠硫电池和全钒液流电池未形成产业化,供应渠道受限,较昂贵。

从运营和维护成本来看,钠硫需要持续供热,全钒液流电池需要泵进行流体控制,增加了运营成本,而锂电池几乎不需要维护。

根据国外储能电站应用现状和电池特点,建议储能电站电池选型主要为磷酸铁锂电池。

3.3.2 电池管理系统(BMS)(1)电池管理系统的要求在储能电站中,储能电池往往由几十串甚至几百串以上的电池组构成。

由于电池在生产过程和使用过程中,会造成电池阻、电压、容量等参数的不一致。

这种差异表现为电池组充满或放完时串联电芯之间的电压不相同,或能量的不相同。

这种情况会导致部分过充,而在放电过程中电压过低的电芯有可能被过放,从而使电池组的离散性明显增加,使用时更容易发生过充和过放现象,整体容量急剧下降,整个电池组表现出来的容量为电池组中性能最差的电池芯的容量,最终导致电池组提前失效。

因此,对于磷酸铁锂电池电池组而言,均衡保护电路是必须的。

当然,锂电池的电池管理系统不仅仅是电池的均衡保护,还有更多的要求以保证锂电池储能系统稳定可靠的运行。

(2)电池管理系统BMS的具体功能⏹基本保护功能✓单体电池电压均衡功能此功能是为了修正串联电池组中由于电池单体自身工艺差异引起的电压、或能量的离散性,避免个别单体电池因过充或过放而导致电池性能变差甚至损坏情况的发生,使得所有个体电池电压差异都在一定的合理围。

要求各节电池之间误差小于±30mv。

✓电池组保护功能单体电池过压、欠压、过温报警,电池组过充、过放、过流报警保护,切断等。

⏹数据采集功能采集的数据主要有:单体电池电压、单体电池温度(实际为每个电池模组的温度)、组端电压、充放电电流,计算得到蓄电池阻。

通讯接口:采用数字化通讯协议IEC61850。

在储能电站系统中,需要和调度监控系统进行通讯,上送数据和执行指令。

⏹诊断功能BMS应具有电池性能的分析诊断功能,能根据实时测量蓄电池模块电压、充放电电流、温度和单体电池端电压、计算得到的电池阻等参数,通过分析诊断模型,得出单体电池当前容量或剩余容量(SOC)的诊断,单体电池健康状态(SOH)的诊断、电池组状态评估,以及在放电时当前状态下可持续放电时间的估算。

根据电动汽车相关标准的要求《锂离子蓄电池总成通用要求》(目前储能电站无相关标准),对剩余容量(SOC)的诊断精度为5%,对健康状态(SOH)的诊断精度为8%。

⏹热管理锂电池模块在充电过程中,将产生大量的热能,使整个电池模块的温度上升,因而,BMS应具有热管理的功能。

⏹故障诊断和容错若遇异常,BMS应给出故障诊断告警信号,通过监控网络发送给上层控制系统。

对储能电池组每串电池进行实时监控,通过电压、电流等参数的监测分析,计算阻及电压的变化率,以及参考相对温升等综合办法,即时检查电池组中是否有某些已坏不能再用的或可能很快会坏的电池,判断故障电池及定位,给出告警信号,并对这些电池采取适当处理措施。

当故障积累到一定程度,而可能出现或开始出现恶性事故时,给出重要告警信号输出、并切断充放电回路母线或者支路电池堆,从而避免恶性事故发生。

采用储能电池的容错技术,如电池旁路或能量转移等技术,当某一单体电池发生故障时,以避免对整组电池运行产生影响。

管理系统对系统自身软硬件具有自检功能,即使器件损坏,也不会影响电池安全。

相关文档
最新文档