机械能守恒定律及其应用
机械能守恒定律及其应用

机械能守恒定律的意义
揭示了能量守恒的实质
机械能守恒定律是能量守恒定律在力 学系统中的具体表现,它表明在满足 一定条件下,系统中的机械能可以自 发的相互转化,但总能量保持不变。
提供了解决问题的方法
在解决力学问题时,如果满足机械能 守恒定律的条件,可以将问题简化为 求解初末状态的机械能,从而大大简 化计算过程。
VS
详细描述
火箭升空过程中,燃料燃烧产生大量气体 ,向下喷射产生推力,使火箭加速上升。 在这个过程中,火箭的重力势能和动能之 间相互转化,机械能总量保持不变,也是 机械能守恒定律的应用。
水利发电站工作过程中的机械能守恒
ቤተ መጻሕፍቲ ባይዱ总结词
水轮机在水的冲力作用下旋转,将水的重力 势能转化为水轮机的动能,再通过发电机转 化为电能,整个过程中机械能总量保持不变 。
之间的关系。
数学表达式的理解
机械能守恒
机械能守恒定律表明,在没有外 力做功的情况下,质点的机械能 (动能和势能之和)保持不变。
适用范围
机械能守恒定律适用于没有外力 做功的系统,如自由落体运动、 弹性碰撞等。
守恒原因
机械能守恒的原因是重力做功与 路径无关,只与初末位置的高度 差有关。
数学表达式的应用
单摆在摆角小于5°的理想情况下,只受重力和摆线的拉力,不涉及其他外力。因此,其 机械能守恒。
详细描述
单摆是一种简单的机械系统,由一根悬挂的细线和下面的小球组成。当单摆在垂直平面 内摆动时,其动能和势能之间相互转换。在摆角小于5°的理想情况下,由于空气阻力和 摩擦力可以忽略不计,因此只有重力和摆线的拉力作用在单摆上。根据机械能守恒定律
,单摆的动能和势能之和保持不变,即机械能守恒。
弹簧振子的机械能守恒
机械能守恒定律及其应用

机械能守恒定律及其应用机械能守恒定律及其应用机械能守恒定律是物理学中的重要定律之一,它指出在一个自由体系中,机械能守恒不变。
这个定律是基于能量守恒定律发展出来的,而机械能,则包括系统的动能和势能。
机械能守恒定律的应用非常广泛,可以用来解释或预测各种物理现象,例如弹性碰撞、滑动摩擦等。
机械能和动能在物理学中,机械能被定义为系统的动能和势能之和。
动能表示系统内物体的运动能量,而势能则表示系统中物体由于它们的位置而具有的能量。
这两种能量可以通过下面的公式来计算:机械能= 动能+ 势能动能= 0.5mv^2,其中m为物体的质量,v为物体的速度势能= mgh,其中m为物体的质量,g为重力加速度,h为物体的高度机械能守恒定律机械能守恒定律表述如下:一个系统中,如果所有作用力都是保守力,那么机械能守恒不变。
在这个定律中,所谓的保守力是指只与位置有关的力。
在这样的力作用下,系统的总机械能将保持不变,即机械能的初始值等于机械能的最终值。
如果存在非保守力,如滑动摩擦、空气阻力等,那么系统的机械能将不再是恒定的。
应用弹性碰撞在物理学中,弹性碰撞是指两个物体相撞后不会失去动能的碰撞。
这个现象可以用机械能守恒定律来解释。
考虑两个质量分别为m1和m2的小球以速度v1和v2相向运动,它们碰撞后弹性分离,速度分别变为v1'和v2'。
在弹性碰撞过程中,小球之间的作用力可以看做保守力,因此可以使用机械能守恒定律:1/2 m1v1^2 + 1/2 m2v2^2 = 1/2 m1v1'^2 + 1/2 m2v2'^2通过解这个方程组,可以求出小球在弹性碰撞后的速度。
滑动摩擦滑动摩擦是指物体之间相对滑动时产生的阻力。
摩擦力常常会导致机械能的损失,因此在实际物理问题中,必须考虑摩擦力对机械能守恒定律的影响。
考虑一个物体运动在一个光滑的水平面上,它的速度为v0,然后被一个恒定的摩擦力Ff反向作用,作用距离为d,使物体在最终速度为v的情况下停下来。
机械能守恒定律的理解及应用

机器能守恒定律的理解及应用一、机器能守恒定律:1.机器能守恒定律内容表述:①表述一: 在只有重力做功的情形下,物体的动能和重力势能产生相互转化,但总的机器能保持稳定.这个结论叫做机器能守恒定律.不光动能和重力势能的相互转化中机器能保持稳定,在弹性势能和动能的转化历程中,如果只有弹簧的弹力做功,机器能也是保持稳定的.②表述二: 在只有重力或弹力做功的物体系统内,动能与势能可以.机器能守恒定律是力学中的一条重要定律,又是更普遍的能的转化和守恒定律的一种特殊情况.2.怎样理解机器能守恒定律:①只有重力做功的情形:重力势能是相对的,表达式为Ep = mgh,式中的h是物体的重心到参考平面(零重力势能面)的高度.若物体在参考平面以上,则重力势能为正;若物体在参考平面以下,则重力势能为负.通常,选择地面作为零重力势能参考平面.重力势能的变革量与零重力势能的选取无关.重力对物体做几多正功,物体的重力势能就淘汰几多;重力对物体做几多负功,物体的重力势能就增加几多.即W重= -ΔE重.②只有弹力做功的情形:一个物体由于外力的作用产生形变,如果撤去外力后形变会消失,这种形变就叫做弹性形变.物体因产生弹性形变而具有的势能叫做弹性势能. 和重力势能一样,弹性势能也是相对的.对付弹簧的弹性势能一般取其为原长时弹性势能为零.弹力对物体做了几多负功,物体的弹性势能就增加几多.即W弹= -ΔE弹.重力做功和弹力做功均和途径无关.重力势能的巨细与哪些因素有关,学生容易理解.以下就弹性势能的巨细与哪些因素有关做出说明:一个物体在A位置时,弹簧处于原长,如图1所示.我们对物体从A→B→C→B→A的历程进行阐发.当物体到B位置时,弹CC回到B,弹力做正功,弹簧的弹性势能淘汰.再将物体从B回到A,弹力继承做正功,弹簧的弹性势能继承淘汰.从这个例子,我们注意到:(Ⅰ)和重力势能一样,物体的弹性势能和弹力做(外力克服弹力做功),物体的弹性势能就增加几多;弹力做几多正功(弹力克服外力做功),物体的弹性势能就淘汰几多.(ⅡB到C弹力做的负功和C到B弹力做的正功相互抵消,因此物体从A直接到B跟物体从A到C再回到B做的功是一样多的.这个问题可以这样理解,由于物体在同一个位置的弹力相同,在B、C间靠着很近的两个点之间,向左移动和向右移动经过这两个点做的功,巨细相同,标记相反如图1所示.而力在一段位移对物体做功的总量是力对每一小段位移做功的累加.所以,物体从B到C弹力做的负功和C到B弹力做的正功相互抵消(图1中,为了清楚的表现物理量的干系,把B、C间靠着很近的两个点的间距放大了).不难想象,在压缩弹簧中的历程,弹力做的功和两个因素有关:一个是弹簧的劲度系数;另一个是压缩的距离.因此对同一根弹簧,形变越大弹性势能越大,两根弹簧产生同样的形变,劲度系数大的弹簧弹性势能大.由于弹簧从平衡位置拉伸和压缩相同的长度时的力相同,所以同一根弹簧,从平衡位置拉伸和压缩相同的长度时,弹簧的弹性势能相同.所以,弹簧的弹性势能与弹簧的劲度系数和形变量两个因素有关.③机器能守恒定律1F 2F2F1F 位移方向位移方向2图1图动能和势能之和称为机器能.一种形式的机器能可以和另一种形式的机器能相互转化.下面我们看一些例子.物体自由下落或沿平滑斜面滑下的时候,重力对物体做功,物体的重力势能淘汰;重力势能转变为动能.原来具有一定速度的物体,在竖直上升或沿平滑斜面上升的历程中,物体克服重力做功,速度越来越小,物体动能淘汰了;而随着高度增加,重力势能却增加了.这时动能转化成重力势能.弹性势能也可以和动能相互转化.放开一个被压缩的弹簧,它可以把一个与它打仗的小球弹出去.这时弹力做功,弹簧的弹性势能就淘汰;同时小球得到一定的速度,动能增加.放开被拉开的弓把箭射出去,这时弓的弹性势能淘汰,箭的动能增加.从这些例子我们可以看出,机器能的相互转化是通过重力或弹力做功来实现的.重力或弹力做功的历程,也就是机器能从一种形式转化为另一种形式的历程.那么在种种机器能相互转化的历程中有什么纪律呢?我们用一个最简朴的例子来看一下.一个做自由落体运动的小球从1位置下落到2位置,设小球在位置1和2的速度分别为v 1和v 2,1位置和2位置离地的高度分别为h 1和h 2(如图3).凭据落体运动的纪律可知:)(2212122h h g v v -=-等式两边都乘以0.5m ,得22211211m v m v mg h mg h 22⋅-⋅=⋅-⋅ 由此可知,在小球从1位置落到2位置的历程中,它重力势能的淘汰量即是它动能的增加量,也就是说它在下落历程中机器能总量保持稳定.机器能守恒定律干系式的推导,我们还可以通过下列要领来创建:我们照旧用图3给出的情形研究.小球从1位置下落到2位置的历程中,重力做功W G =mg (h 1-h 2);运用动能定理,21222121mv mv W G -=,得: 2122212121mv mv mgh mgh -=-,即:2222112121mv mgh mv mgh +=+. 3.机器能守恒定律的应用典范:【例1】 以10m/s 的速度将质量m 的物体从地面竖直向上抛出,忽略空气阻力,求(1)物体上升的最大高度(2)上升历程中那边重力势能和动能相等解:(1)以地面为参考面,设物体上升的最大高度为h ,由机器能守恒得E 1=E 2,即mgh mv +=+002120, 所以m m g v h 5102102220=⨯== (2)在地面有E 1=2021mv 在高h 1处有E k =E p ,即12112221mgh mv mgh E =+= 3图由机器能守恒定律得21E E =,即120221mgh mv = 解得m m g v h 5.21041004201=⨯== 【例2】把一个小球用细线悬挂起来,就成为一个摆(见图4),摆长为L ,最大偏角为θ.小球从A 处释放运动到最低位置O 时的速度是多大?解:在小球运动的历程中,小球共受到重力和绳对小球的拉力共2个力的作用.由于绳子对小球的拉力偏向始终与速度偏向垂直,绳子对小球的拉力不做功,只有重力对小球做功,小球的机器能守恒.小球重力势能的减小量为cos 1(-mgL θ),动能的增加量为0212-mv ,凭据机器能守恒得:221)cos 1(mv mgL =-θ,即)cos 1(2θ-=gL v . 【例3】如图5所示,质量均为m 的A 、B 两个小球, 用长为2L 的轻杆相连接,在竖直平面内,绕牢固轴O 沿顺时针偏向自由转动(转轴在杆的中点),不计一切摩擦. (1)某时刻A 、B 球恰幸亏如图所示的位置,A 、B 球的线速度巨细均为v .试判断A 、B 球以后的运动是否为匀速圆周运动,请说明理由!(2)若gL v =,在如图所示的位置时, B 球从杆上脱落,求B 球落地时的速度巨细.解:(1)在图示位置转动一个较小的角度,由多少干系可得,A 球下降的高度和B 球上升的高度相同,A 、B 球系统的重力势能稳定,由于系统的机器能守恒,所以A 、B 球的动能稳定,所以A 、B 球以后的运动是为匀速圆周运动.(2) B 球速度巨细与A 球相同,做平抛运动,满足机器能守恒条件设球落地时速度巨细是v ',取地面为重力势能零点,运用机器能守恒定律:22212121mv L mg v m +=' 得: 小球落地的速度巨细为gL v 2='.对付一个物体系来说,如果没有外力做功,又没有耗散力做功,而只有守旧力做功,那么系内物体的动能和势能可以相互转换,但总机器能保持稳定.【例2】给出的情景就是系统机器能守恒的实例.这里要指出的是,由于杆对A 球和B 球都做功,A 球和B 球的机器能均不守恒,但在A 球向下转动的历程中,杆对A 球做正功,杆对B 球做负功,杆对A 、B 球做功的总量为零,所以系统的机器能守恒.vv O A B L L L 5.2地面5图6图4图。
机械能守恒定律的理解及应用

机械能守恒定律的理解及应用介绍机械能守恒定律是物理学中一个重要的基本原理,它简要地表达了能量守恒的概念。
本文将深入探讨机械能守恒定律的理解和应用,包括定义、表达式、假设条件以及一些重要的应用实例。
机械能守恒定律的定义在物理学中,机械能是指由物体的位置和运动状态所具有的能量。
机械能由两部分组成:动能和势能。
动能是由物体的运动所带来的能量,而势能是由物体的位置所带来的能量。
机械能守恒定律指的是,在没有外力做功和没有能量转换的情况下,一个系统的机械能保持不变。
这意味着,系统中的动能和势能之和在任意时间点都是一个常量。
机械能守恒定律的表达式根据机械能守恒定律的定义,可以得到它的数学表达式:E = K + U其中,E表示机械能,K表示动能,U表示势能。
根据动能和势能的具体定义,可以将它们进行展开:K = (1/2)mv^2U = mgh其中,m表示物体的质量,v表示物体的速度,g表示重力加速度,h表示物体的高度。
将动能和势能代入机械能的表达式,可以得到简化后的机械能守恒定律的表达式:E = (1/2)mv^2 + mgh机械能守恒定律的假设条件在应用机械能守恒定律时,需要满足一些假设条件。
这些条件包括:1.忽略空气阻力:在实际情况下,空气阻力会导致能量的损失,但在应用机械能守恒定律时,通常忽略空气阻力的影响。
2.无能量转换:假设在系统中没有能量的转换,即没有能量从一个形式转变为另一个形式。
这些假设条件在一些具体情况下可能不适用,但通常情况下可以作为近似使用,从而简化问题的分析。
机械能守恒定律的应用实例机械能守恒定律在物理学中有广泛的应用。
以下是一些重要的应用实例:1.自由落体问题:当一个物体从一定高度自由落下时,可以使用机械能守恒定律来求解物体的速度和位置随时间的变化。
根据机械能守恒定律,物体的势能转化为动能,从而可以得到物体的速度和位置随时间的关系。
2.弹性碰撞问题:在弹性碰撞中,机械能守恒定律可以用来求解物体的速度和动量变化。
机械能守恒定律及应用

机械能守恒定律及应用引言机械能守恒定律是物理学中的一个重要定律,它描述了封闭系统内机械能的守恒性质。
对于大部分的力学问题,机械能守恒定律都能够提供有效的解题方法和理解依据。
本文将介绍机械能守恒定律的基本概念和公式,并探讨其在日常生活和工程实践中的应用。
机械能守恒定律的概念和公式机械能守恒定律是指在一个封闭的系统中,系统的机械能的总量不会发生变化。
机械能是由系统的动能和势能所组成的,可以表示为E = K + U,其中E代表机械能,K代表动能,U代表势能。
动能是物体由于运动而具有的能量,可以表示为K = (1/2)mv^2,其中m代表物体的质量,v代表物体的速度。
势能是物体由于位置而具有的能量,常见的势能包括重力势能、弹性势能等等。
重力势能可以表示为U = mgh,其中g代表重力加速度,h代表物体的高度。
根据机械能守恒定律,一个封闭系统中的机械能在任何时刻都保持不变。
这意味着,当系统内发生能量转换时,从一个形式的能量转化为另一个形式的能量,但总的机械能保持不变。
机械能守恒定律在日常生活中的应用机械能守恒定律在日常生活中有很多实际的应用。
下面将介绍几个常见的例子。
滑动摩擦的能量转化当一个物体在水平面上以一定速度滑动时,会受到摩擦力的作用,摩擦力将物体的动能转化为热能。
根据机械能守恒定律,物体的动能减少,热能增加,但总的机械能保持不变。
机械钟的运行机械钟是利用重力势能和弹簧势能的转换来驱动的。
当弹簧松开时,弹簧势能转化为振动动能,然后通过齿轮传递给指针和钟面,使钟表运行。
根据机械能守恒定律,弹簧势能的减少等于钟表运动过程中动能的增加,保持总的机械能不变。
瀑布的能量转化瀑布是一个常见的能量转化的例子。
当水从高处流下时,它具有较大的重力势能,同时也具有动能。
当水流经瀑布的过程中,重力势能逐渐转化为动能,形成壮观的水流。
根据机械能守恒定律,水的重力势能减少,动能增加,总的机械能保持不变。
机械能守恒定律在工程实践中的应用机械能守恒定律在工程实践中有着广泛的应用。
机械能守恒定律及应用

机械能守恒定律及应用机械能守恒定律是自然界中一条重要的物理规律,它描述了一个封闭系统中机械能总量不会发生变化的现象。
机械能的守恒定律在很多场合中都有着广泛的应用,尤其在动力学中,它是最常用的方法之一。
机械能守恒定律的概念可以简单地理解为,机械能不会从一个系统中消失,也不会在其中出现。
机械能由两部分组成,一部分是动能,即物体由于它的运动而拥有的能量;另一部分是势能,即一个物体在重力场中的位置所具有的能量。
在一个封闭的系统中,机械能的总量是不会改变的,只会发生转化。
例如,当一个物体从高处自由落体时,它的势能被转化为动能,最终被摩擦力转化为热能或声能。
机械能守恒定律在物理学中有着广泛的应用。
例如,在机械振动中,机械能守恒定律可以用于描述振动过程中能量的转化。
在单摆运动中,当单摆摆动时,机械能随着摆的运动而不断变化,但总体上保持不变,这就是机械能守恒定律的应用之一。
另一个例子是弹簧振子中的机械能守恒定律。
当弹簧振子在弹性势能和动能之间振动时,机械能总量保持恒定。
这使得我们可以通过测量弹簧振子的振幅和周期来计算它的动能和势能量。
这对于研究弹簧振子的运动规律非常重要。
机械能守恒定律还可以用于解释物体在斜面上滚动时的运动规律。
当物体在斜面上滚动时,它的动能和势能会随着位置和速度的变化而不断转化,但机械能的总和始终保持不变。
这使得我们可以通过测量物体的动能和势能来计算它的运动轨迹和速度。
除了在物理学中的应用,机械能守恒定律还有着其他的应用领域。
在工程领域,机械能守恒定律被广泛应用于机器的设计和优化,例如机器的动力学建模和运动控制等方面。
在能源领域,机械能守恒定律可以用于研究发电机和发动机的工作原理,从而提高能源利用率和效率。
在运动医学方面,机械能守恒定律可以用于研究人体运动的能量消耗和运动效率等问题。
总之,机械能守恒定律作为自然界中的一条基本规律,在物理学、工程学、医学和能源等领域中都有着广泛的应用。
理解和应用机械能守恒定律对于科学研究和技术发展都是至关重要的。
机械能守恒定律及应用

例、人和雪橇的总质量为75kg,沿倾角θ=37°且足 够长的斜坡向下运动,已知雪橇所受的空气阻力与速 度成正比,比例系数k未知,从某时刻开始计时,测 得雪橇运动的v-t图象如图中的曲线AD所示,图中AB 是曲线在A点的切线,切线上一点B的坐标为(4, 15),CD是曲线AD的渐近线,g取10m/s2,试回答 和求解: ⑴雪橇在下滑过程中,开始做什么运动,最后做什么 V/ms-1 运动? B 15 ⑵当雪橇的速度为5m/s时,雪橇 D 10 C 的加速度为多大? ⑶雪橇与斜坡间的动摩擦因数μ多大? 5 A t/s
5.如图所示,倾角为θ的直角斜面体固定在水平地面上,其 顶端固定有一轻质定滑轮,轻质弹簧和轻质细绳相连,一端 接质量为m2的物块B,物块B放在地面上且使滑轮和物块间 的细绳竖直,一端连接质量为m1的物块A,物块A放在光滑 斜面上的P点保持静止,弹簧和斜面平行,此时弹簧具有的 弹性势能为Ep.不计定滑轮、细绳、弹簧的质量,不计斜面、 滑轮的摩擦,已知弹簧劲度系数为k,P点到斜面底端的距离 为L.现将物块A缓慢斜向上移动,直到弹簧刚恢复原长时的 位置,并由静止释放物块A,当物块B刚要离开地面时,物 块A的速度即变为零,求: (1)当物块B刚要离开地面时,物块A的加速度; (2)在以后的运动过程中物块A最大速度的大小.
2 3
3.如图为一固定在地面上的楔形木块,质量 分别为m和M两个物体, 用轻质细绳相连跨过 固定在斜面顶端的定滑轮, 已知斜面的倾角为 α, 且M>m sinα。用手托住物体M, 使之距地 面高为h时,物体m恰停在斜面的底端,细绳 恰好绷直,并且与斜面的斜边平行,如果突 然释放物M,不计一切摩擦,物体m能沿斜 面滑行的最大距离是多少? 设斜面足够长。
机械能守恒定律及其应用
机械能守恒定律及其应用

§3 机械能守恒定律及其应用一、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
另外小球的动能中所用的v,也是相对于地面的速度。
(2)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
(3)“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。
【例1】如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?3.解题步骤⑴确定研究对象和研究过程。
⑵判断机械能是否守恒。
⑶选定一种表达式,列式求解。
4.应用举例【例2】 如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?【例3】如图所示,均匀铁链长为L ,平放在距离地面高为L2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度?二、机械能守恒定律的综合应用【例4】 质量为0.02 kg 的小球,用细线拴着吊在沿直线行驶着的汽车顶棚上,在汽车 距车站15 m 处开始刹车,在刹车过程中,拴球的细线与竖直方向夹角θ=37°保持不变,如图所示,汽车到车站恰好停住.求:(1)开始刹车时汽车的速度;(2)汽车在到站停住以后,拴小球细线的最大拉力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律及其应用一、重力做功与重力势能 1.重力做功的特点(1)重力做功与路径无关,只与始、末位置的高度差有关. (2)重力做功不引起物体机械能的变化. 2.重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能就减小;重力对物体做负功,重力势能就增大.(2)定量关系:重力对物体做的功等于物体重力势能的减小量.即W G =-(E p2-E p1)=E p1-E p2=-ΔE p . (3)重力势能的变化量是绝对的,与参考面的选取无关. 3.弹性势能(1)概念:物体由于发生弹性形变而具有的能.(2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大.(3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式表示:W =-ΔE p . 二、机械能守恒定律及其应用1.机械能:动能和势能统称为机械能,其中势能包括弹性势能和重力势能. 2.机械能守恒定律(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变. (2)表达式:mgh 1+12m v 12=mgh 2+12m v 22.3.守恒条件:只有重力或弹簧的弹力做功. ■判一判 记一记(1)克服重力做功,物体的重力势能一定增加.( ) (2)发生弹性形变的物体都具有弹性势能.( ) (3)弹簧弹力做正功时,弹性势能增加.( ) (4)物体速度增大时,其机械能可能在减小.( ) (5)物体所受合外力为零时,机械能一定守恒.( ) (6)物体受到摩擦力作用时,机械能一定要变化.( )(7)物体只发生动能和重力势能的相互转化时,物体的机械能一定守恒.( ) (8)做曲线运动的物体机械能可能守恒.( )例I :对机械能守恒的理解及判断1.对机械能守恒条件的理解(1)只受重力作用,例如做平抛运动的物体机械能守恒.(2)除重力外,物体还受其他力,但其他力不做功或做功代数和为零.(3)除重力外,只有系统内的弹力做功,并且弹力做的功等于弹性势能变化量的负值,那么系统的机械能守恒,注意并非物体的机械能守恒,如与弹簧相连的小球下摆的过程机械能减少.2.机械能是否守恒的三种判断方法(1)利用机械能的定义判断:若物体动能、势能之和不变,机械能守恒.(2)用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.(3)利用能量转化判断:若物体系统与外界没有能量交换,物体系统内也没有机械能与其他形式能的转化,则物体系统机械能守恒.1.[机械能守恒的理解](2019·河南洛阳模拟)关于机械能守恒,下列说法正确的是(A) A.做自由落体运动的物体,机械能一定守恒B.人乘电梯加速上升的过程,机械能守恒C.物体必须在只受重力作用的情况下,机械能才守恒D.合外力对物体做功为零时,机械能一定守恒2.关于机械能守恒,下列说法中正确的是(D)A.物体做匀速运动,其机械能一定守恒B.物体所受合力不为零,其机械能一定不守恒C.物体所受合力做功不为零,其机械能一定不守恒D.物体沿竖直方向向下做加速度为5 m/s2的匀加速运动,其机械能减少3.[机械能守恒的判断](多选)如图所示,下列关于机械能是否守恒的判断正确的是(CD)A.图甲中,物体A将弹簧压缩的过程中,物体A机械能守恒B.图乙中,物体A固定,物体B沿斜面匀速下滑,物体B的机械能守恒C.图丙中,不计任何阻力和定滑轮质量时,物体A加速下落,物体B加速上升过程中,物体A、B组成的系统机械能守恒D.图丁中,小球沿水平面做匀速圆锥摆运动时,小球的机械能守恒4.(多选)如图6所示,下列关于机械能是否守恒的判断正确的是(BD)A.甲图中,物体A将弹簧压缩的过程中,A机械能守恒B.乙图中,物体B在大小等于摩擦力的拉力作用下沿斜面下滑时,B机械能守恒C.丙图中,斜面光滑,物体在推力F作用下沿斜面向下运动的过程中,物体机械能守恒D.丁图中,斜面光滑,物体在斜面上下滑的过程中,物体机械能守恒6.如图5所示,可视为质点的小球A和B用一根长为0.2 m 的轻杆相连,两球质量相等,开始时两小球置于光滑的水平面上,并给两小球一个2 m/s的初速度,经一段时间两小球滑上一个倾角为30°的光滑斜面,不计球与斜面碰撞时的机械能损失,g取10 m/s2,在两小球的速度减小为零的过程中,下列判断正确的是(D)A.杆对小球A做负功B.小球A的机械能守恒C.杆对小球B做正功D.小球B速度为零时距水平面的高度为0.15 m例II :单个物体机械能守恒的应用1.机械能守恒的三种表达式对比2.求解单个物体机械能守恒问题的基本思路 (1)选取研究对象——物体.(2)根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒. (3)恰当地选取参考平面,确定研究对象在初、末状态时的机械能.(4)选取方便的机械能守恒定律的方程形式(E k1+E p1=Ek2+E p2、ΔE k =-ΔE p )进行求解.5.如图,在竖直平面内有由14圆弧AB 和12圆弧BC 组成的光滑固定轨道,两者在最低点B 平滑连接.AB 弧的半径为R ,BC 弧的半径为R 2.一小球在A 点正上方与A 相距R4处由静止开始自由下落,经A 点沿圆弧轨道运动.(1)求小球在B 、A 两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C 点.6.[不含弹簧的单个物体的机械能问题] 如图所示,光滑的小圆弧轨道半径为r ,光滑的大圆弧轨道半径为4r ,小球质量为m (可视为质点),小圆弧与大圆弧的圆心O 1、O 2在同一竖线上,两圆弧的最低点重合,两圆弧轨道固定在同一竖直平面内.小球从大圆弧轨道上与O 2等高处由静止释放,小球通过小圆弧轨道最高点时对轨道的压力的大小为( B )A .2mgB .3mgC .4mgD .5mg7.[含有弹簧的单个物体的机械能问题] (2019·河北衡水高三调研)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( B )A .圆环的机械能守恒B .弹簧弹性势能变化了3mgLC .圆环下滑到最大距离时,所受合力为零D .圆环重力势能与弹簧弹性势能之和保持不变例III :多个物体机械能守恒的应用多个物体机械能守恒问题根据物体间的关联方式,常见“轻绳连接”和“轻杆连接”两种类型. 类型一:“轻绳连接”的多物体系统 1.常见情景2.三点提醒(1)分清两物体是速度大小相等,还是沿绳方向的分速度大小相等. (2)用好两物体的位移大小关系或竖直方向高度变化的关系.(3)对于单个物体,一般绳上的力要做功,机械能不守恒;但对于绳连接的系统,机械能则可能守恒. 8.(多选)(2019·福建泉州高三质检)如图,跨过光滑轻质小定滑轮的轻绳一端系一质量为m 的小球,另一端系一质量为2m 的重物,小球套在竖直固定的光滑直杆上,滑轮与杆的距离为d .现将小球从与滑轮等高的A 处由静止释放,下滑过程中经过B 点,A 、B 两点间距离也为d ,重力加速度为g ,则小球( ABD )A .刚释放时的加速度为gB .过B 处后还能继续下滑d3C .在B 处的速度大小为(22-1)gdD .减少的机械能等于重物增加的机械能 类型二:“轻杆连接”的多物体系统 1.常见情景2.三大特点(1)平动时两物体线速度相等,转动时两物体角速度相等.(2)杆对物体的作用力并不总是沿杆的方向,杆能对物体做功,单个物体机械能不守恒.(3)对于杆和球组成的系统,忽略空气阻力和各种摩擦且没有其他力对系统做功,则系统机械能守恒. 9.(2019·湖南十校联考)如图所示,半径为R 的光滑圆环竖直放置,直径MN 沿竖直方向,环上套有两个小球A 和B ,A 、B 之间用一长为3R 的轻杆相连,小球可以沿环自由滑动,开始时杆处于水平状态,已知A 的质量为m ,重力加速度为g .(1)若B 球质量也为m ,求此时杆对B 球的弹力大小;(2)若B 球的质量为3m ,由静止释放轻杆,求B 球由初始位置到达N 点的过程中,轻杆对B 球所做的功. 10.[“轻杆连接”的多物体系统] (多选)如图所示,滑块a 、b 的质量均为m ,a 套在固定竖直杆上,与光滑水平地面相距h ,b 放在地面上.a 、b 通过铰链用刚性轻杆连接,由静止开始运动.不计摩擦,a 、b 可视为质点,重力加速度大小为g .则( BD)A .a 落地前,轻杆对b 一直做正功B .a 落地时速度大小为 2ghC .a 下落过程中,其加速度大小始终不大于gD .a 落地前,当a 的机械能最小时,b 对地面的压力大小为mg 11.[“轻绳连接”的多物体系统] 如图所示,左侧为一个半径为R 的半球形的碗固定在水平桌面上,碗口水平,O 点为球心,碗的内表面及碗口光滑.右侧是一个固定光滑斜面,斜面足够长,倾角θ=30°.一根不可伸长的不计质量的细绳跨在碗口及光滑斜面顶端的光滑定滑轮上,绳的两端分别系有可视为质点的小球m 1和m 2,且m 1>m 2.开始时m 1恰在碗口右端水平直径A 处,m 2在斜面上且距离斜面顶端足够远,此时连接两球的细绳与斜面平行且恰好伸直.当m 1由静止释放运动到圆心O 的正下方B 点时细绳突然断开,不计细绳断开瞬间的能量损失.(1)求小球m 2沿斜面上升的最大距离x ;(2)若已知细绳断开后小球m 1沿碗的内侧上升的最大高度为R 2,求m 1m 2.答案:(1)(2+2m 1-2m 22m 1+m 2)R (2)22+121.“链条”“液柱”类的物体在运动过程中往往发生形变,其重心位置相对物体也发生变化,因此这类物体不能再看作质点来处理.2.“链条”“液柱”类物体虽然不能看成质点来处理,但因只有重力做功,故整体机械能守恒.一般情况下,可将物体分段处理,确定各部分的重心位置,根据初、末状态物体重力势能的变化列式求解.12.如图所示,有一条长为L 、质量为m 的均匀金属链条,一半在光滑斜面上,斜面倾角为θ,另一半沿竖直方向下垂在空中,当链条从静止开始释放后链条滑动,以斜面顶点为重力势能零点,求:(1)开始和链条刚好从右侧全部滑出斜面时其重力势能各是多大. (2)此过程中重力势能减少了多少.[答案] (1)-18mgL (1+sin θ) -12mgL (2)18mgL (3-sin θ)13.如图所示,一条长为L 的柔软匀质链条,开始时静止在光滑梯形平台上,斜面上的链条长为x 0,已知重力加速度为g ,L <BC ,∠BCE =α,试用x 0、x 、L 、g 、α表示斜面上链条长为x 时链条的速度大小(链条尚有一部分在平台上且x >x 0).[答案]g L(x 2-x 02)sin α 1.如图所示,粗细均匀、两端开口的U 形管内装有同种液体、开始时两边液面高度差为h ,管中液柱总长度为4h ,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为( A )A. 18gh B. 16gh C.14gh D.12gh2.一根质量为m 、长为L 的均匀链条一半放在光滑的水平桌面上,另一半悬在桌边,桌面足够高,如图a 所示.若将一个质量也为m 的小球分别拴在链条左端和右端,如图b 、图c 所示,约束链条的挡板光滑,三种情况下链条均由静止释放,当整根链条刚离开桌面时,设它们的速度分别为v a 、v b 、v c ,则关于v a 、v b 、v c 的关系,下列判断中正确的是( )A .v a =v b =v cB .v a <v b <v cC .v c >v a >v bD .v a >v b >v c答案:C二、非选择题11.质量分别为m和2m的两个小球P和Q,中间用轻质杆固定连接,杆长为L,在离P球L3处有一个光滑固定轴O,如图10所示。