机械能守恒定律的理解与实际应用
什么是机械能守恒举例说明机械能守恒的应用

什么是机械能守恒举例说明机械能守恒的应用知识点:什么是机械能守恒以及机械能守恒的应用一、什么是机械能守恒机械能守恒是指在一个封闭的系统中,不受外力或外力做功可以忽略不计的情况下,系统的机械能(动能和势能的总和)保持不变。
这里的机械能包括动能和势能,其中动能是指物体由于运动而具有的能量,势能是指物体由于位置或状态而具有的能量。
二、机械能守恒的原理机械能守恒的原理可以概括为能量不能被创造或消灭,只能从一种形式转化为另一种形式。
在封闭的系统中,没有外力做功,系统的总机械能(动能和势能之和)保持恒定。
这意味着,如果一个物体在运动过程中没有外力作用,它的动能和势能之间的相互转化不会改变它们的总和。
三、机械能守恒的应用1.自由落体运动:在真空中,一个物体从高处自由下落,没有空气阻力作用。
在这种情况下,物体的势能逐渐转化为动能,但总机械能(势能加动能)保持不变。
2.抛体运动:在忽略空气阻力的情况下,抛出物体(如抛物线运动),物体的机械能同样保持不变。
在抛体运动中,物体的势能和动能会根据其位置和速度发生变化,但总机械能保持恒定。
3.理想弹性碰撞:在理想弹性碰撞中,两个物体碰撞后,它们的机械能(动能和势能之和)在碰撞前后保持不变。
这意味着碰撞过程中,动能可能从一个物体转移到另一个物体,但总机械能不会改变。
4.滑梯:一个孩子在滑梯上滑下时,势能转化为动能。
在没有外力作用(如摩擦力)的情况下,孩子的总机械能保持不变。
5.摆钟:摆钟的摆动过程中,势能和动能之间的相互转化使摆钟保持恒定的周期运动。
在没有外力作用(如摩擦力和空气阻力)的情况下,摆钟的机械能保持不变。
通过以上知识点的学习,我们可以更好地理解机械能守恒的概念及其在实际中的应用。
在解决相关问题时,要善于运用机械能守恒原理,分析物体在不同状态下的能量转化,从而得出正确答案。
习题及方法:1.习题:一个物体从地面上方以初速度v0竖直下落,不计空气阻力。
求物体落地时的速度大小。
浅谈对机械能守恒定律的理解与应用

机 械 能 守 恒 的 相 对 性 是 指 动能 的大 小 与参 考 系 的选择有关 , 势能 的大小 与参考 面( 零势能 ) 的选取 有关 ,因此 同一 系统相对于不同的参考 系和零势能 描 述 的结 果 不 相 同 。
软 平 沿
例 1如 图 1 所 示 , 质量 分 别 不 为m和 2 m的 两个 小 球 A和B, 中 间 运 用 轻 质 杆 相 连 ,在 杆 的 中点 0 处 边 有一 固定转动轴 , 把 杆 置 于水 平 多 0 位 置 后 释 放 ,在B 球 顺 时 针 摆 动 绳 到最低位 置的过程 中( ) 解析 取软绳和地球为一系统 , 设 绳 的总 质 量 为 6日 A . 曰 球 的重 力势 能减 少 , 动 软绳 在 顺 桌 边 无 摩 擦 下 滑 的 过 程 中 , 只 有 重 力 对 图 1 能增 加 , B 球 和 地 球 组 成 的 系 统 绳做功 ,因此系统机械能守恒 。以水平 桌面为参考 机 械 能 守恒 面, 当软绳全部滑离桌边瞬间 , 设其速度 为 , 重心在 B . A球 的 重 力 势 能 增 加 ,动 能 也 增 加 , A 球 和 地 水平桌面下方1 / 2 L 处 。根据机械能守恒定律 : 球 组 成 的 系 统 机械 能不 守 恒 C . A球 、 曰 球 和地 球 组 成 的 系 统 机 械能 守 恒 D . A 球、 戤求 和地球组成的系统机械能不守恒 解析 A 球 在B 球 下摆 过程 中, 重力势能增加 , 动 得: = \ / 能增 加 , 机械能增加 , 所 以』 4 球和地球组 成的系统机 四 运 用 机 械 能 守 恒 定律 解 决 综 合 问题 械 能 不守 恒 。 由 于A球 、 曰 球 和 地球 组 成 的 系 统 只 有 重 力做 功 , 系 统机 械 能 守 恒 。 因 为A球 、 础求 和地 球 组 例4如 图4 所 示 , 做 平 成 的 系统 机 械 能 守 恒 , 而 球 机 械 能增 加 , 所 以B 球 抛 运 动 的小 球 的 初 动 能 为 机 械 能一 定 减 少 。所 以选 项 B、 C 正确 。 6 J , 不计 一切 阻力 , 它 落 二、 正 确 理 解 机 械 能 守 恒 的 条件 在 斜 面上 P 点 时 的 动能 为 严格 地讲 , 体 系 内“ 只有重 力或 弹簧 的弹力做 ( ) 功” 是机械能守恒的条件。 但 由于做功 的过程最终实 A. 1 2 J B . 1 0 J 现能量的转化 ,所 以在实际应用时可从能量转 化的 C. 1 4 J D. 8 J 图4 角度去理解 , 即只有物体的动能 、 系统的重力势能和 解析 : 把 小 球 的位 移 分 弹簧的弹性势能之 间发生相互转化 ,则系统机 械能 总量 保 持 不 变 z 旦 : £ 3 0 。 例2如图 2 所示 , A球 用线 悬挂 且 通 过 弹簧 与日 球 相 连 ,两 球 质 量 相 等 。 当两球都 静止时 , 将 悬线烧断 , 下列说 法 正 确 的是 : ( ) 即 : A. 线 断瞬间 , A 球 的加速度 大 于B 球 的 加速 度 ; 所 以拉 , B . 线段 后最 初 一段 时 间里 , 重 力 图2 3 势 能 转 化 为 动 能 和 弹性 势 能 ; z: c . 在下落过 程中 , 两小球 和弹簧组成 的系统机 2 3 械能守恒 ; 根据机械能守恒定律得 D . 线 断后最初一段 时间里 , 动 能 的 增 量 大 于 重 删 2 + =l 力势能的减少。 m v  ̄ , 解析 悬线烧断前 弹簧处于伸长状态 ,弹簧对A 球 的作用力向下 , 对日 球 的作用力 向上。悬线烧断瞬 所 以 例 z - 一 1 m y + 三 删 间, 弹簧的伸长来不及改变 , 对 球 的作用 力仍 然 向 2 2 3 下 ,故 A 球 的 加 速 度 大 于曰 球 的 加 速 度 , 即选 项 A 正 = m y2 + ×一 1 确 。在下落过程 中, 只有重力和弹力做功 , 故两小球 mv 2 =1 4 J 。
机械能守恒定律深度解析

机械能守恒定律深度解析机械能守恒定律是一个重要的物理定律,用于描述系统中机械能守恒的原理。
在本文中,我们将对机械能守恒定律进行深入解析,从基本概念到实际应用进行探讨。
一、机械能的定义与表示在物理学中,机械能是指物体由于位置和速度而具有的能量形式。
它包括了动能和势能两个组成部分。
动能表示物体由于速度而具有的能量,与物体的质量和速度的平方成正比。
势能表示物体由于位置而具有的能量,与物体的质量和高度成正比。
机械能可以用以下公式表示:机械能(Em) = 动能(Ek)+ 势能(Ep)二、机械能守恒定律的表述机械能守恒定律是指在一个封闭系统中,当没有外力做功或外力做功等于零时,系统的机械能保持不变。
换句话说,如果没有能量进出系统,那么系统的机械能将保持不变。
这可以用以下公式来表示:E1 = E2其中,E1表示系统初态的机械能,E2表示系统末态的机械能。
三、机械能守恒定律的应用1. 自由落体运动自由落体是指在重力作用下,物体不受其他力的影响,只受到重力的作用而自由下落。
根据机械能守恒定律,自由落体运动中,物体的势能转化为动能,动能的增加与势能的减小成正比。
2. 弹性碰撞在弹性碰撞中,物体之间发生相互作用,能量可以在物体之间转移。
但是根据机械能守恒定律,总的机械能仍然保持不变。
这意味着碰撞前的总机械能等于碰撞后的总机械能。
3. 摩擦力和机械能守恒定律当有摩擦力存在时,机械能守恒定律不再适用。
摩擦力会将机械能转化为其他形式的能量,如热能或声能。
四、机械能守恒定律的局限性虽然机械能守恒定律在许多情况下都能够准确描述系统中机械能的转化,但在某些特殊情况下,它可能无法适用。
例如在存在非保守力或系统有多个自由度的情况下,机械能守恒定律可能会失效。
五、实例分析下面通过一个实例来进一步说明机械能守恒定律的应用。
假设有一个以一定速度v1沿平地运动的小车,其具有质量m,机械能守恒,即系统初态的机械能等于系统末态的机械能。
此时,系统末态的机械能为动能与势能之和,即E2 = 1/2 mv2^2 + mgh其中v2为小车的速度,h为小车的高度。
机械能守恒定律的应用

机械能守恒定律的应用机械能守恒定律是物理学中一个非常重要的定律,它对于解释和预测物体运动过程中能量的转化和守恒具有重要的意义。
本文将探讨机械能守恒定律的应用,并通过实例来说明其在实际生活中的重要性。
一、机械能守恒定律的基本概念机械能守恒定律是指在不考虑外力和摩擦力的情况下,系统的机械能保持不变。
机械能由动能和势能两部分组成,动能是物体由于运动而具有的能量,势能是物体由于位置的不同而具有的能量。
根据机械能守恒定律,总机械能保持不变,即初始时的机械能等于末尾时的机械能。
二、机械能守恒定律的应用1. 自由落体运动自由落体运动是指物体在只受重力作用下垂直下落的运动。
根据机械能守恒定律,物体在下落过程中动能的增加等于势能的减少。
例如,一个从高处自由落下的物体在下落的过程中,重力对它做功,势能转化为动能,因此速度会逐渐增加。
2. 弹簧振子弹簧振子是指以弹簧为主要组成部分的振动系统。
根据机械能守恒定律,弹簧振子在振动过程中总机械能保持不变。
当弹簧振子从最大振幅处通行过中点时,势能为零,动能最大;而当弹簧振子从最大振幅处通过最大位移点时,势能最大,动能为零。
3. 车辆制动在车辆制动过程中,制动器对车轮施加摩擦力,将车轮的动能转化为热能,以达到减速和停车的目的。
根据机械能守恒定律,在制动过程中车轮的动能逐渐减小,而热能的产生与动能的消失量相等。
4. 能源利用机械能守恒定律在能源利用中有着广泛的应用。
例如,水力发电利用水的势能和动能转化为电能;风力发电利用风的动能转化为电能。
在能源转换的过程中,我们可以依靠机械能守恒定律来预测和计算能源转化的效率和能量损失情况。
总结:机械能守恒定律是物理学中非常重要的定律,它描述了物体运动过程中能量的转化和守恒。
在自由落体运动、弹簧振子、车辆制动和能源利用等方面都可以应用机械能守恒定律来解释和预测现象。
了解和应用机械能守恒定律有助于我们更好地理解和利用自然界的能量,发展可持续的能源利用方式。
机械能守恒定律

机械能守恒定律机械能守恒定律是物理学中的基本定律之一,它描述了一个物体在没有外力做功的情况下,机械能守恒的原理。
本文将详细介绍机械能守恒定律的概念、表达式以及应用。
一、机械能守恒定律的概念机械能守恒定律是指在一个封闭的系统中,如果只受到重力势能和动能变化的影响,那么系统的机械能将保持不变。
即它将具备一个能量守恒的特性。
机械能守恒定律可以用下式表示:E = K + U其中,E是系统的机械能,K是系统的动能,U是系统的重力势能。
根据机械能守恒定律,当系统中没有其他能量形式的转化时,系统的机械能始终保持恒定。
二、机械能守恒定律的表达式1. 动能的表达式动能是描述物体运动状态的物理量,它与物体的质量和速度有关。
根据牛顿第二定律可以得到动能的表达式:K = 1/2 mv²其中,K是动能,m是物体的质量,v是物体的速度。
2. 重力势能的表达式重力势能是物体在重力场中具有的势能,它与物体的质量和高度有关。
根据重力势能的定义可以得到重力势能的表达式:U = mgh其中,U是重力势能,m是物体的质量,g是重力加速度,h是物体的高度。
三、机械能守恒定律的应用机械能守恒定律在日常生活和工程中有着广泛的应用。
1. 自由落体运动当物体在自由落体运动过程中,只受到重力做功,不考虑空气阻力时,根据机械能守恒定律可以得到以下结论:在自由落体运动开始时,物体具有较高的重力势能和较低的动能;当物体落地时,重力势能减少为零,动能增加为最大值。
整个过程中,重力势能的减少等于动能的增加,符合机械能守恒定律的要求。
2. 弹簧振子在弹簧振子的运动过程中,弹簧的势能和物体的动能不断地相互转化,但总的机械能保持不变。
当物体在最大位移处速度为零时,动能减为零,而弹簧的势能达到最大值;当物体通过平衡位置时,动能增加为最大值,而弹簧的势能减为零。
整个过程中,动能的减少等于势能的增加,符合机械能守恒定律的要求。
结语机械能守恒定律是物理学中重要的基本定律之一,它描述了一个物体在没有外力做功的情况下,机械能守恒的原理。
机械能守恒定律的理解及应用

机器能守恒定律的理解及应用一、机器能守恒定律:1.机器能守恒定律内容表述:①表述一: 在只有重力做功的情形下,物体的动能和重力势能产生相互转化,但总的机器能保持稳定.这个结论叫做机器能守恒定律.不光动能和重力势能的相互转化中机器能保持稳定,在弹性势能和动能的转化历程中,如果只有弹簧的弹力做功,机器能也是保持稳定的.②表述二: 在只有重力或弹力做功的物体系统内,动能与势能可以.机器能守恒定律是力学中的一条重要定律,又是更普遍的能的转化和守恒定律的一种特殊情况.2.怎样理解机器能守恒定律:①只有重力做功的情形:重力势能是相对的,表达式为Ep = mgh,式中的h是物体的重心到参考平面(零重力势能面)的高度.若物体在参考平面以上,则重力势能为正;若物体在参考平面以下,则重力势能为负.通常,选择地面作为零重力势能参考平面.重力势能的变革量与零重力势能的选取无关.重力对物体做几多正功,物体的重力势能就淘汰几多;重力对物体做几多负功,物体的重力势能就增加几多.即W重= -ΔE重.②只有弹力做功的情形:一个物体由于外力的作用产生形变,如果撤去外力后形变会消失,这种形变就叫做弹性形变.物体因产生弹性形变而具有的势能叫做弹性势能. 和重力势能一样,弹性势能也是相对的.对付弹簧的弹性势能一般取其为原长时弹性势能为零.弹力对物体做了几多负功,物体的弹性势能就增加几多.即W弹= -ΔE弹.重力做功和弹力做功均和途径无关.重力势能的巨细与哪些因素有关,学生容易理解.以下就弹性势能的巨细与哪些因素有关做出说明:一个物体在A位置时,弹簧处于原长,如图1所示.我们对物体从A→B→C→B→A的历程进行阐发.当物体到B位置时,弹CC回到B,弹力做正功,弹簧的弹性势能淘汰.再将物体从B回到A,弹力继承做正功,弹簧的弹性势能继承淘汰.从这个例子,我们注意到:(Ⅰ)和重力势能一样,物体的弹性势能和弹力做(外力克服弹力做功),物体的弹性势能就增加几多;弹力做几多正功(弹力克服外力做功),物体的弹性势能就淘汰几多.(ⅡB到C弹力做的负功和C到B弹力做的正功相互抵消,因此物体从A直接到B跟物体从A到C再回到B做的功是一样多的.这个问题可以这样理解,由于物体在同一个位置的弹力相同,在B、C间靠着很近的两个点之间,向左移动和向右移动经过这两个点做的功,巨细相同,标记相反如图1所示.而力在一段位移对物体做功的总量是力对每一小段位移做功的累加.所以,物体从B到C弹力做的负功和C到B弹力做的正功相互抵消(图1中,为了清楚的表现物理量的干系,把B、C间靠着很近的两个点的间距放大了).不难想象,在压缩弹簧中的历程,弹力做的功和两个因素有关:一个是弹簧的劲度系数;另一个是压缩的距离.因此对同一根弹簧,形变越大弹性势能越大,两根弹簧产生同样的形变,劲度系数大的弹簧弹性势能大.由于弹簧从平衡位置拉伸和压缩相同的长度时的力相同,所以同一根弹簧,从平衡位置拉伸和压缩相同的长度时,弹簧的弹性势能相同.所以,弹簧的弹性势能与弹簧的劲度系数和形变量两个因素有关.③机器能守恒定律1F 2F2F1F 位移方向位移方向2图1图动能和势能之和称为机器能.一种形式的机器能可以和另一种形式的机器能相互转化.下面我们看一些例子.物体自由下落或沿平滑斜面滑下的时候,重力对物体做功,物体的重力势能淘汰;重力势能转变为动能.原来具有一定速度的物体,在竖直上升或沿平滑斜面上升的历程中,物体克服重力做功,速度越来越小,物体动能淘汰了;而随着高度增加,重力势能却增加了.这时动能转化成重力势能.弹性势能也可以和动能相互转化.放开一个被压缩的弹簧,它可以把一个与它打仗的小球弹出去.这时弹力做功,弹簧的弹性势能就淘汰;同时小球得到一定的速度,动能增加.放开被拉开的弓把箭射出去,这时弓的弹性势能淘汰,箭的动能增加.从这些例子我们可以看出,机器能的相互转化是通过重力或弹力做功来实现的.重力或弹力做功的历程,也就是机器能从一种形式转化为另一种形式的历程.那么在种种机器能相互转化的历程中有什么纪律呢?我们用一个最简朴的例子来看一下.一个做自由落体运动的小球从1位置下落到2位置,设小球在位置1和2的速度分别为v 1和v 2,1位置和2位置离地的高度分别为h 1和h 2(如图3).凭据落体运动的纪律可知:)(2212122h h g v v -=-等式两边都乘以0.5m ,得22211211m v m v mg h mg h 22⋅-⋅=⋅-⋅ 由此可知,在小球从1位置落到2位置的历程中,它重力势能的淘汰量即是它动能的增加量,也就是说它在下落历程中机器能总量保持稳定.机器能守恒定律干系式的推导,我们还可以通过下列要领来创建:我们照旧用图3给出的情形研究.小球从1位置下落到2位置的历程中,重力做功W G =mg (h 1-h 2);运用动能定理,21222121mv mv W G -=,得: 2122212121mv mv mgh mgh -=-,即:2222112121mv mgh mv mgh +=+. 3.机器能守恒定律的应用典范:【例1】 以10m/s 的速度将质量m 的物体从地面竖直向上抛出,忽略空气阻力,求(1)物体上升的最大高度(2)上升历程中那边重力势能和动能相等解:(1)以地面为参考面,设物体上升的最大高度为h ,由机器能守恒得E 1=E 2,即mgh mv +=+002120, 所以m m g v h 5102102220=⨯== (2)在地面有E 1=2021mv 在高h 1处有E k =E p ,即12112221mgh mv mgh E =+= 3图由机器能守恒定律得21E E =,即120221mgh mv = 解得m m g v h 5.21041004201=⨯== 【例2】把一个小球用细线悬挂起来,就成为一个摆(见图4),摆长为L ,最大偏角为θ.小球从A 处释放运动到最低位置O 时的速度是多大?解:在小球运动的历程中,小球共受到重力和绳对小球的拉力共2个力的作用.由于绳子对小球的拉力偏向始终与速度偏向垂直,绳子对小球的拉力不做功,只有重力对小球做功,小球的机器能守恒.小球重力势能的减小量为cos 1(-mgL θ),动能的增加量为0212-mv ,凭据机器能守恒得:221)cos 1(mv mgL =-θ,即)cos 1(2θ-=gL v . 【例3】如图5所示,质量均为m 的A 、B 两个小球, 用长为2L 的轻杆相连接,在竖直平面内,绕牢固轴O 沿顺时针偏向自由转动(转轴在杆的中点),不计一切摩擦. (1)某时刻A 、B 球恰幸亏如图所示的位置,A 、B 球的线速度巨细均为v .试判断A 、B 球以后的运动是否为匀速圆周运动,请说明理由!(2)若gL v =,在如图所示的位置时, B 球从杆上脱落,求B 球落地时的速度巨细.解:(1)在图示位置转动一个较小的角度,由多少干系可得,A 球下降的高度和B 球上升的高度相同,A 、B 球系统的重力势能稳定,由于系统的机器能守恒,所以A 、B 球的动能稳定,所以A 、B 球以后的运动是为匀速圆周运动.(2) B 球速度巨细与A 球相同,做平抛运动,满足机器能守恒条件设球落地时速度巨细是v ',取地面为重力势能零点,运用机器能守恒定律:22212121mv L mg v m +=' 得: 小球落地的速度巨细为gL v 2='.对付一个物体系来说,如果没有外力做功,又没有耗散力做功,而只有守旧力做功,那么系内物体的动能和势能可以相互转换,但总机器能保持稳定.【例2】给出的情景就是系统机器能守恒的实例.这里要指出的是,由于杆对A 球和B 球都做功,A 球和B 球的机器能均不守恒,但在A 球向下转动的历程中,杆对A 球做正功,杆对B 球做负功,杆对A 、B 球做功的总量为零,所以系统的机器能守恒.vv O A B L L L 5.2地面5图6图4图。
机械能守恒定律的理解及应用

机械能守恒定律的理解及应用介绍机械能守恒定律是物理学中一个重要的基本原理,它简要地表达了能量守恒的概念。
本文将深入探讨机械能守恒定律的理解和应用,包括定义、表达式、假设条件以及一些重要的应用实例。
机械能守恒定律的定义在物理学中,机械能是指由物体的位置和运动状态所具有的能量。
机械能由两部分组成:动能和势能。
动能是由物体的运动所带来的能量,而势能是由物体的位置所带来的能量。
机械能守恒定律指的是,在没有外力做功和没有能量转换的情况下,一个系统的机械能保持不变。
这意味着,系统中的动能和势能之和在任意时间点都是一个常量。
机械能守恒定律的表达式根据机械能守恒定律的定义,可以得到它的数学表达式:E = K + U其中,E表示机械能,K表示动能,U表示势能。
根据动能和势能的具体定义,可以将它们进行展开:K = (1/2)mv^2U = mgh其中,m表示物体的质量,v表示物体的速度,g表示重力加速度,h表示物体的高度。
将动能和势能代入机械能的表达式,可以得到简化后的机械能守恒定律的表达式:E = (1/2)mv^2 + mgh机械能守恒定律的假设条件在应用机械能守恒定律时,需要满足一些假设条件。
这些条件包括:1.忽略空气阻力:在实际情况下,空气阻力会导致能量的损失,但在应用机械能守恒定律时,通常忽略空气阻力的影响。
2.无能量转换:假设在系统中没有能量的转换,即没有能量从一个形式转变为另一个形式。
这些假设条件在一些具体情况下可能不适用,但通常情况下可以作为近似使用,从而简化问题的分析。
机械能守恒定律的应用实例机械能守恒定律在物理学中有广泛的应用。
以下是一些重要的应用实例:1.自由落体问题:当一个物体从一定高度自由落下时,可以使用机械能守恒定律来求解物体的速度和位置随时间的变化。
根据机械能守恒定律,物体的势能转化为动能,从而可以得到物体的速度和位置随时间的关系。
2.弹性碰撞问题:在弹性碰撞中,机械能守恒定律可以用来求解物体的速度和动量变化。
机械能守恒定律及应用

机械能守恒定律及应用引言机械能守恒定律是物理学中的一个重要定律,它描述了封闭系统内机械能的守恒性质。
对于大部分的力学问题,机械能守恒定律都能够提供有效的解题方法和理解依据。
本文将介绍机械能守恒定律的基本概念和公式,并探讨其在日常生活和工程实践中的应用。
机械能守恒定律的概念和公式机械能守恒定律是指在一个封闭的系统中,系统的机械能的总量不会发生变化。
机械能是由系统的动能和势能所组成的,可以表示为E = K + U,其中E代表机械能,K代表动能,U代表势能。
动能是物体由于运动而具有的能量,可以表示为K = (1/2)mv^2,其中m代表物体的质量,v代表物体的速度。
势能是物体由于位置而具有的能量,常见的势能包括重力势能、弹性势能等等。
重力势能可以表示为U = mgh,其中g代表重力加速度,h代表物体的高度。
根据机械能守恒定律,一个封闭系统中的机械能在任何时刻都保持不变。
这意味着,当系统内发生能量转换时,从一个形式的能量转化为另一个形式的能量,但总的机械能保持不变。
机械能守恒定律在日常生活中的应用机械能守恒定律在日常生活中有很多实际的应用。
下面将介绍几个常见的例子。
滑动摩擦的能量转化当一个物体在水平面上以一定速度滑动时,会受到摩擦力的作用,摩擦力将物体的动能转化为热能。
根据机械能守恒定律,物体的动能减少,热能增加,但总的机械能保持不变。
机械钟的运行机械钟是利用重力势能和弹簧势能的转换来驱动的。
当弹簧松开时,弹簧势能转化为振动动能,然后通过齿轮传递给指针和钟面,使钟表运行。
根据机械能守恒定律,弹簧势能的减少等于钟表运动过程中动能的增加,保持总的机械能不变。
瀑布的能量转化瀑布是一个常见的能量转化的例子。
当水从高处流下时,它具有较大的重力势能,同时也具有动能。
当水流经瀑布的过程中,重力势能逐渐转化为动能,形成壮观的水流。
根据机械能守恒定律,水的重力势能减少,动能增加,总的机械能保持不变。
机械能守恒定律在工程实践中的应用机械能守恒定律在工程实践中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械能守恒定律的理解与实际应用
机械能守恒定律在动力学中是一条重要物理定律。
它是功能转换的重要依据。
同时也是物理学中的一种重要的解题方法。
因此对于机械能守恒定律的掌握也尤为重要,对于机械能守恒定律的理解和应用我做了如下的总结,供大家参考。
首先我们先对机械能的概念做一下介绍,物体的机械能是指物体的动能和势能的总和。
这是机械能的定义,在具体计算时,学生通常把不同状态下的动能和势能加在一起,这是概念不清。
动能、势能和机械能都是状态量,同一物体不同状态下,这三个量是会变化的,所以要分别运算;同样即使是同一物体,状态不同,动能和势能是不能相加而等于物体的机械能。
机械能守恒定律的内容是:在只有重力或弹力做功的情况下,物体的动能和重力势能(或弹性势能)发生相互转化,机械能的总量保持不变。
机械能守恒定律的公式:
机械能守恒定律能解决的问题(1)与物体位置变化有关的运动问题如:自由落体运动,抛体运动,物体在光滑斜面上的自由滑动等等。
(2)求解动能、势能或只与物体速度和高度有关的问题。
每个物理定理和定律都会有它特定的应用条件,机械能守恒定律应用时也需要一定的条件:首先研究对象一般为一个物体(或一个系统即一个整体),同时这个物体只受重力(弹力);或者除重力(弹力)外其它的合力为零。
由于机械能守恒定律中涉及物体的两种状态和物体两种位置,初学者在应用时不容易掌握而且容易混淆。
我们通过实例来具体分析一下:
(1)自由落体过程物体机械能守恒。
如图-1质量为m的物体,从高处自由下落。
当它位于最高点(位置A时),高度是h1,速度v1=0.因此Ek1=0,Ep1=mgh1,物体的总机械能为:E1=Ek1+Ep1=mgh1
当物体下落到位置B时,它的高度是h2,这时它的速度
所以物体的总机械能为
(2)抛体运动过程中,物体的机械能守恒。
无论物体做的是平抛、斜抛、竖直上抛或竖直上抛等等,只要是忽略空气阻力的抛体运动,由于物体在空中只受重力,只有位置的高低变化,所以只有重力在做功,物体在整个的运动过程中机械能不变,只有重力势能和动能之间进行相应的转化,但总的机械能保持不变。
例:一石子从离地面20m高处,以15m/s的速率水平抛出,则石子落地时的速率是多少?
分析:设石子质量为m,由于石子在抛出到落地之前,忽略空气阻力,只受重力作用,只有重力对石子做功,所以石子在下落的整个过程中机械能是守恒的。
题中明确了两个位置的状态,一个事抛出点,已知距地面高度,可知重力势能;知道速率,可知此时的动能;另一个位置是落地点,知道在地面上,因此重力势能为零,求速率,可以用动能表示。
所以可以用两个位置的机械能相等求解。
解:设石子的质量为m,地面为零势能面,对石子在抛出点和落地点列出机械能相等,得
再有与我们实际生活中相关的实例,如:山崖炮台上的大炮,以某一角度发射炮弹,炮弹出膛的速度为200m/s,结果正中海平面的高度为205m,不计空气阻力。
求炮弹击中敌舰时的速度是多少?(g=10m/s2)
分析:本题中炮弹发射后做抛体运动,整个过程机械能守恒。
要求炮弹击中敌舰时的速度,正好与动能有关,而且题中有两个位置:炮弹出膛时和炮弹击中敌舰时,所以应用机械能守恒定律解题很方便。
解:研究炮弹运动过程,设海平面为零势能面,应用机械能守恒定律,得
(3)圆周运动过程中机械能守恒。
由于圆周运动在过程中,物体只受重力和拉力,拉力和物体的速度方向始终垂直,因此拉力不做功;物体位置有高低的变化,重力做功;即在圆周运动过程中(忽略阻力)只有重力做功,所以物体的机械能守恒。
因此遇到圆周运动问题我们可以首先想到应用机械能守恒定律来解题,这样非常的简便。
例如:如图-2所示质量为m的小球用细绳拉着,绳长0.5m(忽略小球的半径),从A点静止释放,当它落到最低点B时的速率为多少?(g=10m/s2)
分析:研究质量为m 的小球,小球从A点摆动到B点做圆周运动,小球受重力和拉力,拉力不做功,只有重力做功,所以机械能守恒。
解:研究小球从A 运动到B的过程,小球的机械能守恒。
设B点为零势能面,列出A点和B点机械能相等,得
(4)在光滑斜面和光滑曲面上自由滑动的物体机械能守恒。
因为在光滑斜面和光滑曲面上自由滑动的物体,运动过程中的每个位置都只受两个力:重力和支持力。
支持力时刻与速度方向垂直,即支持力与位移垂直,支持力不做功;那么只有重力做功,则物体的机械能守恒。
例如:如图-3物体从1m高、3m长的光滑斜面顶端由静止开始无摩擦地滑下,到达斜面底端时的速度多大?(g=10m/s2)
分析:斜面光滑即没有摩擦力,斜面的支持力与斜面垂直不做功,只有物体的重力做功,物体在下滑过程中机械能是守恒的。
解:设物体的质量为m,选取最高点和最低点列出机械能相等的表达式,设最低点为零势能面,得
以上是对机械能守恒定律解题规律的几点总结。
总之,机械能守恒定律是动力学中一条重要的物理定律,也是物理中的一种重要的解题方法,掌握好它对于物理学习非常重要。