机械能守恒定律及其应用

合集下载

机械能守恒定律及其应用(课堂专用)

机械能守恒定律及其应用(课堂专用)

在B点:N mg m v2
2
N=3mg
R
R
B
7.质量为m的物体,从静止开始以2g的加速度竖直向下加速
运动距离h,则( ABC )
A.物体的重力势能减少mgh B.物体的动能增加2mgh
C.物体的机械增加mgh
D.物体的机械能保持不变
8.一个轻弹簧固定于O点,另一端系一重物,将重物从与悬点
O在同一水平面且弹簧保持原长的A点无初速释放,让它自
v0
例与练
(思考题)如图所示,物体A、 B用绳子连接穿过定滑轮,已知
mA=2mB, 绳子的质量不计,忽
略一切摩擦,此时物体A、B距
地面高度均为H,释放A,求当
物体A刚到达地面时的速度多大?
(设物体B到滑轮的距离大于H)
例与练
对A:拉力F做负功,A机械能不守恒
对B:拉力F做正功,B机械能不守恒
对A、B整体,拉力F做功代数和 F F
A、小球的机械能守恒 B、小车的机械能守恒 C、小球和小车的总机械能守恒 D、小球和小车的总机械能不守恒
1.如图所示,桌面高为h,质量为m的小球从离桌面 高为H处自由落下,不计空气阻力,假设桌面处的重
力势能为零,则小球落地前瞬间的机械能为 ( B )
A.mgh B.mgH C.mg(H+h) D.mg(H—h)
例与练
2、小球沿高为h=5m的光滑斜面由静止开 始下滑,求小球到达斜面底端时的速率。
支持力N不做功,只有重力G做功,小球
机械能守恒。 以斜面底面为参考平面。
E1mgh E2 mgh 1mv2
1 2
mv
2
N
2
v 2gh 1m 0/s G
例与练
3、小球沿高为h=5m的光滑斜面由静止开 始下滑,求小球到达斜面底端时的速率。

机械能守恒定律及其应用

机械能守恒定律及其应用

机械能守恒定律的意义
揭示了能量守恒的实质
机械能守恒定律是能量守恒定律在力 学系统中的具体表现,它表明在满足 一定条件下,系统中的机械能可以自 发的相互转化,但总能量保持不变。
提供了解决问题的方法
在解决力学问题时,如果满足机械能 守恒定律的条件,可以将问题简化为 求解初末状态的机械能,从而大大简 化计算过程。
VS
详细描述
火箭升空过程中,燃料燃烧产生大量气体 ,向下喷射产生推力,使火箭加速上升。 在这个过程中,火箭的重力势能和动能之 间相互转化,机械能总量保持不变,也是 机械能守恒定律的应用。
水利发电站工作过程中的机械能守恒
ቤተ መጻሕፍቲ ባይዱ总结词
水轮机在水的冲力作用下旋转,将水的重力 势能转化为水轮机的动能,再通过发电机转 化为电能,整个过程中机械能总量保持不变 。
之间的关系。
数学表达式的理解
机械能守恒
机械能守恒定律表明,在没有外 力做功的情况下,质点的机械能 (动能和势能之和)保持不变。
适用范围
机械能守恒定律适用于没有外力 做功的系统,如自由落体运动、 弹性碰撞等。
守恒原因
机械能守恒的原因是重力做功与 路径无关,只与初末位置的高度 差有关。
数学表达式的应用
单摆在摆角小于5°的理想情况下,只受重力和摆线的拉力,不涉及其他外力。因此,其 机械能守恒。
详细描述
单摆是一种简单的机械系统,由一根悬挂的细线和下面的小球组成。当单摆在垂直平面 内摆动时,其动能和势能之间相互转换。在摆角小于5°的理想情况下,由于空气阻力和 摩擦力可以忽略不计,因此只有重力和摆线的拉力作用在单摆上。根据机械能守恒定律
,单摆的动能和势能之和保持不变,即机械能守恒。
弹簧振子的机械能守恒

高中物理精品课件: 机械能守恒定律及其应用

高中物理精品课件: 机械能守恒定律及其应用
力加速度g B.小球从B点运动到C点的过程,小球的重力势能和弹簧的弹
性势能之和可能增大 C.小球运动到C点时,重力对其做功的功率最大
√D.小球在D点时弹簧的弹性势能一定最大
1 2 3 4 5 6 7 8 9 10 11 12 13
9.(多选)如图所示,质量为M的小球套在固定倾斜的光滑杆上,原长为
l0的轻质弹簧一端固定于O点,另一端与小球相连,弹簧与杆在同一竖直 平面内.图中AO水平,BO间连线长度恰好与弹簧原长相等,且与杆垂直,
√A.小球从A点运动到D点的过程中,其最大加速度一定大于重
力加速度g B.小球从B点运动到C点的过程,小球的重力势能和弹簧的弹
性势能之和可能增大 C.小球运动到C点时,重力对其做功的功率最大
√D.小球在D点时弹簧的弹性势能一定最大
1 2 3 4 5 6 7 8 9 10 11 12 13
考向3 含恒的判断
基础梳理 夯实必备知识
1.重力做功与重力势能的关系 (1)重力做功的特点 ①重力做功与 路径 无关,只与始末位置的 高度差 有关. ②重力做功不引起物体 机械能 的变化.
(2)重力势能 ①表达式:Ep= mgh . ②重力势能的特点 重力势能是物体和 地球 所共有的,重力势能的大小与参考平面的选取 有关 ,但重力势能的变化与参考平面的选取 无关 . (3)重力做功与重力势能变化的关系 重力对物体做正功,重力势能 减小 ;重力对物体做负功,重力势能_增__大__. 即WG=Ep1-Ep2=-ΔEp.
方法技巧 提升关键能力
机械能是否守恒的三种判断方法 (1)利用机械能的定义判断:若物体动能、势能(重力势能与弹性势能) 之和不变,则机械能守恒. (2)利用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,虽受其 他力,但其他力不做功(或做功代数和为0),则机械能守恒. (3)利用能量转化判断:若物体或系统与外界没有能量交换,物体或系统 也没有机械能与其他形式能的转化,则机械能守恒.

机械能守恒定律的理解及应用

机械能守恒定律的理解及应用

机器能守恒定律的理解及应用一、机器能守恒定律:1.机器能守恒定律内容表述:①表述一: 在只有重力做功的情形下,物体的动能和重力势能产生相互转化,但总的机器能保持稳定.这个结论叫做机器能守恒定律.不光动能和重力势能的相互转化中机器能保持稳定,在弹性势能和动能的转化历程中,如果只有弹簧的弹力做功,机器能也是保持稳定的.②表述二: 在只有重力或弹力做功的物体系统内,动能与势能可以.机器能守恒定律是力学中的一条重要定律,又是更普遍的能的转化和守恒定律的一种特殊情况.2.怎样理解机器能守恒定律:①只有重力做功的情形:重力势能是相对的,表达式为Ep = mgh,式中的h是物体的重心到参考平面(零重力势能面)的高度.若物体在参考平面以上,则重力势能为正;若物体在参考平面以下,则重力势能为负.通常,选择地面作为零重力势能参考平面.重力势能的变革量与零重力势能的选取无关.重力对物体做几多正功,物体的重力势能就淘汰几多;重力对物体做几多负功,物体的重力势能就增加几多.即W重= -ΔE重.②只有弹力做功的情形:一个物体由于外力的作用产生形变,如果撤去外力后形变会消失,这种形变就叫做弹性形变.物体因产生弹性形变而具有的势能叫做弹性势能. 和重力势能一样,弹性势能也是相对的.对付弹簧的弹性势能一般取其为原长时弹性势能为零.弹力对物体做了几多负功,物体的弹性势能就增加几多.即W弹= -ΔE弹.重力做功和弹力做功均和途径无关.重力势能的巨细与哪些因素有关,学生容易理解.以下就弹性势能的巨细与哪些因素有关做出说明:一个物体在A位置时,弹簧处于原长,如图1所示.我们对物体从A→B→C→B→A的历程进行阐发.当物体到B位置时,弹CC回到B,弹力做正功,弹簧的弹性势能淘汰.再将物体从B回到A,弹力继承做正功,弹簧的弹性势能继承淘汰.从这个例子,我们注意到:(Ⅰ)和重力势能一样,物体的弹性势能和弹力做(外力克服弹力做功),物体的弹性势能就增加几多;弹力做几多正功(弹力克服外力做功),物体的弹性势能就淘汰几多.(ⅡB到C弹力做的负功和C到B弹力做的正功相互抵消,因此物体从A直接到B跟物体从A到C再回到B做的功是一样多的.这个问题可以这样理解,由于物体在同一个位置的弹力相同,在B、C间靠着很近的两个点之间,向左移动和向右移动经过这两个点做的功,巨细相同,标记相反如图1所示.而力在一段位移对物体做功的总量是力对每一小段位移做功的累加.所以,物体从B到C弹力做的负功和C到B弹力做的正功相互抵消(图1中,为了清楚的表现物理量的干系,把B、C间靠着很近的两个点的间距放大了).不难想象,在压缩弹簧中的历程,弹力做的功和两个因素有关:一个是弹簧的劲度系数;另一个是压缩的距离.因此对同一根弹簧,形变越大弹性势能越大,两根弹簧产生同样的形变,劲度系数大的弹簧弹性势能大.由于弹簧从平衡位置拉伸和压缩相同的长度时的力相同,所以同一根弹簧,从平衡位置拉伸和压缩相同的长度时,弹簧的弹性势能相同.所以,弹簧的弹性势能与弹簧的劲度系数和形变量两个因素有关.③机器能守恒定律1F 2F2F1F 位移方向位移方向2图1图动能和势能之和称为机器能.一种形式的机器能可以和另一种形式的机器能相互转化.下面我们看一些例子.物体自由下落或沿平滑斜面滑下的时候,重力对物体做功,物体的重力势能淘汰;重力势能转变为动能.原来具有一定速度的物体,在竖直上升或沿平滑斜面上升的历程中,物体克服重力做功,速度越来越小,物体动能淘汰了;而随着高度增加,重力势能却增加了.这时动能转化成重力势能.弹性势能也可以和动能相互转化.放开一个被压缩的弹簧,它可以把一个与它打仗的小球弹出去.这时弹力做功,弹簧的弹性势能就淘汰;同时小球得到一定的速度,动能增加.放开被拉开的弓把箭射出去,这时弓的弹性势能淘汰,箭的动能增加.从这些例子我们可以看出,机器能的相互转化是通过重力或弹力做功来实现的.重力或弹力做功的历程,也就是机器能从一种形式转化为另一种形式的历程.那么在种种机器能相互转化的历程中有什么纪律呢?我们用一个最简朴的例子来看一下.一个做自由落体运动的小球从1位置下落到2位置,设小球在位置1和2的速度分别为v 1和v 2,1位置和2位置离地的高度分别为h 1和h 2(如图3).凭据落体运动的纪律可知:)(2212122h h g v v -=-等式两边都乘以0.5m ,得22211211m v m v mg h mg h 22⋅-⋅=⋅-⋅ 由此可知,在小球从1位置落到2位置的历程中,它重力势能的淘汰量即是它动能的增加量,也就是说它在下落历程中机器能总量保持稳定.机器能守恒定律干系式的推导,我们还可以通过下列要领来创建:我们照旧用图3给出的情形研究.小球从1位置下落到2位置的历程中,重力做功W G =mg (h 1-h 2);运用动能定理,21222121mv mv W G -=,得: 2122212121mv mv mgh mgh -=-,即:2222112121mv mgh mv mgh +=+. 3.机器能守恒定律的应用典范:【例1】 以10m/s 的速度将质量m 的物体从地面竖直向上抛出,忽略空气阻力,求(1)物体上升的最大高度(2)上升历程中那边重力势能和动能相等解:(1)以地面为参考面,设物体上升的最大高度为h ,由机器能守恒得E 1=E 2,即mgh mv +=+002120, 所以m m g v h 5102102220=⨯== (2)在地面有E 1=2021mv 在高h 1处有E k =E p ,即12112221mgh mv mgh E =+= 3图由机器能守恒定律得21E E =,即120221mgh mv = 解得m m g v h 5.21041004201=⨯== 【例2】把一个小球用细线悬挂起来,就成为一个摆(见图4),摆长为L ,最大偏角为θ.小球从A 处释放运动到最低位置O 时的速度是多大?解:在小球运动的历程中,小球共受到重力和绳对小球的拉力共2个力的作用.由于绳子对小球的拉力偏向始终与速度偏向垂直,绳子对小球的拉力不做功,只有重力对小球做功,小球的机器能守恒.小球重力势能的减小量为cos 1(-mgL θ),动能的增加量为0212-mv ,凭据机器能守恒得:221)cos 1(mv mgL =-θ,即)cos 1(2θ-=gL v . 【例3】如图5所示,质量均为m 的A 、B 两个小球, 用长为2L 的轻杆相连接,在竖直平面内,绕牢固轴O 沿顺时针偏向自由转动(转轴在杆的中点),不计一切摩擦. (1)某时刻A 、B 球恰幸亏如图所示的位置,A 、B 球的线速度巨细均为v .试判断A 、B 球以后的运动是否为匀速圆周运动,请说明理由!(2)若gL v =,在如图所示的位置时, B 球从杆上脱落,求B 球落地时的速度巨细.解:(1)在图示位置转动一个较小的角度,由多少干系可得,A 球下降的高度和B 球上升的高度相同,A 、B 球系统的重力势能稳定,由于系统的机器能守恒,所以A 、B 球的动能稳定,所以A 、B 球以后的运动是为匀速圆周运动.(2) B 球速度巨细与A 球相同,做平抛运动,满足机器能守恒条件设球落地时速度巨细是v ',取地面为重力势能零点,运用机器能守恒定律:22212121mv L mg v m +=' 得: 小球落地的速度巨细为gL v 2='.对付一个物体系来说,如果没有外力做功,又没有耗散力做功,而只有守旧力做功,那么系内物体的动能和势能可以相互转换,但总机器能保持稳定.【例2】给出的情景就是系统机器能守恒的实例.这里要指出的是,由于杆对A 球和B 球都做功,A 球和B 球的机器能均不守恒,但在A 球向下转动的历程中,杆对A 球做正功,杆对B 球做负功,杆对A 、B 球做功的总量为零,所以系统的机器能守恒.vv O A B L L L 5.2地面5图6图4图。

机械能守恒定律及其应用

机械能守恒定律及其应用
02 热水器
优化能源利用,节省用水成本
03 空调
调节室内温度,节约能源消耗
结尾
通过深入了解机械能守恒定律在生活中的应用, 我们可以更好地利用能量资源,推动绿色、可持 续的生活方式。机械能守恒定律不仅是物理学原 理,更是指导我们节约能源、保护环境的重要思 想。
● 06
第六章 总结与展望
机械能守恒定律 的重要性
为科学研究提供理论基础
02 实用性
提高能源利用效率
03
未来发展方向
在未来,机械能守恒定律将在新能源开发、环保 和可持续发展中发挥更加重要的作用。随着科技 进步和社会需求的不断变化,人们对此定律的理 解和应用将不断深入。
未来发展方向
新能源开发
研究新型能源的转化原理 提高可再生能源利用率
环保
减少能源消耗对环境的影 响 推动清洁能源的发展
弹簧振子的实验
弹簧振子实验是一种常见的实验方法,通过测量 弹簧振子的运动轨迹和动能、势能的变化,验证 机械能守恒定律在弹簧振子系统中的有效性。实 验过程包括确定初始条件、记录振动数据、计算 能量变化等步骤。
自由落体实验
01 实验方法
使用重物自由落体
02 数据分析
测量速度和高度
03 能量变化
动能与势能之间的转化
01 能量守恒公式
K1 + U1 K2 + U2 02
03
守恒定律的应用范围
摆锤系统
系统的动能和势能转化
自由落体
动能转变为重力势能
滑坡运动
势能转变为动能
机械能守恒定律 应用案例
通过机械能守恒定律, 我们可以解释很多自 然现象,比如弹簧振 子的运动、摩擦力的 影响等。这一定律的 应用不仅局限于实验 室,也在工程领域有 广泛应用。

机械能守恒定律及其应用

机械能守恒定律及其应用

§3 机械能守恒定律及其应用一、机械能守恒定律1.机械能守恒定律的两种表述(1)在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。

(2)如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。

2.对机械能守恒定律的理解:(1)机械能守恒定律的研究对象一定是系统,至少包括地球在内。

通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。

另外小球的动能中所用的v,也是相对于地面的速度。

(2)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。

(3)“只有重力做功”不等于“只受重力作用”。

在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。

【例1】如图物块和斜面都是光滑的,物块从静止沿斜面下滑过程中,物块机械能是否守恒?系统机械能是否守恒?3.解题步骤⑴确定研究对象和研究过程。

⑵判断机械能是否守恒。

⑶选定一种表达式,列式求解。

4.应用举例【例2】 如图所示,半径为R 的光滑半圆上有两个小球B A 、,质量分别为M m 和,由细线挂着,今由静止开始无初速度自由释放,求小球A 升至最高点C 时B A 、两球的速度?【例3】如图所示,均匀铁链长为L ,平放在距离地面高为L2的光滑水平面上,其长度的51悬垂于桌面下,从静止开始释放铁链,求铁链下端刚要着地时的速度?二、机械能守恒定律的综合应用【例4】 质量为0.02 kg 的小球,用细线拴着吊在沿直线行驶着的汽车顶棚上,在汽车 距车站15 m 处开始刹车,在刹车过程中,拴球的细线与竖直方向夹角θ=37°保持不变,如图所示,汽车到车站恰好停住.求:(1)开始刹车时汽车的速度;(2)汽车在到站停住以后,拴小球细线的最大拉力。

机械能守恒定律的应用与功能原理

机械能守恒定律的应用与功能原理

机械能守恒定律的应用与功能原理主要内容:一、机械能守恒定律1)在机械运动范围内,物体所具有的动能、势能(重力势能和弹性势能),统称为机械能。

物体的动能和势能之间是可以相互转化的。

例如:自由下落的物体,由于重力做功,所以其势能减少,动能增加,势能转化为动能;竖直上抛的物体,由于要克服重力做功,所以其动能减少,势能增加,动能转化为势能。

下面从动能定理出发,推证机械能守恒的条件:选某物体为研究对象,根据动能定理,有:ΣW=ΔE k可写成:W重+W弹+W其它=ΔE k,其中W弹为弹簧弹力的功。

又根据重力、弹簧弹力做功与势能的关系有:W重=-ΔE P重,W弹=-ΔE P弹-ΔE P重-ΔE P弹+W其它=ΔE k,如果W其它=0,即其它力不做功,则:-ΔE P重-ΔE P弹=ΔE k,即ΔE k+ΔE P重+ΔE P弹=0即ΔE=0 (机械能的增量为零)从上面推证可以看出,系统机械能守恒的条件为:除了重力、弹簧弹力以外无其它力对物体做功。

2)实际上,物质运动的形式不仅是机械运动,另外,热运动、电磁运动、化学运动、核运动等也是物质的不同运动形式,不同的运动形式对应着不同形式的能量,物质各种形式的运动是可以相互转化的,因此不同形式的能也是可以相互转化的,且在能量转化的过程中,总的能量守恒。

因此,系统机械能守恒条件的严格表述为:物体系(系统)内只有重力、弹力做功,而其它一切力都不做功时,系统机械能守恒。

二、功能原理(或称功能关系)1)由动能定理可以知道,外力对物体做功的代数和等于物体动能的增量,可表示为:ΣW=ΔE k 这里说的外力包括作用于物体上的全部做功的力,可分为三部分:(1)系统内的重力、弹力;(2)系统内的摩擦力;(3)系统外物体对它的作用力,则动能定理的表达式可写成W重+W弹+W摩擦+W外=ΔE k,又因为:W重=-ΔE P重,W弹=-ΔE P弹,所以有:W摩擦+W外=ΔE k+ΔE P重+ΔE P弹等式的右边为动能的增量跟势能增量的和,即为物体机械能的增量,即:W摩擦+W外=ΔE表述为:除重力、弹簧弹力以外力对物体做功的代数和,等于物体机械能的增量。

机械能守恒定律及应用

机械能守恒定律及应用

1.关于机械能是否守恒,下列说法正 确的是( ) A. 做匀速直线运动的物体机械能一定 守恒 B. 做圆周运动的物体机械能一定守恒 C. 做变速运动的物体机械能可能守恒 D. 合外力对物体做功不为零,机械能 一定不守恒
C
2.(2011·全国高考)一蹦极运动员身系弹性 蹦极绳从水面上方的高台下落,到最低点时距 水面还有数米距离。假定空气阻力可忽略,运 动员可视为质点,下列说法正确的是( ) A. 运动员到达最低点前重力势能始终减小 B. 蹦极绳张紧后的下落过程中,弹性力做 负功,弹性势能增加 C. 蹦极过程中,运动员、地球和蹦极绳所 组成的系统机械能守恒 D. 蹦极过程中,重力势能的改变与重力势 能零点的选取有关
2.机械能守恒定律表达式
Ek1+Ep1= Ek= EA= Ek2+Ep2 △Ep △EB
观 点
表达式
守恒观点
转化观点
转移观点
对机械能守恒定律三种表达式的理解 守恒观点. 意义:系统初状态的机械能等于末状态的机械能. 注意问题:要先选取零势能参考平面,并且在整个过程中必须选取同一个零势能参考平面. 表达式:mgh1+1/2mv12=mgh2+1/2mv22或
湖南长郡卫星远程学校
制作 06
2012年下学期
制作 06
湖南长郡卫星远程学校
(3)选取零势能面,确定研究对象在 初、末状态的机械能。 (4)根据机械能守恒定律列出方程。 (5)解方程求出结果,并对结果进行 必要的讨论和说明。
质量为m的小球从高H处由静止开始自由下落,以地面作为零势能面.当小球的动能和重力势能相等时,重力的瞬时功率为( )
[名师点睛]
2012年下学期
制作 06
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档