机械能守恒定律的应用
机械能守恒定律的应用

机械能守恒定律的应用机械能守恒定律是物理学的一个基本定律,基于质点系的动能和势能守恒。
应用广泛,不仅在物理学和工程学领域中有重要的应用,还可以用于探索自然界的现象,如机械系统的运动以及衍射和透射的现象等。
机械能守恒定律的应用一般可以分为以下几个方面:1. 机械系统的运动学分析机械系统的运动学分析是机械能守恒定律应用的一个重要方面。
在机械系统的运动中,当机械系统中的质点的动能和势能发生变化时,机械能守恒定律可以用来描述机械系统的运动状态。
这是因为机械能守恒定律可以把机械系统的动能和势能统一起来,描述各种机械能的转化过程,从而揭示机械系统的运动规律。
2. 动力学分析机械能守恒定律也可以用于机械系统的动力学分析,即利用力学原理分析机械系统的运动。
在动力学分析中,机械能守恒定律可以用来描述机械系统中的能量转化过程,并且根据保守力的定义,机械能守恒定律可以应用于一些复杂的力学系统中,例如弹性分析和简谐振动分析等。
3. 能量转移分析机械能守恒定律还可以用于描述能量转移过程。
当机械系统中有多个物体或者质点时,一些物体或者质点的机械能的改变会导致其他物体或者质点的机械能发生变化。
应用机械能守恒定律可以描述机械能在不同物体或者质点之间的转移和转化过程,分析物体或者质点之间的互动关系。
4. 实际工程应用机械能守恒定律还可以用于实际的工程设计和应用中。
例如,这个定律可以用于分析蒸汽轮机和燃气轮机等能量转换设备的能量转移过程,和电站发电过程中的能量变化。
机械能守恒定律也可以用于设计机动车辆和飞机等交通工具的发动机动力系统和轮程。
总的来说,机械能守恒定律是理解运动和能量转换的基本定律,它的应用不仅限于物理学和工程学,也可以用于研究自然界的现象,解释物理现象,如弹性分析,电磁波,粒子加速器等,并在生活的各个方面,如交通、工业生产和住房设计等方面得到应用。
机械能守恒定律的应用

机械能守恒定律的应用在物理学中,机械能守恒定律是一条基本的物理定律,它描述了在一个孤立的力学系统中,总的机械能保持不变。
这个定律可以被广泛应用于各种物理现象和工程问题中。
本文将探讨机械能守恒定律的应用,并以实际例子加以说明。
一、弹簧势能和重力势能的转化机械能守恒定律可以应用于弹簧势能和重力势能的相互转化的问题。
考虑一个弹簧与一个质点连接,并将这个质点放置在重力场中。
当质点在弹簧的作用下沿着垂直方向运动时,弹簧的势能和重力势能会相互转化。
假设质点在某一时刻具有高度h,速度v,弹簧的劲度系数为k。
根据机械能守恒定律,质点的机械能E可以表示为:E = mgh + (1/2)mv^2 + (1/2)kx^2其中m是质点的质量,g是重力加速度,x是弹簧的伸缩量。
在运动过程中,如果质点在距离平衡位置的位置发生变化,即x不等于零,那么弹簧的势能和重力势能会发生相应的变化。
然而,总的机械能E在整个过程中保持不变。
二、轨道运动中的机械能守恒机械能守恒定律在轨道运动中也有重要的应用。
考虑一个质点在离心力和引力的作用下在一个假设无摩擦的平面上运动。
根据机械能守恒定律,质点的机械能E在整个运动过程中保持不变。
在一个闭合轨道上,质点具有速度v和离心力F_c,引力和重力力F_g。
根据机械能守恒定律,质点的机械能E可以表示为:E = (1/2)mv^2 - GmM/r其中M是引力中心的质量,r是质点与引力中心之间的距离,G是引力常数。
在闭合轨道上,质点的速度和距离会相应变化,但机械能E保持不变。
三、动能转化与物体碰撞机械能守恒定律还可以应用于动能转化和物体碰撞的问题。
在一个孤立的力学系统中,当两个物体碰撞时,它们的机械能可以部分转化为其他形式的能量,如热能或变形能。
考虑两个质量分别为m1和m2的物体,在碰撞前具有速度v1和v2。
根据机械能守恒定律,碰撞后物体的机械能E'可以表示为:E' = (1/2)m1v1'^2 + (1/2)m2v2'^2其中v1'和v2'是碰撞后物体的速度。
机械能守恒定律的应用

机械能守恒定律的应用机械能守恒定律是物理学中的一项基本定律,它描述了一个系统中机械能的总量始终保持不变。
在本文中,将探讨机械能守恒定律的应用,并通过实例来说明其在实际问题中的重要性。
一、弹簧振子的机械能守恒定律应用弹簧振子是物理学中经常使用的一个模型,它由一个弹簧和一块质点组成。
当质点受力振动时,机械能守恒定律可以被用来分析系统的能量变化。
假设质点的质量为m,弹簧的劲度系数为k,质点的位移为x。
在振动开始时,质点的势能为0,动能也为0。
根据机械能守恒定律,振动过程中质点的总机械能E保持不变。
在振动的最大位移处,质点的动能最大,势能最小。
而在质点通过平衡位置时,势能最大,动能最小。
但总的机械能保持不变。
这个定律的应用可以帮助我们计算弹簧振子的振幅、周期等重要参数。
通过测量振动过程中质点的位移和速度,我们可以根据机械能守恒定律来计算出系统的机械能,从而得到一系列相关参数。
二、滑块在弯曲道轨道中的机械能守恒定律应用考虑一个滑块沿弯曲道轨道下滑的情况。
滑块沿轨道下滑时,它既有势能也有动能,但总机械能保持不变。
在滑块下滑的过程中,重力对滑块做功,将势能转化为动能。
根据机械能守恒定律,滑块在不发生外力做功情况下,总机械能保持不变。
这一定律的应用可以帮助我们分析滑块在弯曲道轨道中的运动。
通过测量不同位置滑块的高度和速度等信息,我们可以应用机械能守恒定律来计算系统的机械能。
通过这些计算,我们可以推导出滑块的轨迹、速度以及其它相关参数。
三、摩擦力对机械能守恒的影响机械能守恒定律对摩擦力的处理需要格外注意。
摩擦力会把机械能转化为热能,从而使系统的机械能发生变化。
在实际问题中,摩擦力是不可避免的,因此必须考虑它的影响。
当有摩擦力存在时,系统的机械能不再保持恒定,而是逐渐减少。
这种情况下,我们需要分析摩擦力产生的热量,从而对系统能量的损失有所了解。
通过使用一些补偿方法,如改进设备、减少能量损失等,可以在摩擦力影响下最大限度地保持机械能的守恒。
机械能守恒定律及其应用

机械能守恒定律的意义
揭示了能量守恒的实质
机械能守恒定律是能量守恒定律在力 学系统中的具体表现,它表明在满足 一定条件下,系统中的机械能可以自 发的相互转化,但总能量保持不变。
提供了解决问题的方法
在解决力学问题时,如果满足机械能 守恒定律的条件,可以将问题简化为 求解初末状态的机械能,从而大大简 化计算过程。
VS
详细描述
火箭升空过程中,燃料燃烧产生大量气体 ,向下喷射产生推力,使火箭加速上升。 在这个过程中,火箭的重力势能和动能之 间相互转化,机械能总量保持不变,也是 机械能守恒定律的应用。
水利发电站工作过程中的机械能守恒
ቤተ መጻሕፍቲ ባይዱ总结词
水轮机在水的冲力作用下旋转,将水的重力 势能转化为水轮机的动能,再通过发电机转 化为电能,整个过程中机械能总量保持不变 。
之间的关系。
数学表达式的理解
机械能守恒
机械能守恒定律表明,在没有外 力做功的情况下,质点的机械能 (动能和势能之和)保持不变。
适用范围
机械能守恒定律适用于没有外力 做功的系统,如自由落体运动、 弹性碰撞等。
守恒原因
机械能守恒的原因是重力做功与 路径无关,只与初末位置的高度 差有关。
数学表达式的应用
单摆在摆角小于5°的理想情况下,只受重力和摆线的拉力,不涉及其他外力。因此,其 机械能守恒。
详细描述
单摆是一种简单的机械系统,由一根悬挂的细线和下面的小球组成。当单摆在垂直平面 内摆动时,其动能和势能之间相互转换。在摆角小于5°的理想情况下,由于空气阻力和 摩擦力可以忽略不计,因此只有重力和摆线的拉力作用在单摆上。根据机械能守恒定律
,单摆的动能和势能之和保持不变,即机械能守恒。
弹簧振子的机械能守恒
机械能守恒定律的应用

机械能守恒定律的应用机械能守恒定律是物理学中一个非常重要的定律,它对于解释和预测物体运动过程中能量的转化和守恒具有重要的意义。
本文将探讨机械能守恒定律的应用,并通过实例来说明其在实际生活中的重要性。
一、机械能守恒定律的基本概念机械能守恒定律是指在不考虑外力和摩擦力的情况下,系统的机械能保持不变。
机械能由动能和势能两部分组成,动能是物体由于运动而具有的能量,势能是物体由于位置的不同而具有的能量。
根据机械能守恒定律,总机械能保持不变,即初始时的机械能等于末尾时的机械能。
二、机械能守恒定律的应用1. 自由落体运动自由落体运动是指物体在只受重力作用下垂直下落的运动。
根据机械能守恒定律,物体在下落过程中动能的增加等于势能的减少。
例如,一个从高处自由落下的物体在下落的过程中,重力对它做功,势能转化为动能,因此速度会逐渐增加。
2. 弹簧振子弹簧振子是指以弹簧为主要组成部分的振动系统。
根据机械能守恒定律,弹簧振子在振动过程中总机械能保持不变。
当弹簧振子从最大振幅处通行过中点时,势能为零,动能最大;而当弹簧振子从最大振幅处通过最大位移点时,势能最大,动能为零。
3. 车辆制动在车辆制动过程中,制动器对车轮施加摩擦力,将车轮的动能转化为热能,以达到减速和停车的目的。
根据机械能守恒定律,在制动过程中车轮的动能逐渐减小,而热能的产生与动能的消失量相等。
4. 能源利用机械能守恒定律在能源利用中有着广泛的应用。
例如,水力发电利用水的势能和动能转化为电能;风力发电利用风的动能转化为电能。
在能源转换的过程中,我们可以依靠机械能守恒定律来预测和计算能源转化的效率和能量损失情况。
总结:机械能守恒定律是物理学中非常重要的定律,它描述了物体运动过程中能量的转化和守恒。
在自由落体运动、弹簧振子、车辆制动和能源利用等方面都可以应用机械能守恒定律来解释和预测现象。
了解和应用机械能守恒定律有助于我们更好地理解和利用自然界的能量,发展可持续的能源利用方式。
机械能守恒定律的运用

机械能守恒定律的运用一、机械能守恒定律简介机械能守恒定律是力学中的重要定律之一,它描述了一个封闭系统中,只有重力做功和物体势能的变化可以改变物体的机械能,而机械能的总量在没有外力做功的情况下保持不变。
根据机械能守恒定律,我们可以通过计算物体的机械能来分析物体的运动。
二、机械能守恒定律的适用范围机械能守恒定律适用于不受空气阻力和其他非保守力的影响的封闭系统。
在这种情况下,物体的机械能可以通过机械能的转化来保持不变。
机械能包括物体的动能和势能两部分,其中动能与物体的质量和速度有关,势能则与物体的位置和形状有关。
三、机械能守恒定律的数学表达式根据机械能守恒定律,我们可以得到以下数学表达式:总机械能 = 动能 + 势能总机械能 = 常数这意味着在没有外力做功的情况下,物体的总机械能保持不变。
四、机械能守恒定律的运用举例1. 自由落体运动自由落体是指在重力作用下,物体在没有空气阻力的情况下垂直地向下运动。
根据机械能守恒定律,我们可以分析自由落体运动。
在自由落体过程中,物体只受到重力做功,而没有其他外力做功。
因此,物体的机械能保持不变。
起初,物体处于较高位置,只有势能,没有动能。
随着物体下落,势能减少,而动能增加。
当物体到达地面时,势能减少到零,动能达到最大值。
可以利用机械能守恒定律的数学表达式来计算物体在不同位置的势能和动能。
2. 弹簧振动弹簧振动是指当给定物体与一个或多个弹簧连接时,物体在弹簧的作用下来回运动。
在没有外力作用的情况下,根据机械能守恒定律,物体的总机械能保持不变。
在弹簧振动过程中,物体的机械能转化为势能和动能之间的相互转换。
当物体离开平衡位置时,弹簧产生弹性力,将物体拉回平衡位置,使得物体的动能减小,势能增加。
当物体通过平衡位置时,动能最大,势能最小。
可以利用机械能守恒定律的数学表达式来分析弹簧振动过程中势能和动能的变化。
五、结论机械能守恒定律是力学中的重要定律之一,它描述了一个封闭系统中,只有重力做功和物体势能的变化可以改变物体的机械能,而机械能的总量在没有外力做功的情况下保持不变。
§3 机械能守恒定律及其应用

二、机械能守恒定律的应用 应用机械能守恒定律的基本思路: 应用机械能守恒定律的基本思路: 物体系或物体。 (1)选取研究对象 )选取研究对象——物体系或物体。 物体系或物体 (2)进行受力分析,做功分析,判断机械 )进行受力分析,做功分析, 能是否守恒。 能是否守恒。 (3)恰当地选好参考平面,确定研究对象 )恰当地选好参考平面, 在过程的初末状态时的机械能。 在过程的初末状态时的机械能。 (4)根据机械能守恒定律列方程,进行求 )根据机械能守恒定律列方程, 解。
2.表达式: EK2 + EP2= EK1 + EP1 .表达式: 即 E2= E1 应用机械能守恒定律解题时,需要规 应用机械能守恒定律解题时, 定重力势能的参考平面。 定重力势能的参考平面。 3.机械能守恒的条件:只有重力或弹 .机械能守恒的条件: 力做功,包括以下三种情况: 力做功,包括以下三种情况:只有重 力和弹力作用,没有其他力作用; 力和弹力作用,没有其他力作用;有 重力、弹力以外的力作用, 重力、弹力以外的力作用,但这些力 不做功;有重力、弹力以外的力做功, 不做功;有重力、弹力以外的力做功, 但这些力做功的代数和为零。 但这些力做功的代数和为零。
例1.如图所示,木块 与水平桌面间的接触是 .如图所示,木块B与水平桌面间的接触是 光滑的,子弹A沿水平方向射入木块后留在木块 光滑的,子弹 沿水平方向射入木块后留在木块 将弹簧压缩到最短。先将子弹、 内,将弹簧压缩到最短。先将子弹、木块和弹簧 合在一起作为研究对象(系统 系统), 合在一起作为研究对象 系统 ,则此系统从子弹 开始射入木块到弹簧压缩到最短的整个过程中 A.动量守恒 机械能守恒 .动量守恒,机械能守恒 B.动量不守恒 机械能不守恒 .动量不守恒,机械能不守恒 C.动量守恒 机械能不守恒 .动量守恒,机械能不守恒 D.动量不守恒 机械能守恒 .动量不守恒,机械能守恒 答案:B 答案:
机械能守恒定律的实践应用

机械能守恒定律的实践应用机械能守恒定律是物理学中的一个基本定律,它描述了在一个封闭的机械系统中,机械能的总量是恒定的。
在日常生活和工程领域中,机械能守恒定律有许多实践应用。
本文将介绍机械能守恒定律的实际应用以及这些应用对我们生活和工作的影响。
一、滑坡事故的分析与预防滑坡事故是山区和斜坡地带常见的自然灾害之一。
了解机械能守恒定律可以帮助我们分析滑坡发生的原因,并采取相应的预防措施。
滑坡的发生可以看作是机械能转化的结果。
当土地斜坡过大,地质构造不稳定时,重力势能会转化为动能,导致土壤和岩石的滑动。
因此,通过对机械能守恒定律的应用,我们可以根据地形和材料特性,进行滑坡的风险评估,并采取合适的工程措施来预防滑坡事故的发生。
二、机械能转换与利用机械能守恒定律对于机械能的转换和利用有着重要的指导意义。
在能源转换和利用过程中,机械能可以被转换为其他形式的能量,如电能、热能等。
例如,水电站利用水流的动能将其转换成电能,而动力机械中的发动机则将燃烧能转化为机械能。
通过对机械能守恒定律的实践应用,我们可以优化能源的转换和利用效率,提高能源利用的环境友好性。
三、弹性势能的应用弹性势能是一种储存在弹性体中的能量形式,它可以通过机械能守恒定律被准确计算和应用。
一个典型的实例是弹簧。
当弹簧被压缩或拉伸时,其势能会增加,而机械能守恒定律告诉我们,压缩或拉伸弹簧的势能增加与势能所减少的物体的动能之和相等。
这种原理被广泛应用于弹簧秤、弹簧减振器等工程装置中。
四、摩擦力与机械能守恒定律摩擦力是机械能转化和守恒的一个重要因素。
当一个物体在表面上移动时,摩擦力将一部分机械能转化为热能,从而造成能量损失。
根据机械能守恒定律,机械能转换前后的总能量应该保持不变。
因此,我们可以通过对摩擦力的了解和应用,来减少能量的浪费和损失。
例如,在工程设计中,可以通过改善物体的表面润滑、减小接触面积等方法来减少摩擦力,从而提高机械系统的效率。
总结:机械能守恒定律是物理学中的重要定律,其在实际应用中起到了指导和优化的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、7 机械能守恒定律的应用一、教学目标1.熟悉应用机械能守恒定律解题的步骤.2.明了应用机械能守恒定律分析问题的注意点.二、重点·难点及解决办法1.重点:机械能守恒定律的具体应用。
2.难点:应用机械能守恒定律和动能定律分析解决较复杂的力学问题。
3.解决办法(1)分析典型例题,解剖麻雀,从而掌握机械能守恒定律应用的程序和方法。
(2)比较研究,能准确选择解决力学问题的方法、灵活运用各种定律分析问题。
三、教学步骤【引入新课】复习上节课的机械能守恒定律内容及数学表达式. 【新课教学】1、应用机械能守恒定律解题的步骤:(1)根据题意选取研究对象(物体或系统);(2)分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒; (3)确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能; (4)根据机械能守恒定律列出方程进行求解注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性。
例1:如图所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为。
的小球在倾斜轨道上由静止释放,要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大?分析及解答: 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功,小球机械能守恒.取轨道最低点为零重力势能面.因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第二定律可列R v m mg c 2= 得 gR mR v mc 2212= 在圆轨道最高点小球机械能mgR mgR E C 221+=在释放点,小球机械能为 mgh E A =根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解设R h 25= 同理,小球在最低点机械能 221B B mv E =gR v E E B C B 5:=小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F Rv mmg F B62==-据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下.例2.长l=80cm 的细绳上端固定,下端系一个质量m =100g 的小球。
将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放。
不计小球运动过程中,重力势能的变化量0)60cos 1(0=--=-=∆mgl mgh E p ,此过程中动能的变化量221mv E k -=∆。
机械能守恒定律还可以表达为0=∆+∆k p E E 即0)60cos 1(2102=--mgl mv整理得)60cos 1(202-=mg m l v m 又在最低点时,有lv m mg T 2=- 在最低点时绳对小球的拉力大小N N mg mg mg lv m mg T 2101.022)60cos 1(202=⨯⨯==-+=+= 提出问题:通过以上各例题,总结应用机械能守恒定律解决问题的基本方法。
2.机械能守恒定律在多个物体组成系统中的应用对单个物体能用机械能守恒定律解的题一般都能用动能定理解决.而且省去了确定是否守恒和选定零势能面的麻烦,反过来,能用动能定理来解决的题却不一定都能用机械能守恒定律来解决,在这个意义上讲,动能定理比机械能守恒定律应用更广泛更普遍。
故机械能守恒定律主要应用在多个物体组成的系统中。
例3:如图2-8-3所示,粗细均匀的U 形管内装有总长为4L 的水。
开始时阀门K 闭合,左右支管内水面高度差为L 。
打开阀门K 后,左右水面刚好相平时左管液面的速度是多大?(管的内部横截面很小,摩擦阻力忽略不计)解答:由于不考虑摩擦阻力,故整个水柱的机械能守恒。
从初始状态到左右支管水面相平为止,相当于有长L /2的水柱由左管移到右管。
系统的重力势能减少,动能增加。
该过程中,整个水柱势能的减少量等效于高L /2的水柱降低L /2重力势能的减少。
不妨设水柱总质量为8m ,则28212v m L mg ⋅⋅=⋅,得8gL v =例4:如图2-8-4所示,质量分别为2 m 和3m 的两个小球固定在一根直角尺的两端A 、B ,直角尺的顶点O 处有光滑的固定转动轴。
AO 、BO 的长分别为2L 和L 。
开始时直角尺的AO 部分处于水平位置而B 在O 的正下方。
让该系统由静止开始自由转动,求:当A 到达最低点时,A 小球的速度大小v ? 解答:以直角尺和两小球组成的系统为对象,由于转动过程不受摩擦和介质阻力,所以该系统的机械能守恒。
过程中A 的重力势能减少, A 、B 的动能和B 的重力势能增加,A 的即时速度总是B 的2倍。
222321221322⎪⎭⎫ ⎝⎛⋅+⋅⋅+⋅=⋅v m v m L mg L mg ,解得118gL v =例5:如图22所示,将楔木块放在光滑水平面上靠墙边处并用手固定,然后在木块和墙面之间放入一个小球,球的下缘离地面高度为H ,木块的倾角为θ,球和木块质量相等,一切接触面均光滑,放手让小球和木块同时由静止开始运动,求球着地时球和木块的速度。
解答:此题的关键是要找到球着地时小球和木块的速度的关系。
因为小球和木块总是相互接触的,所以小球的速度V 1和木块 的速度V 2在垂直于接触面的方向上的投影相等,即:V 1Cos θ=V 2Sin θ 由机械能守恒定律可得:mgH=mv 12/2+mv 22/2由上述二式可求得: V 1=gH 2.sin θ, V 2=gH 2.cos θ.2-8-32-8-4【同步检测】1、如图2-8-14所示,两质量相同的小球A 、B ,分别用线悬线在等高的O 1、O 2点,A 球的悬线比B 比球的悬线长,把两球的悬线均拉到水平后将小球无初速释放,则经过最低点时(悬点为零势能)( ) A .A 球的速度大于B 球的速度 B .A 球的动能大于B 球的动能C .A 球的机械能大于B 球的机械能D .A 球的机械能等于B 球的机械能2.如图2-8-15所示,小球自高为H 的A 点由静止开始沿光滑曲面下滑,到曲面底B 点飞离曲面,B 点处曲面的切线沿水平方向.若其他条件不变,只改变h ,则小球的水平射程s 的变化情况是 ( )A .h 增大,s 可能增大B .h 增大,s 可能减小C .A 减小,s 可能增大D .A 减小,s 可能减小3.用平行斜面向下的拉力将物体沿斜面拉下,拉力的大小等于摩擦力,则( ) A .物体做匀速运动 B .合外力对物体做功为零C .物体的机械能守恒D .物体的机械能减小 4.如图2-8-16所示,用长为L 的绳子一端系着一个质量为m 的小球,另一端固定在O 点,拉小球至A 点,此时绳子偏离竖直方向为θ角,空气阻力不计,松手后小球经过最低点的速率为( )A . 2glcos θB . 2gl (1—sin θ)C . 2gl (1—cos θ)D . 2gl5.细绳的一端固定,另一端系一质量为m 的小球,小球绕绳的固定点在竖直面内做圆周运动,细绳在小球的最低点和最高点的张力之差 为( )A .mgB .2mgC .4mgD .6mg6.如图2-8-17所示,小球从高处下落到竖直放置的轻弹簧上。
在将弹簧压缩到最短的整个过程中, 下列关于能量的叙述中正确的是( )A .重力势能和动能之和总保持不变B .重力势能和弹性势能之和总保持不变C .动能和弹性势能之和不断增加D .重力势能、弹性势能和动能之和总保持不变7.人站在h 高处的平台上,水平抛出一个质量为m 的物体,物体落地时的速度为v ,以地面为重力势能的零点,不计空气阻力,则有( )A .人对小球做的功是2mv 21 B .人对小球做的功是mgh mv 212- C .小球落地时的机械能是2mv 21 D .小球落地时的机械能是mgh mv 212-8.在下面列举的各例中,若不考虑阻力作用,则物体机械能发生变化的是( )A.用细杆栓着一个物体,以杆的另一端为固定轴,使物体在光滑水平面上做匀速率圆周运动 B.细杆栓着一个物体,以杆的另一端为固定轴,使物体在竖直平面内做匀速率圆周运动 C.物体沿光滑的曲面自由下滑D.用一沿固定斜面向上、大小等于物体所受摩擦力的拉力作用在物体上,使物体沿斜面向上运动9.如图2-8-18所示,长为L 1的橡皮条与长为L 2的细绳的一端都固定在O 点,另一端分别系两球A 和B ,A 和B 的质量相等,现将两绳都拉至水平位置,由静止释放放,摆至最低点时,橡皮条和细绳长度恰好相等,若不计橡皮条和细绳的质量,两球经最低点速度相比 ( )A .A 球大B .B 球大C .两球一样大D .条件不足,无法比较10.一根全长为L 、粗细均匀的铁链,对称地挂在轻小光滑的定滑轮θ L A O 2-8-16 L 21 BA 2-8-17 2-8-1511.从地面以40m/s 的初速度竖直上抛一物体,不计空气阻力,经过T 时间小球的重力势能是动能的3倍,则T= ,这时小球离地高度为 。
12.如图2-8-20所示,光滑圆柱O 被固定在水平平台上,质量为m 的小球用轻绳跨过柱体与质量为M(M>m)的小球相连,开始时,m 与平台接触,两边绳伸直,然后两球从静止开始运动,M 下降,m 上升,当上升到圆柱的最高点时,绳子突然断了,发现m 恰好做平抛运动,则M 是m 的多少倍?13.如图2-8-21,光滑圆管形轨道AB 部分平直,BC 部分是处于竖直平面内半径为R 的半圆,圆管截面半径r<<R ,有一质量m ,半径比r 略小的光滑小球以水平初速v 0射入圆管,(1)若要小球能从C 端出来,初速度v 0多大?(2)在小球从C 端出来的瞬间,对管壁的压力有哪几种典型情况,初速v 0各应满足什么条件?14.如图2-8-22所示,质量为m 的小球由长为L 的细绳(质量不计)固定在O 点,今将小球水平拉至A 点静止释放,在O 点正下方何处钉一铁钉O /方能使小球绕O /点在竖直平面内做圆周运动(设细绳碰钉子时无能量损)15.如图2-8-23所示,半径为r ,质量不计的圆盘盘面与地面相垂直,圆心处有一个垂直盘面的光滑水平固定轴O ,在盘的最右边缘固定有一个质量为m 的小球A ,在O 点的正下方离O 点r/2处固定一个质量也为m 的小球B .放开盘让其自由转动,问:(1)当A 球转到最低点时,两小球的重力势能之和减少了多少? (2)A 球转到最低点时的线速度是多少?(3)在转动过程中半径OA 向左偏离竖直方向的最大角度是多少? LA O O / 2-8-222-8-20 2-8-232-8-2116.质量均为m的物体A和B分别系在一根不计质量的细绳两端,绳子跨过固定在倾角为30°的斜面顶端的定滑轮上,斜面固定在水平地面上,开始时把物体B拉到斜面底端,这时物体A离地面的高度为0.8米,如图2-8-24所示。