高频变压器可靠度测试-2

高频变压器可靠度测试-2
高频变压器可靠度测试-2

東莞立亞達電子有限公司DONGGUANG READORE ELECTRONICS CO.,LTD

東莞立亞達電子有限公司DONGGUANG READORE ELECTRONICS CO.,LTD

東莞立亞達電子有限公司DONGGUANG READORE ELECTRONICS CO.,LTD

東莞立亞達電子有限公司DONGGUANG READORE ELECTRONICS CO.,LTD

東莞立亞達電子有限公司DONGGUANG READORE ELECTRONICS CO.,LTD

東莞立亞達電子有限公司DONGGUANG READORE ELECTRONICS CO.,LTD

東莞立亞達電子有限公司DONGGUANG READORE ELECTRONICS CO.,LTD

可靠性测试规范

手机可靠性测试规范 1. 目的 此可靠性测试检验规范的目的是尽可能地挖掘由设计,制造或机构部件所引发的机构部分潜在性问题,在正式生产之前寻找改善方法并解决上述问题点,为正式生产在产品质量上做必要的报证。 2. 范围 本规范仅适用于CECT通信科技有限责任公司手机电气特性测试。 3. 定义 UUT (Unit Under Test) 被测试手机 EVT (Engineering Verification Test) 工程验证测试 DVT (Design Verification Test) 设计验证测试 PVT (Product Verification Test) 生产验证测试 4. 引用文件 GB/T2423.17-2001 盐雾测试方法 GB/T 2423.1-2001 电工电子产品环境试验(试验Ab:低温) GB/T 2423.2-1995 电工电子产品环境试验(试验Bb:高温) GB/T 2423.3-1993 电工电子产品环境试验(试验Ca:恒定湿热) GB/T 2423.8-1995 电工电子产品环境试验(自由跌落) GB/T 2423.11-1997 电工电子产品环境试验(试验Fd: 宽频带随机振动) GB 3873-83 通信设备产品包装通用技术条件 《手机成品检验标准》XXX公司作业指导书 5. 测试样品需求数 总的样品需求为12pcs。 6. 测试项目及要求 6.1 初始化测试 在实验前都首先需要进行初始化测试,以保证UUT没有存在外观上的不良。如果碰到功能上的不良则需要先记录然后开始试验。在实验后也要进行初始化测试,检验经过实验是否造成不良。具体测试请参见《手机成品检验标准》。 6.2 机械应力测试 6.2.1 正弦振动测试 测试样品: 2 台

开关变压器漏感分析

开关变压器第一讲变压器基本概念与工作原理现代电子设备对电源的工作效率、体积以及安全要求等技术性能指标越来越高,在开关电源中决定这些技术性能指标的诸多因素中,基本上都与开关变压器的技术指标有关。开关电源变压器是开关电源中的关键器件,因此,在这一节中我们将非常详细地对与开关电源变压器相关的诸多技术参数进行理论分析。在分析开关变压器的工作原理的时候,必然会涉及磁场强度H和磁感应强度B以及磁通量等概念,为此,这里我们首先简单介绍它们的定义和概念。在自然界中无处不存在电场和磁场,在带电物体的周围必然会存在电场,在电场的作用下,周围的物体都会感应带电;同样在带磁物体的周围必然会存在磁场,在磁场的作用下,周围的物体也都会被感应产生磁通。现代磁学研究表明:一切磁现象都起源于电流。磁性材料或磁感应也不例外,铁磁现象的起源是由于材料内部原子核外电子运动形成的微电流,亦称分子电流,这些微电流的集合效应使得材料对外呈现各种各样的宏观磁特性。因为每一个微电流都产生磁效应,所以把一个单位微电流称为一个磁偶极子。因此,磁场强度的大小与磁偶极子的分布有关。在宏观条件下,磁场强度可以定义为空间某处磁场的大小。我们知道,电场强度的概念是用单位电荷在电场中所产生的作用力来定义的,而在磁场中就很难找到一个类似于“单位电荷”或“单位磁场”的带磁物质来定义磁场强度,为此,电场强度的定义只好借用流过单位长度导体电流的概念来定义磁场强度,但这个概念本应该是用来定义电磁感应强度的,因为电磁场是可以互相产生感应的。幸好,电磁感应强度不但与流过单位长度导体的电流大小相关,而且还与介质的属性有关。所以,电磁感应强度可以在磁场强度的基础上再乘以一个代表介质属性的系数来表示。这个代表介质属性的系数人们把它称为导磁率。在电磁场理论中,磁场强度H的定义为:在真空中垂直于磁场方向的通电直导线,受到的磁场的作用力F跟电流I和导线长度的乘积I 的

高频变压器的计算

高频变压器参数计算 2009-08-28 11:26 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数

电力变压器可靠性分析及其寿命评估 王鹏

电力变压器可靠性分析及其寿命评估王鹏 发表时间:2019-06-04T15:59:53.327Z 来源:《电力设备》2019年第2期作者:王鹏路辉[导读] 摘要:随着我国西电东运和全国网络和特高压项目的推广,电网安全稳定运行也将面临更大的挑战。 (国网廊坊供电公司廊坊市 065000) 摘要:随着我国西电东运和全国网络和特高压项目的推广,电网安全稳定运行也将面临更大的挑战。近年来电力变压器的可靠运行逐渐成为了国内外学者的研究重点。随着变压器电压等级的提高,其发生故障给系统带来的损失越来越大。为了提升变压器的可靠性,有效地延长电力设备的使用寿命,让投资和回报有一个最佳的平衡,需要对其进行全面的准确的可靠性评估。因此,如何科学地评估其寿命,保证超期服役的电力设备安全运行是个亟待解决的问题。本文简述了电力变压寿命分析评估方法,分析了影响电力变压器寿命的因素,探讨了阻止电力变压器加速老化的对策及大型变压器寿命管理的方法。 关键词:变压器可靠性使用寿命防护措施 一、影响变压器可靠运行的因素 1.变压器铁芯故障 在正常情况下,变压器铁芯只有一个接地点,以限制流过铁心和铁心点的电流。当磁芯未在多点接地或接地时,会导致磁芯发生故障,导致变压器过热,影响变压器的正常运行。当发生芯子故障时,相邻硅钢片之间的绝缘漆膜烧坏。在严重的情况下,磁芯可能会过热和放电,从而在电压发生器内部产生可燃气体,这可能导致变压器开关跳闸中的电源故障。 2.变压器导电回路故障 如果变压器接头焊接不良,从物理角度来看,导电回路的横截面积相应减小,从而局部电阻增加。根据功率损耗的计算方法:功率=电流的平方×截面电阻,当正常电流通过时,由于截面积的增加,功率损耗会增加,变压器接头处的温度变得过高,从而加速了接头。机械变形和氧化腐蚀,接头处的电阻不断增加,使循环往复运动,最终烧毁变压器的绝缘层,导致电源故障。 3.变压器绕组绝缘损坏故障 当变压器绕组绝缘损坏变压器,变压器自身的绕组和匝间绝缘,以及一些金属绝缘等,如果有绝缘损坏,就会导致绕组短路,即在绕组内部形成闭合电流回路。当大电流通过时,绕组产生额外的热量和损耗,这导致变压器的稳定异常。变压器的三相电压输出未达到平衡,运行噪音增加。绕组的短路主要是由于绕组线圈在短距离电力作用下的位移,导致绝缘磨损引起的短路;绝缘材料在运行过程中自然老化或在局部高温下破裂;导线的质量差,绕组的绕组不适合压接和卷绕过程,金属材料进入损坏的绝缘层。 4.变压器漏磁故障 变压器铁心产生的磁通称为主磁通。在正常情况下,铁芯产生的额定主磁通量不饱和。当复杂电流流入变压器时,绕组将会泄漏。助焊剂现象。主磁通穿过铁磁材料,漏磁通穿过绕组周围的空间。当漏磁通过某些金属部件时,会产生涡流,从而产生热量。变压器的容量与负载电流成比例,并且变压器的容量增加。它容易发生热故障。通常,燃料箱的温度最接近绕组或导体。 5.散热条件差 当变压器在高温环境下长时间运行,或变压器周围有热源时,房间内的通风散热措施不好,建筑物与变压器之间的散热距离太大关闭,变压器产生的热量不能及时。消散到空气中,导致变压器的温度上升,绕组电阻变大,然后变压器会产生更多的热量,导致变压器的温度异常。 6.变压器冷却系统异常 运行中的变压器产生通过变压器自己冷却油或散热器传递到周围环境的热量一定的数量。当变压器冷却器油泵损坏,风扇马达被损坏,灰尘和其它碎屑附着在热管中,油循环路径被阻挡,油流量减小,并且变压器的散热受到影响,从而导致在增加了变压器的温度。在停电的情况下,冷却系统停止工作,这将导致变压器的温度持续升高,导致变压器烧坏。 二、变压器运行中的防护措施 1.加强对油温及绕组温度的监测,根据监测结果及时调整负荷状态。要防止或减少变压器在过负荷状态下运行,因为它是以牺牲寿命为代价的,尤其是热点温度高达160℃的短期急救过负荷运行,对变压器绝缘寿命危害极大。必须过负荷运行时,要严格执行变压器厂家提供的过负荷能力表,不能超越。 2.加强对线路的巡视,防止发生变压器出口突发性短路,尤其要防止外界偶然因素和环境因素造成的突发性短路。科学设置继电器保护整定值,短路时能快速切断故障电流,减小短路电流对变压器的冲击。 3.加强变压器的常规电气测试,如测试绕组直流电阻,比率,空载电流,空载损耗,局部放电,铁芯绝缘电阻和接地电流,并综合分析各种电气测试数据及时。事先判断错误。加强变压器在线诊断,例如对变压器进行局部放电的在线测量、绝缘油的在线色谱分析和油中微水分析。通过对变压器局放和油中气体含量的色谱分析、微水分析及时发现变压器异常,及早发现故障。必要时还可以进行油中糠醛含量和绝缘纸聚合度的测量,来判断绝缘的老化程度。 4.密封件属于低值易耗品,建议在变压器每次检修时更换所有的密封件,加强变压器的密封性。 四、大型变压器寿命管理的方法 变压器寿命管理的核心是确定绝缘寿命的状态。除了防止变压器绝缘老化的措施外,还应建立一系列检查系统和检查系统,以确保变压器的安全运行。 1.预警系统大型变压器在线监测系统(氢气,局部放电和绝缘的在线监测)可以预先发现变压器操作期间异常的条件。在线监测与专家系统相结合预测变压器的绝缘和在变压器发芽的初始阶段发现异常情况。 2.现场诊断现场诊断是确定变压器绝缘强度的一种方法。现场诊断和趋势分析的结合是最重要的检测手段,能及时检测变压器的过热、局部放电、电介质劣化、线圈位移等。有下列检测项目: a)局部放电测量。当变压器出现异常或油色谱仪中出现C2H2时,应对变压器进行现场局部放电测量。超声定位仪可以定位局部放电部位。 b)定期测量油温和盘管温度。通过查明变压器是否过载或部分过热,可以进行更详细的诊断。 c)油的色谱分析。通过色谱分析变压器油中的气体含量,及时发现变压器异常。d)测量油中的糠醛含量。它可以判断变压器的老化程度。当色谱分析中的CO或CO2含量很高时,应进行此测量。 e)绝缘油的微水分析。

高频变压器检验规范

页序1of3 版本首版发行制定审核日期A/0版本变更 批准: 生效日期:

页序2of3 1.0 目的 规范高频变压器的检验内容与方式,以确保来料品质符合产品生产要求 2.0 范围 仅适用于高频变压器的一般检验 3.0 参考 COP830-01不合格品控制程序 COP743-01来料检验控制程序 4.0 定义 一种由铁氧体和漆包线组成的电子元器件,主要作用是在频率较高的范围内转换电磁过程 5.0 责任 5.1 IQC负责其物料检验或试验 5.2 MRB负责不合格物料的处理 6.0 程序: 6.1抽样 6.1.1外观检验:依据MIL-STD-105E按LevelⅡ级水准进行抽样,抽样时应随机从批量不同的包装单元中抽取,切忌单一从最小单元中抽取样品数 6.1.2特性&尺寸与实验则按Level S-2级水准进行抽样,并从LevelⅡ级抽样数中抽取样品数 6.2检验项目及标准 检验项目检验标准 缺陷判定 检验方法 Min Maj Cri 外观1.胶芯无破裂、烂。 2.针脚光亮、无氧化发黑、锈蚀、压痕、变 形、毛刺、锡点大或过高。 3.磁芯无破损、断裂、披锋、结合处间隙小、 均匀。 4.表面无积油、锡渣。 5.变压器无露铜。 × × × × × 以内臂长 70%左右时 照样品目视 检验 尺寸1.符合设计/开发确认资料或样品要求。 2.允许公差以零件规格书为准,无要求时, 一般允许公差: 外形尺寸:±0.5mm 引脚直径、长度:±0.1mm 引脚间中心距离:±0.3mm 初次间引脚中心距离:±0.5mm × ×参照样品检 验用游标卡 尺、千分尺 测量 制定审核批准

标 准高频变压器检验规范 文件编号QA-WI-577 版本A/0 页序3of3 检验项目检验标准 缺陷判定 检验方法 Min Maj Cri 特性1.电感量符合零件规格书要求,无要求时, 一般误差:±10% 2.直流电阻符合零件规格书,无要求时,一 般误差:±15% 3.相位正确。 4.初级、次级、磁芯之间耐压不低于工程确 认资料要求。 × × × × 1.LCR仪表 测试。 2.用LCR仪 表测试,同 相增加,反 相减少。 3.用高压机 测试。 实验1.可焊性 表面光泽、无凹凸点毛刺,浸锡均匀,无发 黑或不沾锡现象。 × 锡槽法可焊 性实验。 (温度 350℃± 20℃) 制定审核批准

很实用-很准的计算变压器资料

MOSFET开关管工作的最大占空比Dmax: 式中:Vor为副边折射到原边的反射电压,当输入为AC220V时反射电压为135V;VminDC为整流后的最低直流电压;VDS为MOSFET功率管导通时D与S极间电压,一般取10V。 变压器原边绕组电流峰值IPK为: 式中:η为变压器的转换效率;Po为输出额定功率,单位为W。 变压器原边电感量LP: 式中:Ts为开关管的周期(s);LP单位为H。 变压器的气隙lg:

式中:Ae为磁芯的有效截面积(cm2);△B为磁芯工作磁感应强度变化值(T);Lp单位取H,IPK单位取A,lg单位为mm。 变压器磁芯 反激式变换器功率通常较小,一般选用铁氧体磁芯作为变压器磁芯,其功率容量AP为 式中:AQ为磁芯窗口面积,单位为cm2;Ae为磁芯的有效截面积,单位为cm2;Po 是变压器的标称输出功率,单位为W;fs为开关管的开关频率;Bm为磁芯最大磁感应强度,单位为T;δ为线圈导线的电流密度,通常取200~300A/cm2,η是变压器的转换效率;Km 为窗口填充系数,一般为0.2~0.4;KC为磁芯的填充系数,对于铁氧体为1.0。 根据求得的AP值选择余量稍大的磁芯,一般尽量选择窗口长宽之比较大的磁芯,这样磁芯的窗口有效使用系数较高,同时可以减少漏感。 变压器原边匝数NP: 式中:△B为磁芯工作磁感应强度变化值(T),Ae单位为cm2,Ts单位为s。 变压器副边匝数Ns:

式中:VD为变压器二次侧整流二极管导通的正向压降。 功率开关管的选择 开关管的最小电压应力UDS 一般选择DS间击穿电压应比式(9)计算值稍大的MOSFET功率管。 绕组电阻值R: 式中:MUT为平均每匝导线长度(cm);N为导线匝数; 为20℃时导线每cm的电阻值(μΩ)。 绕组铜耗PCU为: 原、副边绕组电阻值可通过求绕组电阻值R的公式求出,当求原边绕组铜耗时,电流用原边峰值电流IPK来计算;求副边绕组铜耗时,电流用输出电流Io来计算。 磁芯损耗 磁芯损耗取决于工作频率、工作磁感应强度、电路工作状态和所选用的磁芯材料的性能。对于双极性开关变压器,磁芯损耗PC:

开关电源变压器的漏感

开关电源变压器的漏感 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原 理和减少漏感的产生也是开关变压器设计的重要内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。另外,在计算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。 图2-30是分析计算开关变压器线圈之间漏感的原理图。下面我们就用图2-30来简单分析开关变压器线圈之间产生漏感的原理,并进行一些比较简单的计算。 在图2-30中,N1、N2分别为变压器的初、次级线圈,Tc 是变压器铁芯。r 是变压器铁芯的半径,r1、r2分别是变压器初、次级线圈的半径;d1为初级线圈到铁芯的距离,d2为初、次级线圈之间的距离。为了分析计算简单,这里假设变压器初、次级线圈的匝数以及线大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

径相等,流过线圈的电流全部集中在线径的中心;因此,它们之间的距离全部是两线圈之间的中心距离,如虚线所示。 设铁芯的截面积为S ,S=πr2;初级线圈的截面积为S1,S1=πr 21;次级线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S ;次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1, 在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量 为φ1';电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。 图2.30 由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为:大比特电子变压器论坛 h t t p ://b b s .b i g -b i t .c o m

开关电源变压器测试标准

开关电源变压器测试标准 正常的试验大气条件(除有规定条件除外,均应在正常试验条件下进行试验): 温 度: 15~35℃ 相对湿度: 45%~75% 气 压: 86~106kPa 一、直流铜阻 目的:保证每一绕组使用正确的漆包线规格。 仪器:TH2511低直流电阻测试仪。 方法:变压器各绕组在温度为20℃时的直流电阻,应符合产品规格书的标准。 若测量环境温度不等于20℃时,应按下面的公式换算 R 20=θ +5.2345 .254R θ 式中: R 20——温度为20时的直流电阻,Ω; R θ ——温度为θ 时测得的直流电阻,Ω; θ——测量时的环境温度,℃。 二、电感量 目的:确保使用正确的磁性材料及绕组圈数的正确性。 仪器:WK3255B 电桥。 方法:对变压器测试端施加额定条件的电桥,测试电感量。见图1 图1 开路

三、直流叠加 目的:检验磁芯的磁饱和特性或实际工作条件下的磁芯特性。 仪器:WK3255B 电桥;FJ1772A 直流磁化电源。 方法:对变压器测试端施加规定的直流电流,用电桥测试电感量。见图2 图2 图中I 0 —— 在测试端N1绕组施加的直流电流 四、漏感 目的:保证绕组处于骨架上正确的位置以及磁性材料的气隙大小的正确性。 仪器:WK3255B 电桥。 方法:将所测变压器次级端短路,在初级端施加额定条件的电桥测试电感量。 见图3 图3 五、绝缘电阻 目的:保证每一绕组对磁芯、静电屏蔽及各绕组间绝缘电阻性能满足所需的 技术指标。 仪器:2679绝缘电阻测试仪。 短 路

方法:用绝缘电阻测试仪对变压器的初次级绕组间或绕组和磁芯、静电屏蔽间施加直流电压500V,测试绝缘电阻值。 不作包装或简易包装的非灌封、浇注结构的元件,测量常态绝缘电阻 前,可先进行预处理。预处理方法:清除变压器表面的尘垢,再将变 压器放入温度80±5℃的烘箱内,保持表1规定的时间从箱内取出, 在正常大气条件下放置48h。 表1 六、绝缘耐压 目的:保证绕组使用了正确的材料和绕组处于正确的位置并提供所需的安全隔离等级。 仪器:2671绝缘耐压测试仪。 方法:将试验电压施加在被测绕组与磁芯、静电屏蔽间,其他绕组与磁芯及静电屏蔽相连。 试验电压在2KV以上时,应从零开始逐渐升高电压至规定值,并保持 规定时间,然后逐渐将试验电压降至零再切断电源。 七、相位 目的:保证每个绕组绕线方向的正确性,即同名端位置是否符合要求。 仪器:3250综合测试仪。 图4 左图黑点标明该变压器的同名端;即表示1、3为绕组的绕线起头端。

高频开关电源变压器的动态测试

高频开关电源变压器的动态测试 (JP2581B+JP619B材料功耗测量系统应用笔记之一) 1 引言 目前,对高频开关电源变压器电磁参数‘测试’大约使用两种方法:一种是用LCR表测量一些基本电磁参数,例如,开关电源变压器初次级电感、漏感、分布电容、绕组直流电阻以及匝比、相位等,我们称这种测试方法为’静态’测试;一种是将开关电源变压器放到主机上考核其工作情况,对已经定型生产的开关电源变压器,为考核外购磁芯质量,通过测量变压器工作温升判断磁芯的损耗比较直观简便。前一种方法因在弱场、低频低磁感应强度(例如Bm<0.25mT、f=1kHz)下测量,由于磁性材料特性的非线性、不可逆和对温度敏感,其在强场下工作与在弱场情况下工作电磁特性有很大不同。弱场下测量结果不能反映磁性器件工作在强场下的情况;后一种方法虽随主机在强场下应用,但不能得到被测器件电磁参数。磁芯损耗需要专用仪器才能测量。 高频开关电源变压器的上述测试分析现状影响了此类器件的开发和生产。 需要开发一种仪器或测试系统,这种测试系统能够模拟实际工作条件,完成对高频开关电源变压器主要电磁参数分析,例如,各种负载(包括满载和空载)情况下变压器初级复数阻抗z、有效初级电感L,通过功率Pth、功率损耗PT、传输效率η以及在指定频率下磁芯的传输功率密度等,我们称这种模拟实际工作条件的测试为‘动态’测试。作为磁性器件综合测试系统,还要求具有对磁芯材料功率损耗分析功能。在电磁机器进一步小型化、高频化和采用高密度组装情况下对器件进行‘动态’分析,对加速象高频开关电源之类的电磁器件开发、提高器件质量显得特别重要。 2 测试系统简介 JP2581B+JP619B材料功耗及器件功率测量系统是一种交流电压、电流和功率精密测量装置。其主要测量功能、指标和测量精度非常适用于磁性材料和磁性器件(例如,开关电源变压器)研究开发和磁芯产品快速检测。该系统配套完整,自成体系,无需用户增加额外投资,系统主要测试功能如下: 1、软磁材料及器件交流功率损耗(总功耗PL , 质量比功耗 Pcm , 体积比功耗 Pcv)测量; 2、磁性材料振幅磁导率μa测量; 3、磁芯(有效)振幅磁导率(μa)e测量; 磁芯因素(AL)e.测量 以上测量均符合IEC367--1(或GB9632--88)标准中推荐的测量方法。 4、电感、电容及组成器件(例如,开关电源变压器)等效电磁参数的动态测量和分析; 5、由测量结果分析器件下列参数: z |z| Ls Rs Lp Rp C Q D。 测试系统具有如下使用、操作特点:

2014国家电网变压器试验标准

变压器试验项目清单10kV级 例行试验 绕组直流电阻互差: 线间小于2%,相间小于4%; 电压比误差: 主分接小于0.5%,其他分接小于1%; 绝缘电阻测试:2500V摇表高压绕组大于或等于1000MΩ,其他绕组大雨或等于500MΩ; 局部放电测量(适用于干式变压器) 工频耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 噪声测试 密封性试验(适用于油浸式变压器) 附件和主要材料的试验(或提供试验报告) 现场试验: 按GB50150相关规定执行 绝缘油试验 绕组连同套管的直流电阻

变压比测量 联结组标号检定 铁心绝缘电阻 绕组连同套管的绝缘电阻 绕组连同套管的交流工频耐压试验 额定电压下的合闸试验 抽检试验 绕组电阻测量 变压比测量 绝缘电阻测量 雷电全波冲击试验 外施耐压试验 感应耐压试验 空载电流及空载损耗测试 短路阻抗及负载损耗测试 绝缘油试验 xx试验 油箱密封性试验(适用于油浸式变压器)容量测试 变压器过载试验 联结组标号检定

突发短路试验 长时间过载试验 35kV级 应提供变压器和附件相应的型式试验报告和例行试验报告 例行试验 绕组电阻测量 电压比测量和联结组标号检定 短路阻抗及负载损耗测量 1.短路阻抗测量: 主分接、最大、最小分接、主分接低电流(例如5A2负载损耗: 主分接、最大、最小分接 3短路阻抗及负载损耗均应换算到75℃ 空载损耗和空载电流测量 1.10%-115%额定电压下进行空载损耗和空载电流测量,并绘制出励磁曲线 2.空载损耗和空载电流进行校正 3.提供380V电压下的空载损耗和空载电流 绕组连同套管的绝缘电阻测量: 比值不小于1.3,或高于5000MΩ绕组的介质损耗因数(tanδ)和电容测量 1.油温10-40℃之间测量 2.报告中应有设备的详细说明

详解开关电源变压器的漏感

详解开关电源变压器的漏感 任何变压器都存在漏感,但开关变压器的漏感对开关电源性能指标的影响 特别重要。由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈 的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。因此,分析漏感产生的原理和减少漏感的产生也是开关变压器设计的重要 内容之一。 开关变压器线圈之间存在漏感,是因为线圈之间存在漏磁通而产生的;因此,计算出线圈之间的漏磁通量就可以计算出漏感的数值。要计算变压器线圈 之间存在的漏磁通,首先是要知道两个线圈之间的磁场分布。我们知道螺旋线 圈中的磁场分布与两块极板中的电场分布有些相似之处,就是螺旋线圈中磁场 强度分布是基本均匀的,并且磁场能量基本集中在螺旋线圈之中。另外,在计 算螺旋线圈之内或之外的磁场强度分布时,比较复杂的情况可用麦克斯韦定理 或毕-沙定理,而比较简单的情况可用安培环路定律或磁路的克希霍夫定律。 在设铁芯的截面积为S,S=πr2;初级线圈的截面积为S1,S1=πr21;次级 线圈的截面积为S2,S2=πr22;初级线圈与铁芯的间隔截面积为Sd1,Sd1=S1-S; 次级线圈与初级线圈的间隙截面积为Sd2,Sd2=S2-S1;电流I1流过初级线圈产生的磁场强度为H1,在面积S1之内产生的磁通量为φ1,在面积Sd2之内产生的磁通量为φ1’;电流I2流过次级线圈产生的的磁场强度为H2,磁通量为φ2。 由此可以求得电流I2流过变压器次级线圈N2产生的磁通量为: 电流I2流过变压器次级线圈N2产生的磁通量 (2-95)、(2-96)式中,μ0sd2H2=φ2就是变压器次级线圈N2对初级线圈 N1的漏磁通;因为,这一部分磁通没有穿过变压器初级线圈N1。漏磁通可以等

变压器漏感分析

首先我们要感谢小鹏同学,能促成此次活动小鹏同学辛苦了。 原创:我们不是科学家只是使用者我对此的理解为学习的资料系统化活学活用,实践整理为自己的东西能把不明白的人讲明白的东西(这里说句题外话会做的工程师是死记硬搬了别人东西那么你只能是同 等级下最低的那个工程师,会做能把不会的人说明白了,是你把别人的东西活学活用转换成了自己的东西徒弟多了人际也就打开了,我经常跟我教过的人说我教你的东西你要实践对比验证,知道是别人的,做了才是你自己的),所以不需要查字典对原创二字解释,对你自己理解有帮助就好,当然照篇翻的肯定是不行的,当然有些太深奥的东西不要去深究我们是使用者理解就好,当然透彻的研究更好,但是我们不是专业科研人员只是使用者所以我们不会有太多的时间研究我 们所用到的各种知识。我这就是犯病了非得研究漏感还整到这个点。就像上面说的我们是使用者注重的是理解,会有错误的地方,有能帮我纠正想法的十分感谢,辉哥对磁这一块我比较佩服,辉哥指点指点。大家都知道减小漏感的方法我们来研究一下为什么会减小。 设计上: 减小初级绕组的匝数NP; 增大绕组的宽度(例如选EE型磁芯,以增加骨架宽度b); 减小各绕组之间的绝缘层; 增加绕组之间的耦合程度。 工艺上: 每一组绕组都要绕紧,并且要分布平均

引出线的地方要中规中矩,尽量成直角,紧贴骨架壁 不能绕满一层的要平均疏绕满一层 1、漏感是什么,通俗的大家都理解没有耦合到副边的磁通(能量)我翻阅了基本资料,说法都不同,个人更喜欢用下图理解Np导线流过I就会产生一个磁场,这个磁场穿过相邻的导线Ns就会在Ns上感应一个电压抵消外界磁场的作用,此感应电流同样作用在Ns上,NpNs 电流方向相反,根据右手定律磁场方向也相反,Ns的磁场阻值下图d2部分的磁通二次穿过Ns。下图d2面积中的磁通能量为漏感。 磁芯截面积S=πr2 Np截面积Sp=πr12 Ns截面积 Ss=πr22

输出变压器的简易测试

输出变压器的简易测试 ----欧博M100KIT套件试用记 安玉景 自制电子管功放的最大困难莫过于绕制输出变压器和加工底盘。输出变压器的素质是决定功放音质的关键所在,而自制一个高质量的输出变压器是相当困难的。本人经过反复试验,多次失败后,绕制的输出变压器虽然也达到了相当满意的水平,但完成复杂的绕制工艺、烘干、真空浸漆等一系列程序也不是件轻而易举的事情,总是让人绕完这一对,就不想再做下一对了。因此虽早有朋友让我代为制作一台功放,但总是一拖再拖,半年一年过去了,仍迟迟不愿动手。购买成品变压器和底盘来制作功放,当然是事半功倍。因为自制底盘既费工费时,又不容易做得美观。再说,进口的输出变压器(如TAGNO,AUDIO NOTE等)国内难以购到,退一步说,即使能购得到,其价格也难以接受,足足可以用这笔钱买一台质量上好的国产整机。国内也有不少厂商销售输出变压器,其中大公司的产品质量比较有保证,是公司的设计师们多年实践经验和心血的结晶,技术含量高,但价格也相对较高。还有一些名不见经传的小厂产品,价格较低,但质量如何,却是令人心中无底。几年前,本人经不住广告词的诱惑,曾邮购了南方某厂生产的一只300B单端环形输出变压器,回来一测,阻抗为4kΩ(标称为3.5kΩ),初级电感量仅6.5H。装在机上一测频响更糟,-3dB下限频率高达56Hz,在高频端22kHz处还有一个+2dB的峰,只好将它弃之不用。幸亏当时已经有了“邮购经验”,仅邮了一只,否则损失更严重。邮购犹如“隔山买牛”,没有“后悔药”可吃,只有吃一堑长一智。今年二月,看到《电子世界》杂志上刊登有欧博M100KIT套件供应的消息,价格仅整机价格的一半多点,这对于有点动手能力的胆机爱好者来说,确实是件令人心动的事。但我仍然心有余悸,不免在想,在前置和倒相级的印刷电路已经安装焊接完毕的前提下,价格竟下跌了一千多元,是不是其中的关键器件──输出变压器的质量上有什么妥协?故不敢冒然邮购。M 100整机我们听过,音质价格比很高,这也是该产品在石家庄销路很好的原因之一,M 100 KIT套件的输出变压器与整机中所用的是否一样?带着这个疑虑,本地一个胆机发烧友亲赴北京欧博公司,咨询了公司总经理。刘总经理言道:“M 100 KIT中的变压器与整机中所用的变压器是完全一样的,我们没有必要再为套件另外制作一批质量低一档次的变压器。”有他这句话,那位朋友当即带回两套件。我听说以后,也通过欧博公司的河北经销商──天歌电器购买了一套。 买回套件后的第一件事,当然是检查输出变压器。先从底板下面卸下输出变压器圆罩的三只φ3mm固定螺母,取下黑色圆罩,即可按下述步骤进行检查测试。 输出变压器的简易测试 首先是外观检查,其铁芯外面缠绕了一层黑色不干胶带,撕去以后,即可看见其硅钢片,片厚约0.35mm,冲制工艺一般,不够整齐光滑,而且其中硅钢片的颜色深浅有所不同,不象我们几个发烧友从广东某公司邮购来的硅钢片那样整齐光滑,颜色黝黑,不用外罩也非常美观。又看到铁芯未曾浸漆,只将线包作过浸漆处理,所以给人的第一印象不怎么样,可以说工艺水平甚至比不上六七十年代上海无线电二十七厂或上无二厂的变压器。因此初步打算,等测量完其他指标以后如果满意的话,再把它拆下来作整体烘干浸漆处理。本人未曾见过M 100整机中的输出变压器是否也是这个样子?因为它藏在一个黑色的“遮羞罩”中。据曾见过其庐山真面目的发烧友说,二者是相同的,仅从这一点上看,欧博刘总的话是可信的。但总对其硅钢片有点“耿耿于怀”,于

高频变压器制作与技术参数

高频变压器制作与技术参数 脉冲变压器也可称作开关变压器,或简单地称作高频变压器。在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。 随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。 开关变压器与普通变压器的区别大致有以下几点: (1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。 (2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。 (3)绕组线路比较复杂,多半都有中心抽头。这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。

图1 开关电源原理图 本文介绍了一款如图1所示的DC—DC变换器,输入电压为直流24V,输出电压分别为5V 及12V的多路直流输出。要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200kHz。根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。 2变压器磁芯的选择与工作点的确定 2.1 磁芯材料的选择 从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中

变压器直阻试验

变压器直阻试验 一、试验原理及作用 原理: 电力变压器绕组可等效于一个被测绕组电感L与电阻R串联的等值电路,见图1。绕组的电感很大,约为数百至数千亨,而直流电阻较小,并且变压器的容量越大,电压等级越高,电感与电阻的比值就越大。当直流电压加于被测绕组,由于电感中的电流不能突变,所以直流电源刚接通的瞬间,即t=0时,L中的电流为零,电阻中也无电流,因此,电阻上没有压降,全部外施电压加在电感的两端。 测量回路(忽略回路引线电阻)的过渡过程应满足以下公式: 图 1 (1) (2) 式(1)、(2)中,为外施直流电压,V;R为绕组的直流电阻,Ω;L为绕组的电感,H;i为通过绕组的直流电流,A。电路达到稳定时间的长短,取决于R 与L的比值,即τ=L/R,τ称为该电路的时间常数,即τ越大,达到稳定的时间越长。由于大型变压器的τ值比小变压器的大得多,所以大型变压器达到稳定的时间相当长。在进行低压测量时,应注意选择合适的测量仪器和测量方法,大容量的变压器应选用充电电流为20 A 以上的测试仪,测试过程中绕组不能短路,测量时间应足够。 作用: 测量变压器绕组的直流电阻是变压器预防性和交接试验中一个非常重要的项目。通过这个试验可以检查绕组和引出线是否有断股和焊接质量问题, 绕组层、匝间是否有短路, 检查并联支路的正确性以及是否存在几条导线绕成的绕组发生断线, 还可以检查分接开关各位置接触是否良好等等。在一定意义上说变压器绕组直流电阻的测量有时候是判断电流回路连接状况最有效的办法。 二、仪器使用(讲解/实操) JYR-50A直流电阻测试仪技术指标: (1)输出电流:50A 、20A、10A、5A

可靠性测试标准模板

丝印、喷油产品测试要求 1.0目的 指导检查员正确地进行可靠性测试, 保证本公司产品满足客户品质要求。 2.0适用范围 适用于本公司生产的所有需丝印、喷油加工产品的可靠性测试。 3.0定义 3.1.可靠性: 即产品在规定条件下进行的环境模拟测试, 其品质特性和耐受性能达 到规定的要求。 3.2.测试周期, 即在往返测试中, 往返各一次为一个测试周期。 3.3.单项测试: 即每一个产品有多项测试要求时每一个部件只完成其中的一项测 试。 3.4.多项测试: 即每一个产品有多项测试要求时, 每一个部件要完成2个或以上的 测试项目。 4.0职责 检查员应按此指引作业, 保证产品达到客户的品质要求。 5.0工作步骤 5.1产品的丝印、喷油可靠性测试( 包括没有明确测试要求的产品) 5.1.1测试材料及工具 5.1.1.178%浓度的酒精5.1.1.295%浓度的酒精5.1.1.3200g的铁锤 5.1.1.4粗纹的干净白布5.1.1.53M600测试胶纸5.1.1.6界刀 5.1.1.7恒温恒湿炉5.1.1.8RCA纸带测试机5.1.1.9测试专用纸带 5.1.1.10热熔胶5.1.1.11剪钳 5.1.2酒精测试( 每次测试1—2PCS)

5.1.2.1把粗纹的干净白布包在200g的铁锤上, 包好之后用95%浓度的酒精浸润, 然后将此浸润后的铁锤在丝印字钮上水平移动来回摩擦, 行程30mm, 频率20周期( 40次) /分钟, 连续摩擦50周期( 100次) , ( 移印字钮用95%浓度的酒精进行测试) 。 5.1.2.2字钮之外的其它物料用78%浓度的酒清进行测试, 方法同5.1.2.1 5.1.2.3酒清测试接受标准: 测试样品测试后不褪色, 不脱油, 无臌胀。 5.1.3胶纸测试( 每次测试2—4PCS) 5.1.3.1胶纸测试方法: 取样品平坦部分, 用界刀纵横划100个1mmX1mm的小方格( 如图1) , 丝印也需要划方格, 深度以能见底材为准, 不宜过深, 过深刀口附近漆膜将会翻起, 影响测试, 然后用3M测试胶纸紧贴在上面, 用手指肉体部分或橡皮压平, 然后拉着胶纸尾部以90°角方向突然向上提起同一部位连续测试10次( 如图2) 。 5.1.3.2胶纸测试接受标准: a.附着力=未脱落漆膜的方格数/100; b.每小格内如果漆膜脱落面积小于方格面积的1/5可视为未脱落( 如图3) c.按前a,b点判定胶纸测试接受标准: 附着力为100/100方为合格 5.1.4高温高湿测试( 每种货每天平均取样不少于测试3PCS, 此测试当客户有要求时才做) 5.1.4.1将塑胶喷油试样在过炉烘干4小时后存在温度为60±2°C, 温度90%±3%之恒温恒湿炉中存放48H 5.1.4.2高温高湿测试接受标准: 室温后观察漆膜无皱纹、起泡、裂纹、剥落及 明显的失光等现象为合格( 由于底材老化引起的变色, 失色应不影响判 定) 。 5.1.5RCA测试( 现只有中建产品需做此项测试)

基于ANSYS的漏感变压器仿真计算

基于ANSYS的漏感变压器仿真计算 0 引言 随着微波炉的普及,微波炉的需求越来越多,大量制造时需要考虑节约成本以及性能要求,漏感变压器作为微波炉核心器件之一,影响着微波炉整体性能以及制造费用。 漏感变压器作为一种特殊的变压器,他不但能起到变压的作用;同时由于漏感的存在,还能起到稳定电压的作用,这是由于当初级电压变化时产生的磁通量没有全部锁定在铁芯中形成主磁通,而是有一部分分布在线圈与空气之间。当初级电压变化时,次级的感应电动势的变化就不会如理想变压器那么剧烈,也就起到了稳压的作用。 由于漏感分布在线圈和空气中,传统的分析方法是采用路的分析方法,无法计算漏感确切的分布位置以及强度,长期以来只能靠经验来判定。另一方面,传统的计算方法只能得到宏观特性,不能得到精细的变压器内部结构。再加上铁芯的材料一般都是非线性的,这使得计算求解更加困难,只能用线性B-H曲线代替求解,使得计算不准确。要想得到变压器的精确数据,就只有依靠数值计算和计算机技术。 ANSYS是基于有限元法的一款计算软件,可用来分析电磁场领域的多项问题。它充分利用了各种计算方法的优点,发展出了适用于不同情况的电磁分析模块,其中Emag模块主要应用于低频电磁分析,其主要特点是:非线性磁场分析和场路耦合分析,这对于计算非线性材料非常有用,尤其是磁性材料,主要应用于电击、变压器、电磁开关以及感应加热等领域。 1 变压器基本原理与漏磁场 ,U1为初级线圈电压,N1为初级线圈的匝数,U2为次级线圈电压,N2为次级线圈的匝数,对初级线圈加上一定的电压,按电磁感应定律,会在次级线圈上得到感应电动势,在没有电阻、漏磁及铁损的情况下,变压器是理想变压器,原线圈和副线圈的匝数比等于原电压和副电压之比。 ,如果在原线圈两端外加一正弦交流电压U1,则原线圈中将有交变电流I1通过,因而在铁心中将激励一交变磁通。为了便于分析问题,将总磁通分成等效的两部分磁通,其中一部分磁通沿着铁心闭合,同时与原、副线圈相交链,称为互感磁通或主磁通,用φ表示;另一部分磁通主要沿非铁磁材料(如空气)闭合且仅与原线相交链,称为原线圈漏磁通,表示为φ1,还有一部分只与次级线圈相交链的称为副线圈漏磁通,表示为φ2。主磁通占总磁通的绝大部分,而漏磁通只占很小的一部分(0.1%~0.2%)。 如果仅仅是依靠空气和线圈之间的漏感,是不能达到漏感变压器稳定电压的要求的,因此人为的在初、次级线圈中间加入漏磁冲片,引导部分磁场从这里穿过,形成高漏磁。 2 漏感变压器二维耦合仿真 ANSYS是以麦克斯韦方程组作为电磁场分析的出发点。在电磁场计算中,经常对麦克斯韦方程组进行简化,以便能运用分离变量法、格林函数法等求解得到电磁场的解析解。在实际工程中,ANSYS利用有限元方法,根据具体情况给定的边界条件和初始条件,用数值解法去求其数值解。有限元方法计算未知量(自由度)主要是磁位或者通量,关心的物理量可以由这些自由度导出。根据甩户选择的单元类型和单元选项的不同,ANSYS计算的自由度也不同,可以使标量磁位、矢量磁位或者是边界通量。 对于变压器,需要研究随时间变化的外加场产生的磁场、次级屯压等参数,故采用二维矢量位方法。矢量位方法每个节点有3个自由度,Ax,Ay,Az,表示遭x,y,z方向上的磁矢量位自由度。在电压馈电或电路耦合分析中又为磁矢量位自由度增加了另外3个自由度:电位(VO-LT)、电流(CURR)、电动势降(EMF)。由矢量磁位可首先计算出磁通密度。他的值在

变压器漏感

变压器漏感产生的因素: 1.绕线的方式 2.绕线时是否采用屏蔽铜皮,绕线的紧密程度等有关系。 3.变压器所使用的材质不同,漏感也会有所区别。 4.变压器是否开气隙对漏感影响也非常大。由于气隙的原因,气隙之间会存在一个相对的大气空间,磁力线通过气隙空间时会向四周扩散,也就是漏磁!气隙越深,漏感会越大; 5.变压器绕组材料和圈数,对漏感也有些影响。线径的大小、普通漆包线和纱包线等对变压器的漏感的影响也不一样。线径越小绕制越紧密、绝缘性能越好漏感会相应降低!线圈的匝数越多漏感也会越大。 6.变压器工作频率低,测试漏感的频率低,也是漏感大的因数。 解决变压器产生漏感的方法: 1.变压器绕线方法,具体的绕线方式如下:(1)双线并绕法:将初、次级线圈的漆包线合起来并绕,即所谓双线并绕.这样初、次级线间距离最小,可使漏感减小到最小值.但这种绕法不好绕制,同时两线间的耐压值较低.(2)逐层间绕法:为克服并绕法耐压低、绕制困难的缺点,用初、次级分层间绕法,即1、3、5行奇数层绕初级绕组,2、4、6等偶数层绕次级绕组.这种绕法仍可保持初、次级间的耦合,又可在初、次级间垫绝缘纸,以提高绝缘程度。(3)夹层式绕法:把次级绕组绕在初级绕组的中间,初级分两次绕.这种绕法只在初级绕组中多一个接头,工艺简单,便于批量生产.为减小分布参数的影响,初级采用双线并绕连接的结构,次级采用分段绕制,串联相接的方式,即所谓堆叠绕法或者叫三明治绕法。降低绕组间的电压差,提高变压器的可靠性。还有平绕法、乱绕法等其他方法。这两种绕线方法由于漏感与上述的绕线方法相比会相对偏大,所以一般不采用。 2.采用屏蔽铜皮漏感会相应减少。绕线越紧,漏感一般越小。为了减少变压器初、次级线圈之间的漏感,在绕制变压器线圈的时候可以把初、次级线圈层与层之间互相错开。 3.材质选择不同,例如PC95材质和PC40材质;由于这两种材质的磁导率和饱和磁感应强度不一样,在进行变压器设计时变压器的初次级线圈的匝数和工作磁场都会不一样。线圈匝数和变压器的工作磁场对变压器的漏感会产生直接影响。频率较高的情况下用于PC95。 4.在变压器体积允许的前提下增大铁芯截面积以减少绕组匝数,这是因为变压器漏感与绕组匝数的平方成正比;降低变压器原、副边绕组间的绝缘层厚度;增加绕组高度;变压器原、副边绕组交错绕制都可以降低漏感。 注意:(1)另外漏感不可能无限制的减少,因为为了降低漏感必然会加大线圈的

相关文档
最新文档