FIR滤波器设计
fir滤波器的设计方法

fir滤波器的设计方法一、引言二、基本概念1.数字信号2.离散时间信号3.FIR滤波器三、FIR滤波器的设计方法1.窗函数法(1)矩形窗函数法(2)汉宁窗函数法(3)汉明窗函数法(4)布莱克曼窗函数法2.最小二乘法3.频率抽样法四、FIR滤波器设计实例五、总结一、引言数字信号处理在现代通信技术中得到了广泛的应用,其中滤波器是数字信号处理的重要组成部分。
FIR滤波器是一种常用的数字滤波器,具有无限冲击响应和线性相位特性。
本文将介绍FIR滤波器的基本概念和设计方法,并给出一个实例。
二、基本概念1.数字信号数字信号是在时间轴上取样后离散化的模拟信号。
在计算机中,数字信号由一系列离散的数值表示。
2.离散时间信号离散时间信号是以时间为自变量且取值为离散值的函数。
通常使用序列表示,如x(n)。
3.FIR滤波器FIR滤波器是一种数字滤波器,其系统函数是有限长冲击响应的线性时不变系统。
FIR滤波器的输出只与当前和过去的输入有关,与未来的输入无关。
FIR滤波器具有无限冲击响应和线性相位特性。
三、FIR滤波器的设计方法1.窗函数法窗函数法是一种常用的FIR滤波器设计方法。
它通过在频域上对理想低通滤波器进行截止频率处理得到所需的频率响应,并使用窗函数将其转换为时域上的序列。
(1)矩形窗函数法矩形窗函数法是最简单的FIR滤波器设计方法。
它将理想低通滤波器在频域上乘以一个矩形窗函数,得到所需频率响应后再进行反变换得到时域上的系数序列。
(2)汉宁窗函数法汉宁窗函数法是一种常用的FIR滤波器设计方法。
它将理想低通滤波器在频域上乘以一个汉宁窗函数,得到所需频率响应后再进行反变换得到时域上的系数序列。
(3)汉明窗函数法汉明窗函数法是一种常用的FIR滤波器设计方法。
它将理想低通滤波器在频域上乘以一个汉明窗函数,得到所需频率响应后再进行反变换得到时域上的系数序列。
(4)布莱克曼窗函数法布莱克曼窗函数法是一种常用的FIR滤波器设计方法。
FIR滤波器设计C语言程序

FIR滤波器设计C语言程序FIR滤波器设计C语言程序1. 引言2. FIR滤波器原理FIR滤波器的输入输出关系可以表示为以下方程:y[n] = h[0]x[n] + h[1]x[n-1] + + h[M]x[n-M]其中,y[n]为输出信号,x[n]为输入信号,h为FIR滤波器的系数向量,M为滤波器的阶数。
3. 窗函数法设计FIR滤波器窗函数法是一种简单有效的FIR滤波器设计方法,其思想是通过加窗和傅里叶变换来确定滤波器系数。
步骤如下:1. 确定滤波器的阶数M,一般通过信号频率响应要求来确定。
2. 选择一个窗函数(如矩形窗、汉宁窗等)。
3. 根据窗函数的性质和滤波器的阶数,计算出滤波器的理想频率响应h_ideal。
4. 使用傅里叶变换将理想频率响应转换为时间域的滤波器系数h。
5. 对h进行归一化处理,得到最终的滤波器系数。
4. C语言程序实现下面给出一个简单的C语言程序,实现了FIR滤波器的设计过程。
cinclude <stdio.h>include <math.h>define N 1000 // 输入信号长度define M 50 // 滤波器阶数void fir_filter(float x, float h, float y) {int i, j;for (i = 0; i < N; i++) {y[i] = 0;for (j = 0; j < M; j++) {if (i >= j) {y[i] += h[j] x[i j];}}}}int mn() {float x[N]; // 输入信号float h[M]; // 滤波器系数float y[N]; // 输出信号int i;// 输入信号和滤波器系数for (i = 0; i < N; i++) {x[i] = sin(2 M_PI 1000 i / N) + sin(2 M_PI 2000 i / N); // 两个正弦信号叠加}for (i = 0; i < M; i++) {h[i] = 1.0 / M; // 简单的均值滤波器}// 调用FIR滤波函数fir_filter(x, h, y);// 输出滤波后的信号for (i = 0; i < N; i++) { printf(\。
FIR滤波器设计要点

FIR滤波器设计要点FIR (Finite Impulse Response) 滤波器是一种数字滤波器,其设计要点包括滤波器类型选择、滤波器系数设计、频率响应规格、窗函数和滤波器长度选择等。
以下是对这些要点的详细介绍。
1.滤波器类型选择:在设计FIR滤波器之前,需要确定滤波器的类型。
常见的FIR滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
不同类型的滤波器适用于不同的应用场景,因此在选择滤波器类型时需要考虑系统的需求。
2.滤波器系数设计:FIR滤波器的核心是滤波器系数。
滤波器系数决定了滤波器的频率响应和滤波特性。
常用的设计方法包括窗函数法、最小均方误差法和频率抽样法等。
窗函数法是最常用的设计方法,其基本思想是通过选择合适的窗函数来得到滤波器系数。
3.频率响应规格:在设计FIR滤波器时,需要明确所需的频率响应规格,包括通带增益、阻带衰减、过渡带宽等。
这些规格直接影响了滤波器的性能,因此需要根据具体应用场景来确定。
4.窗函数选择:窗函数在FIR滤波器设计中起到了重要的作用。
常用的窗函数包括矩形窗、汉宁窗、汉明窗、布莱克曼窗等。
不同的窗函数具有不同的特性,选择合适的窗函数可以得到优良的滤波器性能。
5.滤波器长度选择:滤波器长度决定了滤波器的频率分辨率和时间分辨率。
滤波器长度越长,频率响应越尖锐,但计算复杂度也越高。
因此,在设计FIR滤波器时需要权衡计算复杂度和性能要求,选择合适的滤波器长度。
6.优化设计:7.实现方式:总之,设计FIR滤波器要点包括滤波器类型选择、滤波器系数设计、频率响应规格、窗函数和滤波器长度选择等。
设计者需要根据具体的应用场景和性能要求来进行合理的设计和优化,以满足系统的需求。
FIR滤波原理及verilog设计

FIR滤波原理及verilog设计FIR滤波器是一种基于有限长冲激响应(Finite Impulse Response)的数字滤波器,它主要用于对数字信号进行滤波处理,例如降噪、去除杂音和频带限制等。
本文将介绍FIR滤波的原理,并给出一个基于Verilog的FIR滤波器设计。
一、FIR滤波原理:FIR滤波器是一种非递归滤波器,其输出是输入信号的线性组合。
它通过计算输入信号与一组滤波系数之间的加权和来实现滤波。
每一个滤波系数决定了输入信号在输出中所占的权重,当输入信号通过滤波器时,每一个采样点都与滤波系数进行乘法运算,并将结果相加得到输出。
Y(n)=h(0)*X(n)+h(1)*X(n-1)+h(2)*X(n-2)+…+h(N-1)*X(n-N+1)其中,Y(n)为输出信号的当前采样值,X(n)为输入信号的当前采样值,h(i)为滤波器的滤波系数,N为滤波器的阶数。
二、FIR滤波器的设计:1.滤波器的阶数N的选择:2.滤波系数h(i)的计算:滤波系数的计算是根据所需滤波器的频率响应来确定的。
常见的计算方法有窗函数法、频率采样法和最佳化法等。
具体的计算方法可以根据不同的需求进行选择。
三、基于Verilog的FIR滤波器设计:以下是一个基于Verilog的FIR滤波器设计示例,该设计以32阶FIR滤波器为例。
```verilogmodule FIR_filterinput wire clk,input wire reset,input wire signed [15:0] X,output reg signed [15:0] Yparameter N = 32;reg signed [15:0] delay_line [N-1:0];parameter signed [15:0] h [N-1:0] = {32'b0000_0000_0000_0000, /* 系数h0 */32'b0000_0000_0000_0000,/*系数h1*/...32'b0000_0000_0000_0000};/*系数h31*/if(reset) beginY<=0;for(int i=0; i<N; i=i+1) begindelay_line[i] <= 0;endendelse beginY <= (h[0] * X) + (h[1] * delay_line[0]) + ... + (h[N-1] * delay_line[N-2]);for(int i=N-1; i>0; i=i-1) begindelay_line[i] <= delay_line[i-1];enddelay_line[0] <= X;endendendmodule```在上面的Verilog代码中,FIR_filter模块包含了一个clk时钟信号、一个reset复位信号,以及输入信号X和输出信号Y。
FIR滤波器设计分析

FIR滤波器设计分析FIR(Finite Impulse Response)滤波器是一类数字滤波器,其输出只取决于输入信号的有限数量的过去样本。
FIR滤波器的设计分析主要包括滤波器的设计目标、设计方法、设计参数选择、滤波器性能评估等方面。
首先,FIR滤波器的设计目标是根据特定的应用需求,设计一个能够满足给定要求的滤波器。
比如,在音频信号处理中,常见的设计目标包括降低噪声、增强语音清晰度等。
接下来,FIR滤波器的设计方法主要有窗函数法和频率采样法。
窗函数法是通过选择合适的窗函数来设计FIR滤波器,常见的窗函数有矩形窗、汉宁窗、汉明窗等。
频率采样法是通过在频域上选择一组等间隔的频率样点,然后通过频域设计方法将这些样点连接起来,得到FIR滤波器的频响。
设计参数选择是FIR滤波器设计的重要环节。
常见的设计参数包括滤波器阶数、截止频率、过渡带宽等。
滤波器阶数决定了滤波器的复杂度,一般情况下,滤波器阶数越高,滤波器的性能也会越好。
截止频率是指滤波器的频段边界,过渡带宽是指频域中通过频样点与阻带频样点之间的频带范围。
最后,FIR滤波器的性能评估主要包括幅频响应、相频响应、群延迟等指标。
幅频响应可以用来评估滤波器的频率特性,相频响应则描述了信号在滤波过程中的相对延迟。
群延迟是指信号通过滤波器时的延迟时间,对于实时信号处理应用非常重要。
总结起来,FIR滤波器设计分析主要涉及设计目标、设计方法、设计参数选择和滤波器性能评估四个方面。
通过合理选择设计方法和参数,并对滤波器的性能进行评估,可以设计出满足特定要求的FIR滤波器,从而实现信号处理、噪声降低等应用。
fir滤波器设计方法

fir滤波器设计方法
fir滤波器是数字信号处理中常用的一种滤波器,它可以对信号进行滤波处理,去除噪声和干扰,提高信号的质量。
fir滤波器的设计方法有很多种,下面我们来介绍一下其中的几种常用方法。
第一种方法是窗函数法。
这种方法是最简单的fir滤波器设计方法,它的原理是将理想滤波器的频率响应与一个窗函数相乘,得到fir滤波器的频率响应。
常用的窗函数有矩形窗、汉宁窗、汉明窗等。
这种方法的优点是简单易懂,计算量小,但是滤波器的性能不够理想。
第二种方法是频率抽样法。
这种方法的原理是将理想滤波器的频率响应进行抽样,得到fir滤波器的频率响应。
抽样的频率可以根据滤波器的要求进行选择。
这种方法的优点是可以得到比较理想的滤波器性能,但是计算量较大。
第三种方法是最小二乘法。
这种方法的原理是通过最小化滤波器的误差平方和来得到fir滤波器的系数。
这种方法可以得到比较理想的滤波器性能,但是计算量较大。
第四种方法是频率采样法。
这种方法的原理是通过对滤波器的频率响应进行采样,得到fir滤波器的系数。
这种方法可以得到比较理想的滤波器性能,但是需要进行频率响应的采样,计算量较大。
以上是fir滤波器的几种常用设计方法,不同的方法适用于不同的滤波器要求。
在实际应用中,需要根据具体的情况选择合适的设计
方法,以得到满足要求的fir滤波器。
实验四FIR数字滤波器的设计

实验四FIR数字滤波器的设计
FIR数字滤波器也称作有限脉冲响应数字滤波器,是一种常见的数字滤波器设计方法。
在设计FIR数字滤波器时,需要确定滤波器的阶数、滤波器的类型(低通、高通、带通、带阻)以及滤波器的参数(截止频率、通带波纹、阻带衰减、过渡带宽等)。
下面是FIR数字滤波器的设计步骤:
1.确定滤波器的阶数。
阶数决定了滤波器的复杂度,一般情况下,阶数越高,滤波器的性能越好,但计算量也越大。
阶数的选择需要根据实际应用来进行权衡。
2.确定滤波器的类型。
根据实际需求,选择低通、高通、带通或带阻滤波器。
低通滤波器用于去除高频噪声,高通滤波器用于去除低频噪声,带通滤波器用于保留一定范围内的频率信号,带阻滤波器用于去除一定范围内的频率信号。
3.确定滤波器的参数。
根据实际需求,确定滤波器的截止频率、通带波纹、阻带衰减和过渡带宽等参数。
这些参数决定了滤波器的性能。
4.设计滤波器的频率响应。
使用窗函数、最小二乘法等方法,根据滤波器的参数来设计滤波器的频率响应。
5.将频率响应转换为滤波器的系数。
根据设计的频率响应,使用逆快速傅里叶变换(IFFT)等方法将频率响应转换为滤波器的系数。
6.实现滤波器。
将滤波器的系数应用到数字信号中,实现滤波操作。
7.优化滤波器性能。
根据需要,可以对滤波器进行进一步优化,如调整滤波器的阶数、参数等,以达到较好的滤波效果。
以上是FIR数字滤波器的设计步骤,根据实际需求进行相应的调整,可以得到理想的滤波器。
fir数字滤波器的设计指标

fir数字滤波器的设计指标FIR数字滤波器的设计指标主要包括以下几个方面:1. 频率响应:FIR数字滤波器的频率响应是指滤波器对不同频率信号的响应程度。
设计时需要根据应用场景确定频率响应特性,例如低通、高通、带通等。
低通滤波器用于消除高频噪声,高通滤波器用于保留低频信号,带通滤波器则用于限制信号在特定频率范围内的传输。
2. 幅频特性:FIR数字滤波器的幅频特性是指滤波器在不同频率下的幅值衰减情况。
设计时需要根据频率响应特性调整幅频特性,以满足信号处理需求。
例如,在通信系统中,为了消除杂散干扰和多径效应,需要设计具有特定幅频特性的滤波器。
3. 相位特性:FIR数字滤波器的相位特性是指滤波器对信号相位的影响。
设计时需要确保滤波器的相位特性满足系统要求,例如线性相位特性。
线性相位特性意味着滤波器在不同频率下的相位延迟保持恒定,这对于许多通信系统至关重要。
4. 群延迟特性:FIR数字滤波器的群延迟特性是指滤波器对信号群延迟的影响。
群延迟是指信号通过滤波器后,各频率成分的延迟时间。
设计时需要根据应用场景调整群延迟特性,以确保信号处理效果。
例如,在语音处理中,需要降低滤波器的群延迟,以提高语音信号的清晰度。
5. 稳定性:FIR数字滤波器的稳定性是指滤波器在实际应用中不发生自激振荡等不稳定现象。
设计时需要确保滤波器的稳定性,避免产生有害的谐波和振荡。
6. 计算复杂度:FIR数字滤波器的计算复杂度是指滤波器在实现过程中所需的计算资源和时间。
设计时需要权衡滤波器的性能和计算复杂度,以满足实时性要求。
例如,在嵌入式系统中,计算资源有限,需要设计较低计算复杂度的滤波器。
7. 硬件实现:FIR数字滤波器的硬件实现是指滤波器在实际硬件平台上的实现。
设计时需要考虑硬件平台的特性,如处理器速度、内存容量等,以确定合适的滤波器结构和参数。
8. 软件实现:FIR数字滤波器的软件实现是指滤波器在软件平台上的实现。
设计时需要考虑软件平台的特性,如编程语言、算法库等,以确定合适的滤波器设计和实现方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号与处理FIR滤波器设计院系:机电工程学院专业(班级):电子信息工程2班姓名:学号: 2010408指导教师:职称:副教授、助教完成日期:2013 年11 月18 日目录1 引言 (1)2 滤波器的简介 (2)2.1 数字滤波器的发展 (2)2.2数字滤波器的实现方法 (2)2.3数字滤波器的分类 (2)3.1 设计方法 (4)3.2有限冲击响应滤波原理 (4)3.3 FIR滤波器的结构图 (5)3.3 FIR数字滤波器阶数计算 (5)3.3 在matlab中算出滤波系数 (6)3.4 FIR数字滤波器设计方法 (6)3.5 程序功能顺序图 (8)4 调试的步骤及调试过程中出现的问题以及解决方法 (10)4.1 调试步骤 (10)4.2调试结果 (13)4.3调试问题解决 (14)5 结论 (16)6 设计心得体会 (17)附录A 程序 (19)FIR滤波器设计1 引言数字滤波器是数字信号处理中最重要的组成部分之一,数字滤波器是由数字乘法器、加法器和延时单元组成的一种算法或装置,可作为应用系统对信号的前期处理。
用DSP芯片实现的数字滤波器具有稳定性好、精确度高、灵活性强及不受外界影响等特性。
因此基于DSP实现的数字滤波器广泛应用于语音图像处理、数字通信、频谱分析、模式识别、自动控制等领域,具有广阔的发展空间。
随着计算机和信息技术的飞速发展,数字信号处理已经成为高速实时处理的一项关键技术,广泛应用在语音识别、智能检测、工业控制等各个领域。
数字滤波器是对数字信号实现滤波的线性时不变系统。
数字滤波实质上是一种运算过程,实现对信号的运算处理。
DSP数字信号处理是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。
传感器数字信号处理是利用传感器对模拟信号或数字信号进行采集并把其转换成计算机可识别的电信号,并利用计算机对信号进行处理以达到计算机辅助控制或是计算机自动控制的目的。
DSP 芯片是一种特别适合数字信号处理运算的微处理器,主要用来实时、快速地实现各种数字信号处理算法。
用DSP 芯片实现FIR数字滤波器,不仅具有精确度高、不受环境影响等优点,而且因DSP 芯片的可编程性,可方便地修改滤波器参数,从而改变滤波器的特性,设计十分灵活。
2 滤波器的简介2.1 数字滤波器的发展数字滤波是数字信号处理的一部分。
数字信号处理主要是研究用数字或符号的序列来表示信号波形,并用数字的方式去处理这些序列,把它们改变成在某种意义上更为有希望的形式,以便估计信号的特征参量,或削弱信号中的多余分量和增强信号中的有用分量。
具体来说,凡是用数字方式对信号进行滤波、变换、调制、解调、均衡、增强、压缩、估值、识别、产生等加工处理,都可纳入数字信号处理领域。
数字信号处理学科的一项重大进展是关于数字滤波器设计方向的研究。
科技发展的必然趋数字信号处理由于运算速度快,具有可编程特性和接口灵活的特点,使得它在许多电子产品的研制、开发和应用中,发挥着及其重要的作用。
采用DSP芯片来实现数字信号处理系统是当前势。
在数字信号处理中,数字滤波器占及其重要的地位。
数字滤波是语音和图像处理、模式识别、频谱分析等应用中的基本算法之一。
在许多信号处理应用中用数字滤波器替代模拟滤波器具有许多优势。
数字滤波器容易实现不同的幅度和相位频率特性指标,克服了与模拟滤波器性能相关的电压漂移、温度漂移和噪声等问题。
用DSP芯片实现数字滤波器除了具有较好的稳定性、较高的精确度、不受外界环境影响外,还具有灵活性特点。
在用可编程DSP实现数字滤波器可通过修改滤波器的参数十分方便的改变滤波器的相关特性。
2.2数字滤波器的实现方法软件实现方法就是在通用的微型计算机上用软件来实现。
利用计算机的存储器、运算器和控制器把滤波所要完成的运算编程程序通过计算机来执行,软件可由使用者自己编写,也可使用现成的。
2.3数字滤波器的分类按照不同的分类方法,数字滤波器有许多种类,但总起来可以分成两大类:经典滤波器和现代滤波器。
经典滤波器的特点是输入信号中有用的频率成分和希望滤除的的频率成分各占有不同的频带,通过一个合适的的选频滤波器达到滤波的目的。
例如,输入信号中含有干扰,如果信号和干扰的频带互不重叠,可滤除干扰得到纯信号。
但是,如果信号和干扰的频带互相重叠,则经典滤波器不能有效滤除干扰,这时就需要采用现代滤波器,例如维纳滤波器,卡尔曼滤波器、自适应滤波器等最佳滤波器。
现代滤波器是根据随机信号的一些统计特性,在某种最佳准则下,最大限度地抑制干扰,同时最大地恢复信号,从而达到最佳滤波的目的。
经典数字滤波器从滤波特性上分类,可以分成低通、高通、带通和带阻等滤波器。
它们有些理想幅频特性,是不可能实现的因为他们的的单位响应均是非因果且是无限长的。
我们只能按照某些准则去设计滤波器使之在误差容限内逼近理想滤波器,因此理想的滤波器可作为逼近的标准。
3 总体设计思路及功能描述(附框图)3.1 设计方法(1)进一步了解滤波器的原理,了解FIR 滤波器的设计过程。
(2)了解CCS 的使用方法,以及掌握基本编程语言。
(3)掌握CCS 设计FIR 滤波器。
(4)掌握CCS 工程的建立,源文件的汇编、连接以及调试程序,并且观察其输入、输出波形。
3.2有限冲击响应滤波原理数字滤波是将输入的信号序列,按规定的算法进行处理,从而得到所期望的输出序列。
一个线性位移不变系统的输出序列y[n]与输入序列x[n]之间的关系,应满足常系数线性差分方程:101()()()N M i i i i y n b x n i a yn i -===---∑∑ (3-1)式中,X (n )为输入序列;Y (n )为输出序列;a 和b 为滤波器系数;N 为滤波器阶数。
若所有的a 均为0,则得到FIR 滤波器的差分方程为 10()()N i i y n b xn i -==-∑ (3-2)对这式进行Z 变换,整理后可得FIR 滤波器的传递函数为110()()()N i i Y z Hz b z X z --===∑ (3-3)3.3 FIR 滤波器的结构图图3-1结构图FIR 滤波器的单位冲激响应()h n 是一个有限长序列。
若()h n 为实数,且满足偶对称或奇对称的条件,即()(1)h n h N n =--或()(1)h n h N n =---,则FIR滤波器具有线性相位特性。
偶对称线性相位FIR 滤波器的差分方程为120()[()(1)]N ii yn bxn i xn N i -==-+-++∑ (3-4)式中,N 为偶数。
在数字滤波器中,FIR 滤波器无反馈回路,是一种无条件系统;并且可以设计成具有线性相位特性。
3.3 FIR 数字滤波器阶数计算-过渡带宽度=阻带边缘频率-通带边缘频率=25-10=15kHz-采样频率:f1=通带边缘频率+(过渡带宽度)/2=10000+15000/2=12.5kHzΩ1=2πf1/fs=0.64π-理想低通滤波器脉冲响应:h1[n]=sin(nΩ1)/n/π=sin(0.64πn)/n/π-根据要求,选择布莱克曼窗,窗函数长度为:N=5.98fs/过渡带宽度=5.98*50/15=20-选择 N=20,窗函数为:w[n]=0.42+0.5cos(2πn/24)+0.8cos(4πn/24)-滤波器脉冲响应为:h[n]=h1[n]w[n] |n|≤12h[n]=0 |n|>12根据上面计算,各式计算出h[n] ,然后将脉冲响应值移位为因果序列。
3.3 在matlab中算出滤波系数如下:B=fir1(19,(10+25)/50,blackman(20))B =Columns 1 through 13-0.0000 -0.0001 -0.0014 0.0055 -0.0060 -0.01230.0509 -0.0677 -0.0300 0.5609 0.5609 -0.0300-0.0677Columns 14 through 200.0509 -0.0123 -0.0060 0.0055 -0.0014 -0.0001-0.0000-完成的滤波器的差分方程为:y[n]=-0.00x[n-2]-0.00x[n-3]-0.001x[n-4]+0.001x[n-5]-0.006x[n-6]-0.01x[n-7]+0.05x[n-8]-0.07x[n-9]-0.56x[n-10]+0.56x[n-11]-0.03x[n-12]-0.07x[n-13+0.05x[n-14]-0.01x[n-15]-0.006x[n-16]+0.006x[n-17]-0.001x[n-18]-0.00x[n-19]3.4 FIR数字滤波器设计方法由:窗函数法、频率抽样法。
窗函数法分为固定窗和可变窗。
窗函数法窗函数法的设计思想是按照所要求的理想滤波器频率响应错误!未找到引用源。
,设计一个FIR滤波器,使之频率响应错误!未找到引用源。
来逼近错误!未找到引用源。
先由错误!未找到引用源。
的傅里叶反变换导出理想滤波器的冲激响应序列错误!未找到引用源。
,即:(3-5)由于错误!未找到引用源。
是矩形频率特性,所以错误!未找到引用源。
是一无限长的序列,且是非因果的,而要计的FIR滤波器的冲激响应序列是有限长的,所以要用有限长的序列h(n)来逼近无限长的序列错误!未找到引用源。
,最有效的方法是截断错误!未找到引用源。
,或者说用一个有限长度的窗口函数w(n)序列来截取错误!未找到引用源。
,即: 错误!未找到引用源。
布莱克曼窗(3-6)增加一个二次谐波余弦分量,可进一步降低旁瓣,但主瓣宽度进一步增加,增加N可减少过渡带。
频谱的幅度函数为:+0.04(3-7)3.5 程序功能顺序图图3-2流程图4 调试的步骤及调试过程中出现的问题以及解决方法4.1 调试步骤1.连接实验箱2.设置Code Composer Studio 2.21 在硬件仿真(Emulator)方式下运行:---设置CCS 通过ICETEK-5100USB 仿真器连接ICETEK-VC5416-AR 硬件环境进行软件调试和开发单击桌面上图标:(1)进入CCS 设置窗口。
(2)在出现的窗口如下图先点击Clear,选择“是”;之后选择VC5416Emulator配置,单击“ import”输入配置,最后按下Close;图4-1CCS Clear设置窗口图4-2import设置图(3)在出现的窗口按标号顺序进行如下设置:图4-3Graph输入设置(4)在出现的窗口按标号顺序进行如下设置:图4-4Graph输出设置以上设置完成后,CCS 已经被设置成Emulator 的方式(用仿真器连接硬件板卡的方式),并且指定通过ICETEK-5100USB 仿真器连接ICETEK-VC5416-AR 评估板。