启发式搜索策略
人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习
![人工智能[第五章状态空间搜索策略]山东大学期末考试知识点复习](https://img.taocdn.com/s3/m/90a7eb54dd36a32d73758188.png)
第五章状态空间搜索策略搜索是人工智能的一个基本问题,是推理不可分割的一部分。
搜索是求解问题的一种方法,是根据问题的实际情况,按照一定的策略或规则,从知识库中寻找可利用的知识,从而构造出一条使问题获得解决的推理路线的过程。
搜索包含两层含义:一层含义是要找到从初始事实到问题最终答案的一条推理路线;另一层含义是找到的这条路线是时间和空间复杂度最小的求解路线。
搜索可分为盲目搜索和启发式搜索两种。
1.1 盲目搜索策略1.状态空间图的搜索策略为了利用搜索的方法求解问题,首先必须将被求解的问题用某种形式表示出来。
一般情况下,不同的知识表示对应着不同的求解方法。
状态空间表示法是一种用“状态”和“算符”表示问题的方法。
状态空间可由一个三元组表示(S,F,Sg)。
利用搜索方法求解问题的基本思想是:首先将问题的初始状态(即状态空间图中的初始节点)当作当前状态,选择一适当的算符作用于当前状态,生成一组后继状态(或称后继节点),然后检查这组后继状态中有没有目标状态。
如果有,则说明搜索成功,从初始状态到目标状态的一系列算符即是问题的解;若没有,则按照某种控制策略从已生成的状态中再选一个状态作为当前状态,重复上述过程,直到目标状态出现或不再有可供操作的状态及算符时为止。
算法5.1 状态空间图的一般搜索算法①建立一个只含有初始节点S0的搜索图G,把S放入OPEN表中。
②建立CLOSED表,且置为空表。
③判断OPEN表是否为空表,若为空,则问题无解,退出。
④选择OPEN表中的第一个节点,把它从OPEN表移出,并放入CLOSED表中,将此节点记为节点n。
⑤考察节点n是否为目标节点,若是,则问题有解,并成功退出。
问题的解的这条路径得到。
即可从图G中沿着指针从n到S⑥扩展节点n生成一组不是n的祖先的后继节点,并将它们记作集合M,将M中的这些节点作为n的后继节点加入图G中。
⑦对那些未曾在G中出现过的(即未曾在OPEN表上或CLOSED表上出现过的)M中的节点,设置一个指向父节点(即节点n)的指针,并把这些节点加入OPEN 表中;对于已在G中出现过的M中的那些节点,确定是否需要修改指向父节点(n 节点)的指针;对于那些先前已在G中出现并且已在COLSED表中的M中的节点,确定是否需要修改通向它们后继节点的指针。
浅谈人工智能中的启发式搜索策略

浅谈人工智能中的启发式搜索策略
一、启发式策略
启发式策略是指在解决复杂问题时,根据人的经验和技巧来寻求最优解的方法。
它是人工智能领域中的一种和规划技术,可以解决形式化的各种问题。
启发式策略广泛应用于机器学习、图形图计算、机器人控制和计算机图形学等多种领域。
启发式策略包括:A*算法、B*树算法、启发式和动态规划等。
A*算法是一种非常有效的启发式方法,它采用了一个启发函数来估计待访问节点的最优价值,从而可以根据最小价值节点而进行,的效果比较好。
B*树算法是一种静态的启发式方法,该算法在每一步都可以通过比较不同节点价值来确定最优路径,从而更有效地出最优路径。
启发式和动态规划都是一种在状态空间中采取其中一种方法或策略以获得最优解的技术,两者最大的不同点在于,启发式依赖于当前状态,动态规划则更倾向于最终目标。
二、应用
启发式策略广泛应用于人工智能领域,它可以用来解决各种形式化问题,如游戏、自然语言处理问题等。
浅谈人工智能中的启发式搜索策略

蚁群算法
总结词
模拟蚂蚁觅食过程的群体智能优化算法
详细描述
蚁群算法是一种模拟蚂蚁觅食过程的群体智能优化算法,通过模拟蚂蚁的信息素传递过程,逐渐建立起最优路 径。其优点在于能够在复杂环境中寻找到最优解,适用于解决组合优化问题,如旅行商问题、图的着色问题等 。
粒子群优化算法
总结词
模拟鸟群、鱼群行为的全局优化算法
人工智能的未来趋势
未来人工智能的发展将更加注重跨学科融合,包括计算机科 学、心理学和哲学等多个领域,同时人工智能的应用也将更 加广泛和深入,涉及的领域也将更加广泛和多样化。
03
启发式搜索策略简介
启发式搜索的定义与特点
定义
启发式搜索是一种基于人类认知和解决问题的启发式方 法的搜索策略,它通过利用一些特定的提示或启发式信 息来指导搜索方向,从而减少搜索的盲目性和无序性, 提高搜索效率。
展望未来-启发式搜索策略在人工智 能中的发展前景
基于启发式搜索的混合优化算法
总结词
结合了启发式搜索策略和混合算法的优化方 法,能够处理复杂的多变量优化问题,提高 搜索效率。
详细描述
混合优化算法是一种结合了不同优化技术的 算法,旨在解决单一方法无法有效处理的复 杂问题。启发式搜索策略为混合算法提供了 重要的启示,通过混合启发式搜索策略和传 统优化算法,可以更好地处理多变量优化问
题,提高搜索效率。
基于启发式搜索的多目标优化算法
总结词
利用启发式搜索策略处理多目标优化问题 ,能够同时满足多个优化目标,提高整体 优化效果。
VSBiblioteka 详细描述多目标优化问题是一种需要同时满足多个 优化目标的复杂问题。传统的优化算法往 往难以同时满足所有目标,而启发式搜索 策略可以提供一种有效的解决方案。通过 结合启发式搜索策略和多目标优化算法, 可以更好地解决这类问题,提高整体优化 效果。
浅谈人工智能中的启发式搜索策略

在自然语言处理中的应用
文本分类
在自然语言处理中,文本分类是一个重要的任务。启发式搜索策略可以帮助 算法对文本进行分词,提取特征,并选择最能代表文本类别的特征,从而提 高文本分类的准确性。
信息检索
在信息检索中,用户输入查询关键词后,系统需要从大量的文档中检索出与 查询相关的信息。启发式搜索策略可以帮助系统根据关键词语义信息,快速 定位到相关文档,并返回最相关的结果,提高用户体验。
在机器学习中的应用
特征选择
机器学习算法通常需要对输入数据进行特征选择,以降低维 度并提高算法性能。启发式搜索策略可以帮助算法选择更有 效的特征,从而提高分类和回归的准确性。
模型优化
机器学习算法中的模型优化是关键,启发式搜索策略可以通 过试错的方式来寻找最优的超参数配置,提高模型的性能和 泛化能力。
利用多智能体的协同作用,提高搜索效率。多个智能体可以分工合作,共同解决问题。
启发式搜索策略的未来发展趋势
01
可解释性
研究如何提高启发式搜索策略的可解释性,以便开发人员能够更好地
理解搜索算法的内部工作原理。
02
多任务学习
将多个任务集成到一个统一的框架中,使搜索策略能够适应不同任务
的要求。
03
强化学习
研究展望
1
未来将继续深入研究该启发式搜索策略的性能 和适用范围,希望能够进一步拓展其应用领域 。
2
将探索将该启发式搜索策略与其他人工智能技 术相结合,以进一步提高其性能和鲁棒性。
3
将致力于推广该启发式搜索策略在实际应用领 域的应用,希望能够为解决实际问题提供更多 帮实际问题中的应用案例
分析
在路径规划中的应用案例
总结词
高效、实用
启发式搜索(共49张PPT)

其中:g(x)——从初始节点S0到节点x的实际代价; h(x)——从x到目标节点Sg的最优路径的评估代价,它体现了问
题的启发式信息,其形式要根据问题的特性确定,h(x)称为启发式 函数。
2022/10/14
6
评估函数
启发式方法把问题状态的描述转换 成了对问题解决程度的描述。
这一程度用评估函数的值来表示。
2022/10/14
7
评估函数
S
搜索图G
2022/10/14
n ng
初始状态节点S
f(n):s-n-ng的估计最小路径代价
g(n):s-n的实际路径代价 h(n): n-ng的估计最小路径代价
节点n
目标状态节点ng
8
启发式搜索A算法
A算法的设计与一般图搜索相同,划分为二个阶段:
IF f(ni)>f(n,ni) THEN 令f(ni)=f(n,ni)
修改指针指向新父结点n
排序OPEN表(f(n)值从小到大排序)
2022/10/14
10
2022/10/14
4功指1搜 未做.若.退针建扩C索nL出从立为展图O,n一S一节到GE个此,目的把点S只这解标已S表放条包是扩节中路到含追展点;径一节起踪,建而个点始图则立得叫表节G有一到中O,点解P个的沿其ES成N叫;的初着的
始为空表;
5.扩展节点n,同时生成不是n的 祖 M2出的.先若;这的OP些那EN成些表员子是作节空为点表n,的的则集后失合继败节M,退点把 添入搜索图G中;对于M中每个 子3把 表.节选中它点f择(,从nnO,称nOi,P计iP)E此EN=算N表节g表:(n上点移,n为的出i) +节并第h放点一(n进in)个;C节LO点SE,
6第六讲 第三章(盲目、启发搜索)

二、有序搜索
用估价函数 f 来排列OPEN表上的节点。
应用某个算法选择OPEN表上具有最小f 值的节点作为
二、宽度优先搜索
例3.2 八数码问题 操作规定: 允许空格四周上、下、左、右的数码 块移入空格中,不许斜方向移动,不许返回先辈 结点。
1 2 3 8 5 7 4 6
1
4
1 3 8 2 5 7 4 6
2
1 2 3 8 4 5 7 6
3
1 2 3 8 5 7 4 6
5
1 2 3 8 5 7 4 6
深度优先搜索的特点
OPEN表为堆栈,操作是后进先出(LIFO) 深度优先又称纵向搜索。 一般不容易保证找到最优解(如下图所示) 防止搜索过程沿着无益的路径扩展下去,往往 给出一个节点扩展的最大深度——深度界限。
2、有界深度优先搜索
引入搜索深度限制值d,使深度优先搜索具有完备性 。 (1)深度界限的选择很重要 d若太小,则达不到解的深度,得不到解;若太大,既 浪费了计算机的存储空间与时间,降低了搜索效率。由于 解的路径长度事先难以预料,要恰当地给出d的值是比较 困难的。 (2)即使能求出解,它也不一定是最优解。 例3.3:设定搜索深度限制d=5的八数码问题。
4. 搜索过程框图
S0放入OPEN表 是 OPEN表空? 否 将OPEN表中第一个节点(n) 移至CLOSE表 否 n是目标节点? 扩展节点n,把n的后继节点放入 OPEN表末端,提供指向 节点n的指针 修改指针方针,重排OPEN表
失败
是
成功
一、图搜索策略(Graph Search) 5.图搜索方法分析:
3.2 启发式搜索
盲目搜索的不足:效率低,耗费空间与时间。 启发式搜索:利用问题本身特性信息(启发信息) 指导搜索过程。是有序搜索。 一、启发式搜索策略 启发式信息主要用途:
浅谈人工智能中的启发式搜索策略

人工智能已经广泛应用于医疗、金融 、交通、军事等领域,为人类带来了 巨大的便利和效益。
人工智能发展历程
自20世纪50年代以来,人工智能已经 经历了漫长的发展历程,从最初的专 家系统到现在的人工神经网络、深度 学习等技术。
启发式搜索策略定义
启发式搜索策略定义
启发式搜索策略是一种基于启发式知 识的搜索策略,通过利用问题的启发 式信息来指导搜索方向,从而加速搜 索过程。
启发式搜索策略特点
启发式搜索策略具有高效性、灵活性 、自适应性等特点,能够根据问题的 不同特点选择合适的搜索策略,提高 搜索效率。
本文目的与结构
本文目的
本文旨在探讨人工智能中的启发式搜索策略及其应用,分析其优缺点,并提出改进方法。
本文结构
本文将分为引言、正文和结论三个部分。引言部分介绍人工智能和启发式搜索策略的基本概念;正文 部分详细介绍启发式搜索策略的原理、方法及应用;结论部分总结全文,并提出未来研究方向。
03
启发式搜索策略在人工智能中 的应用
机器学习中的启发式搜索策略
基于规则的搜索
利用已知规则进行搜索,减少搜 索空间,提高搜索效率。
基于模型的搜索
利用机器学习模型预测搜索方向 ,指导搜索过程,加速收敛速度 。
自然语言处理中的启发式搜索策略
基于语言模型的搜索
利用语言模型预测下一个词或句子的 可能性,指导搜索过程,提高文本生 成和理解的准确性。
知识推理
利用表达出来的知识进行推理,以指导搜索过程 。
3
知识更新
随着搜索的进行,不断更新知识库,以适应新的 情况。
基于搜索树的启发式搜索
搜索树构建
根据问题的特点,构建合适的搜索树。
启发式信息添加
结合穷举法与启发式算法:确定搜索方向的策略与方法

结合穷举法与启发式算法:确定搜索方向的策略与方
法
在穷举法与启发式算法结合时,确定搜索方向是非常重要的。
启发式算法通常基于一些经验或启发式的规则,用于引导搜索过程。
以下是一些常用的确定搜索方向的策略:
1.利用已知最优解:如果已知某问题的最优解,那么可以将其作为搜索的起
点或搜索过程中的一个重要节点。
这样可以大大缩小搜索范围,提高搜索效率。
2.使用启发式函数:启发式函数是一种评估解的质量的函数,可以根据问题
的性质和经验来设计。
在搜索过程中,可以按照启发式函数的值对解进行排序或选择,优先搜索质量较高的解。
3.优先搜索未探索的区域:在搜索过程中,可以优先探索尚未探索过的区域,
或者优先探索解空间中估值较低的区域。
这样可以增加搜索的多样性,提高找到最优解的概率。
4.基于规则的剪枝:根据问题的性质和规则,可以在搜索过程中提前排除一
些不可能的解,减少搜索的范围和深度。
这样可以提高搜索效率,加速求解过程。
5.使用记忆化搜索:记忆化搜索是一种将已经计算过的解存储起来,避免重
复计算的策略。
在搜索过程中,可以不断更新存储的解,并在搜索过程中优先选择已经计算过的解,从而提高搜索效率。
综上所述,确定搜索方向时可以考虑利用已知最优解、使用启发式函数、优先搜索未探索的区域、基于规则的剪枝和使用记忆化搜索等方法。
这些策略可以根据问题的性质和实际情况进行选择和调整,以提高穷举法与启发式算法结合时的性能和效率。