奥数题(长正方体)

合集下载

奥数题

奥数题

长方体和正方体(二)专题简析在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。

解答上述问题,必须掌握这样几点:1,将一个物体变形为另一种形状的物体(不计损耗),体积不变;2,两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;3,物体浸入水中,排开的水的体积等于物体的体积。

例题1 有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。

从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。

将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?分析由于后来两个水箱里的水面的高度一样,我们可以这样思考:把两个水箱并靠在一起,水的体积就是(甲水箱的底面积+乙水箱的底面)×水面的高度。

这样,我们只要先求出原来甲水箱中的体积:40×32×20=25600(立方厘米),再除以两只水箱的底面积和:40×32+30×24=2000(平方厘米),就能得到后来水面的高度。

例2 将表面积分别为54平方厘米、96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),求这个大正方体的体积。

分析因为正方体的六个面都相等,而54=6×9=6×(3×3),所以这个正方体的棱是3厘米。

用同样的方法求出另两个正方体的棱长:96=6×(4×4),棱长是4厘米;150=6×(5×5),棱长是5厘米。

知道了棱长就可以分别算出它们的体积,这个大正方体的体积就等于它们的体积和。

例题3 有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。

如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?分析铁块的体积是2×2×2=8(立方分米),把它浸入水中后,它就占了8立方分米的空间,因此,水上升的体积也就是8立方分米,用这个体积除以底面积(5×4)就能得到水上升的高度了。

六年级奥数题及答案:体积问题

六年级奥数题及答案:体积问题

六年级奥数题及答案:体积问题1、一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是()立方厘米.2、(1)有一个正方体,如果高增加4cm,就成为一个长方体,这个长方体的表面积正好比原正方体的表面积增加80平方cm,求原正方体的体积。

(2)一个长方体的高如果增加2cm,就成为一个正方体,这时表面积就比原来增加了48平方cm。

原来长方体的体积是多少?3、一个长方体的各条棱长的和是48厘米,并且它的长是宽的2倍,高与宽相等,那么这个长方体的体积是______ 立方厘米.4、一个长方体的表面积是33.66平方分米,其中一个面的长是2.3分米,宽是2.1分米,它的体积是_____立方分米.(结果以分数形式出现)5、在棱长为3cm的正方体木块的每个面的中心上打一个直穿木块的洞,洞口呈边长为1cm的正方形,求挖洞后木块的体积。

6、如果从长为13厘米,宽为9厘米的长方形硬纸板的四角去掉边长为2厘米的正方形,然后沿虚线折叠成长方体容器.这个容器的体积是多少立方厘米?7、一个长方体的棱长总和是48cm,己知长是宽的1.5倍,宽是高的2倍,求它的体积。

8、一个正方体木块的表面积是96平方cm,把它锯成体积相等的8个正方体小木块,每个小木块的表面积是多少?六年级奥数题及答案1、解答:所成立方体的棱长为:120 (3+2) 4=6(厘米),所以原长方体的体积为:6 6 (6+3+2)=396(立方厘米)。

2、(1)解答:设原正方体的边长为A,根据题意得:4x4*A=80,解得:A=5,所以原体积为A*A*A=125立方厘米。

(2)解:设成了正方体后的棱长为A;则原来的长方体的高为A-2,长为A,宽为A。

根据题意6*A*A-[4*(A-2)*A+2*A*A]=48解得:A=6(或者这样理解:增加的表面积为四个侧面的,所以四个增加的侧面积为:4x2xA=48,所以A=6)所以原长方体的长为6,宽为6,高为6-2=4,所以体积为6x6x4=144立方厘米。

有关长方体和正方体的奥数题

有关长方体和正方体的奥数题

长方体和正方体(一)
姓名:
1. 一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)
2. 一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?
3. 把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积。

4.有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)
5.有一个形状如下图的零件,求它的体积和表面积。

(单位:厘米)
评价:
6.一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。

原正方体的表面积是多少平方厘米?
7. 把11块相同的长方体砖拼成一个大长方体。

已知每块砖的体积是288立方厘米,求大长方体的表面积。

8. 一个长方体的体积是385立方厘米,且长、宽、高都是质数,求这个长方体的表面积。

9. 一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘米为单位的数都是质数。

这个长方体的体积和表面积各是多少?
10. 一个长方体和一个正方体的棱长之长相等,已知长方体长、宽、高分别是6分米、4分米、5分米,求正方体体积。

Welcome
To Download !!
!
欢迎您的下载,资料仅供参考!。

长方体正方体奥数题练习题

长方体正方体奥数题练习题

长方体正方体奥数题练习题1、把一张长20厘米,宽16米的长方形纸裁成同样大小,面积尽可能大的正方形,纸没剩余,最多可裁多少个?2、两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距多少千米?3、一块长40厘米、宽30厘米的长方形铁板,把它的四个角分别切掉边长为4厘米的正方形,然后焊接成一个无盖的盒子。

它的容积是多少升?4、楼房外壁用于流水的水管是长方体。

如果每节长15分米,横截面是一个长方形,长1分米,宽0.6分米。

做一节水管,至少要用铁皮多少平方分米?5.把一根长米的长方体木料,平均截成3段,表面积增加了12平方米,原来长方体木料的体积是多少立方分米?6.一个长方体长16分米,高6分米,沿水平方向横切成俩个小长方体,表面积增加160平方分米,求原长方体体积?7.一个长方体如果高减少3厘米,正好成为一个正方体,表面积少36平方厘米,原长方体的体积?8.一个长方体高减2厘米成一个正方体,面积减少24平方厘米.原长方体的体积是多少立方厘米9.一个长方体木块,从上部和下部分别截去高为3厘米和2厘米的长方体,便成为一个正方体,表面积减少了120平方厘米,原来长方体的体积是多少立方厘米?10.一个长方体,如果高增加2厘米就成了一个正方体,而且表面积增加56平方厘米,求原长方体的体积?11.一段长方体木料,长1.2米如果锯短2厘米,它的体积就减少40立方厘米,求原长方体的体积?12.一个长方体,表面积是70平方分米,底面积是9.8平方分米,底面周长是12.6分米,这个长方体的高是多少?体积是多少?13.一个长方体的表面积为16000平方分米,底面是边长为40厘米的正方形,求长方体的体积是多少?14.将一块棱长20厘米的正方体铁块锻压成一块,100厘米长,2厘米厚的铁板,这个铁板的宽是多少?15.把一棱长30厘米的正方体钢坯,锻压成高和宽都是5厘米的长方体钢材.能锻造多长?16.把一个棱长5厘米的正方体钢材,锻压成长5厘米,宽4厘米的长方体钢材,钢材厚多少厘米?17、用两个长5cm,宽3cm,高4cm的长方体拼成一个大的长方体。

长方体和立方体奥数题

长方体和立方体奥数题

长方体和立方体班级:姓名:得分:一、填空。

1、长方体有( 6 )个面,( 12 )条棱,( 8 )个顶点,相对的棱长度(),相对的面()。

2、一个长方体的长5厘米,宽3厘米,高2厘米,它的最大的一个面是()面,面积是()。

这个长方体的表面积是(),体积是()。

3、一个正方体的棱长总和是48厘米,它的表面积是( 96 ),体积是( 64 )。

4、把三个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是(),体积是()。

5、把一个棱长是a米的正方体木材,任意截成两个小长方体后,表面积比原来多()。

6、把一个棱长为4厘米的正方体,分割成两个长方体,这两个长方体表面积总和是()。

7、一个正方体的棱长扩大到原来的5倍,则表面积扩大到原来的()倍,它的体积扩大到原来的()倍。

8、一个长方体各条棱长和是96厘米,并且它的长是宽的2倍,宽与高相等,那么这个长方体的体积是()立方厘米。

9、将两块棱长相等的正方体木块拼成一个长方体,已知长方体的棱长总和是48厘米。

则这个长方体的体积是()10、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色没有涂的小立方体只有3块。

原来长方体的体积是()立方厘米。

二、判断。

1、正方体是特殊的长方体。

()2、一个长方体可能有8条棱的长度都相等。

()3、棱长是6分米的正方体,它的表面积和体积相等。

()4、正方体的棱长缩小一半后,体积比原来少一半。

()5、一个正方体的棱长扩大a倍,那么它的体积扩大a2倍。

()6、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个大的长方体,这个大长方体的表面积最大是62平方厘米,最小是54平方厘米.三、基础题。

1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。

- 2 -3、有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?4、 有一个长方体形状的零件。

六年级上册奥数试题-第21讲:正方体和长方体_全国通用(含答案)

六年级上册奥数试题-第21讲:正方体和长方体_全国通用(含答案)

第21讲正方体和长方体知识网络长方体一共有六个面,每个面都是长方形(或正方形),并且相对应的两个面是全等的,所以长方体一共有3对大小相等的面,即相对面的面积相等。

长方体中两个面相交的边叫棱,它共有12条棱,并且相互平行的棱的长度是一样的。

长方体有8个顶点,相交于同一个顶点的三条棱分别叫做长方体的长、宽、高。

长、宽、高相等的长方体叫做正方体,正方体的长、宽、高统称为棱长。

正方体是长方体的特殊情况,它的六个面都是正方体且面积都相等,它的12条棱长的长度也相等。

若长方体的长、宽、高分别用字母a、b、c表示,则其体积V=abc,其表面积为S=2(ab+bc+ca);若正方体的棱长用字母a表示,则其体积其表面积为。

重点·难点本讲主要涉及的问题有:立体图形的计数;立体图形上的最短路线;立体图形的分割与拼凑;立体图形的表面积与体积的计算。

这四个问题是数学竞赛中常见的问题,是本讲的难点。

学法指导针对上述四个问题,我们用相应的方法来求解。

(1)立体图形的计数问题,有一个常用的结论:如果把正方体的每条棱长n等分,那么就将正方体分成个小正方体,而正方体的总个数有。

(2)立体图形上的最短路线问题,一般将立体图形展开在平面上,利用公理“两点之间,直线段最短”来求解。

(3)立体图形的分割与拼凑,类似于平面图形的分割与拼凑,将不规则的立体图形拼凑成规则的或我们比较熟悉的立体图形。

(4)立体图形的表面积与体积的计算,一般是将图形分成几个部分,对各个部分分别求出表面积或体积,再求出总的表面积或体积。

经典例题[例1]把十九个棱长为1厘米的正方体重叠起来,拼成一个立体图形,如图1所示,求这个立体图形的表面积。

思路剖析如果一个立体图形没有被“挖洞”的问题,那么它的表面积应该是从上、下、左、右和前、后六个方向看到的平面图形的面积的总和。

而此立方体图形,从前后、上下、左右分别看到的图形分别如图2所示。

解答由于此立体图形的三个面的投影的面积分别是10平方厘米,8平方厘米,9平方厘米,所以此立体图形表面积为(10+8+9)×2=54(平方厘米)。

奥数长方体和正方体

奥数长方体和正方体

奥数长方体和正方体长方体和正方体习题六年级奥数上册:第五讲长方体和正方体习题解答28.正方体的展开图把一个正方体的各面展开放在桌面上,下图就是正方体的一个展开图形,试问,一个正方体有几种展开图。

28.正方体的展开图共有11种: 把四个面排成一排的有6种29。

长方体的体积阿强做一道求长方体体积的数学题.当他算完长乘以宽以后,发现宽厚30.长方体和正方体一个棱长 5 厘米的立方体是由棱长 1 厘米的小立方体若干个堆砌而成的。

①如果小立方体增加3个,可以堆砌出多少种长、宽、高都不相同的长方体?②如果小立方体减少5个,可以堆砌出多少种长、宽、高都不相同的长方体?30.长方体和正方体解:5×5×5=125125+3=128=27×1125-5=120=23×31×51×1根据约数个数公式,128有(7+1)=8个约数它们是1,2,4,8,16,2,64,128。

120有(3+1)×(1+1)×(1+1)=16个约数,它们是:1,,3,4,5,6,8,10,12,15,20,24,30,40,60,120。

有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米,把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?解:水池中水面升高部分水的体积就是投入水中的碎石体积.沉入中、小水池中的碎石的体积分别是:3×3×0。

04=0。

36立方米,2×2×0。

11=0。

44立方米.它们的和是:0。

36+0。

44=0.8立方米.把它们都沉入大池里,大池水面升高部分水的体积也应当是0.8立方米,而大池的底面面积是4×4=16平方米,所以,大水池的水面升高:六年级奥数上册:第五讲长方体和正方体习题六年级奥数上册:第五讲长方体和正方体习题解答第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。

奥数长方体和正方体

奥数长方体和正方体

长方体和正方体习题六年级奥数上册:第五讲长方体和正方体习题解答28.正方体的展开图把一个正方体的各面展开放在桌面上,下图就是正方体的一个展开图形,试问,一个正方体有几种展开图。

28.正方体的展开图共有11种:把四个面排成一排的有6种29.长方体的体积阿强做一道求长方体体积的数学题。

当他算完长乘以宽以后,发现宽厚30.长方体和正方体一个棱长 5 厘米的立方体是由棱长 1 厘米的小立方体若干个堆砌而成的。

①如果小立方体增加3个,可以堆砌出多少种长、宽、高都不相同的长方体?②如果小立方体减少5个,可以堆砌出多少种长、宽、高都不相同的长方体?30.长方体和正方体解:5×5×5=125125+3=128=27×1125-5=120=23×31×51×1根据约数个数公式,128有(7+1)=8个约数它们是1,2,4,8,16,2,64,128。

120有(3+1)×(1+1)×(1+1)=16个约数,它们是:1,,3,4,5,6,8,10,12,15,20,24,30,40,60,120。

有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米,把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?解:水池中水面升高部分水的体积就是投入水中的碎石体积.沉入中、小水池中的碎石的体积分别是:3×3×=立方米,2×2×=立方米.它们的和是:+=立方米.把它们都沉入大池里,大池水面升高部分水的体积也应当是立方米,而大池的底面面积是4×4=16平方米,所以,大水池的水面升高:六年级奥数上册:第五讲长方体和正方体习题六年级奥数上册:第五讲长方体和正方体习题解答第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、用一根长8分米的铁丝做成一个高是8厘米的长方体框架,要使长方体的体积最大,这个体积是立方厘米。

2、一个长方体,不同的三个面的面积分别是35平方厘米、21平方厘米和15平方厘米,且长、宽、高都是质数,则这个长方体的体积是立方厘米。

3、有一个小金鱼缸,长4分米、宽3分米,水深2分米,把一小块假山石浸入水中后,水面上升了0.8分米,这块假山石的体积是立方分米。

4、将表面积分别为216平方厘米和384平方厘米的两个正方体铁柱熔成一个长方体,若这个长方体的长是13厘米,宽7厘米,则它的高是厘米。

5、一个长方体盛水容器的底面是一个边长60厘米的正方形,容器里直立着一个高1米、底面边长15厘米的长方体铁块,这时容器里的水深0.5米,如果把铁柱取出,容器里的水深将是厘米。

6、有一块长方形的铁皮,长60厘米,宽40厘米。

在这块铁皮的四角剪去边长5厘米的小正方形,然后制成一个无盖的长方体盒子,求这个长方体盒子的体积。

7、把一个正方体木块锯成3个大小一样的小长方体后,表面积增加了36平方厘米。

原来正方体的体积是多少?8、把一个长方体截去一个高为8厘米的长方形后,剩下的部分是一个正方体。

正方体的表面积比原来长方体的表面积减少320平方厘米。

求原来长方体的体积。

9、有一个棱长为9厘米的正方体,在每两个对面的中央钻一个边长为2厘米的正方形孔,且穿透,所得立体的体积是多少?10、有甲、乙、丙三个正方体水池,它们内边长分别是5米、3米、1米,把两堆碎石分别沉没在乙、丙两个水池的水里,它们的水面分别升高了4厘米和2厘米。

如果将这两堆碎石都沉没在甲水池的水里,甲水池的水面升高了多少厘米?11、一个长方体游泳池,长50米,宽25米,打开全部进水管,每分钟可注入5立方米的水,如果要使水深达到1.5米,需注水多少小时?12、一个长方体木块,从下部和上部分别截去高为3厘米和2厘米的长方体后,变成一个正方体。

若表面积减少了120平方厘米,则原长方体的体积是立方厘米。

3、一个长方体纸盒,展开其侧面后连同底面可拼得一个边长为32分米的正方形。

这个纸盒的最大体积是。

5、3个长方体鱼缸,它们的三个棱长都是4分米、5分米、6分米,且以不同的棱长组合鱼缸的底,每个鱼缸都装上2分米高的水,但它们含水的体积不同。

如果把其中一个鱼缸中的水倒入另一个鱼缸中,且要求使水面最高,那么水高是分米,这时鱼缸中水的体积是升。

1、有三个自然数a,b,c,已知b除以a,得商3余3;c除以a,得商9余11。

则c除以b,得到的余数是。

2、在99个连续的自然数中,最大的数是最小的数的25.5倍,那么这99个自然数的平均数是。

7、要往码头运28个同样大小的集装箱,每个集装箱的质量是1560千克。

现安排一辆载重6吨的卡车运送这些集装箱,卡车车厢的大小最多可容纳5个集装箱,则这辆卡车至少需往返趟。

8、小晴要做一道菜:“香葱炒蛋”需7道工序,时间如下:洗葱,切葱花打蛋搅拌蛋液和葱花洗锅烧热锅烧热油烧菜1分钟半分钟1分钟半分钟半分钟半分钟2分钟小晴做好这道菜至少需要分钟。

9、一项特殊的工作必须日夜有人值守,如果安排8人轮流值班,当值班人员为3人,那么,平均每人每天工作小时。

10、甲、乙两商店中某种商品的定价相同。

甲商店按定价销售这种商品。

销售额是7200乙商店按定价的八折销售,比甲商店多售出15件。

销售额与甲商店相同。

则甲商店售出件这种商品。

11、夜里下了一场大雪,早上,小龙和爸爸一起步测花园里一条环形小路的长度,他们从一点同向行走,小龙每步长54厘米,爸爸每步长72厘米,两人各走完一圈后又都回到发点,这时雪地上只留下60个脚印。

那么这条小路长米。

12、一艘客轮在静水中的航行速度是26千米/时。

往返于A、B两港之间,河水的流速是6千米/时,如果客轮在河中往返4趟共用13小时,那么A、B两港之间相距千米。

(客轮掉头时间不计)13、大猴踩到一堆桃子,分给一群小猴吃。

如果其中两只小猴各分得4个桃,其余每只小猴各分得2个桃,则最后剩4个桃;如果其中一只小猴分得6个桃,其余每只小猴各分得4个桃,那么还差12个桃,大猴共采到个桃,这群小猴共几只。

14、如图,将从2开始的偶数从小到大排列成一个顺时针方向的直角螺旋,4,6,10,14,20,26,34,……依次出现的螺旋的拐角处。

则2010 (填“会”或“不会”)出现在螺旋的拐角处。

1. 如果一个边长为2厘米的正方体的表面积增加192平方厘米后仍是正方体,则边长增加______厘米.错误!未找到引用源。

2. 一小桶油漆恰好可以漆一个边长为0.5米的正方体,要漆一个边长为一米的立方体,需要______小桶同样油漆.3. 如下图,在一个棱长为10的立方体上截取一个长为8,宽为3,高为2的小长方体,那么新的几何体的表面积是多少?2 34. 如上2图。

在一个棱长为8厘米的正方体上放一个棱长为5厘米的小正方体,求这个立体图形的表面积.5,如右图3所示,由三个正方体木块粘合而成的模型,它们的棱长分别为1米、2米、4米,要在表面涂刷油漆,如果大正方体的下面不涂油漆,则模型涂刷油漆的面积是多少平方米?6. 如下图,棱长分别为1厘米、2厘米、3厘米的三个正方体紧贴在一起,则所得到的立体图形的表面积是_ 平方厘米.7. 将15个棱长为1的正方体堆放在桌子上,喷上红色后再将它们分开.涂上红色的部分,面积是()平方厘米五年级奥数题1、xy,zw分别表示一个两位数,若xy+zw=139,那么x+y+z+w=?2.有一条长500米的环行跑道,甲乙两人同时从跑道上的某一点出发,如果反向而跑,则1分钟后相遇;如果同向而跑,则10分钟后追上.以知甲比已跑的快,问:甲已两人每分钟各跑多少米?3一个圆形跑道上,下午1:00,小明从A点,小强从B点同时出发相对而行,下午1:06两人相遇,下午1:10,小明到达B点,下午1:18,两人再次相遇.问:小明环行一周要多少分钟?4.a、b和c都是两位的自然数,a、b的个位数分别是7和5,c的十位数是1.如果满足等式ab+c=2005,则a+b+c=?5、22……2(2000个2)除以13所得的余数是多少?6、1的平方+2的平方+3的平方……+2001的平方+2002的平方除以4的余数是多少?7、数1998*1998*1998*……*1998[2000个1998连乘]的积除以7的余数是多少?8、一个整数除以84的余数是46,那么他分别除以3、4、7所得的三个余数之和是多少?9、甲、乙、丙、丁四个旅行团分别有游客69人、85人、93人、97人。

现在要把四个旅行团分别进行分组,使每组都是A名游客,以便乘车前往参观旅游。

已知甲、乙、丙三个团分成每组A人的若干组后,所剩下的人数相同,问丁旅行团分成每组A人的若干组后还剩下几人?10、号码分别为37、57、77、和97的四名运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和除以3的余数,那么打球盘数最多的运动员是几号?他打了多少盘?11.一部书,甲、乙两个打字员需要10天完成,两人合打8天后,余下的由乙单独打,若这部书由甲单独打需要28天完成。

问乙又干了几天完成?12.在300米长的环形跑道上,甲、乙两人同时同向并排起跑,甲平均每秒跑5米,乙平均每秒跑4.4米。

两人起跑后的第一次相遇在起跑线前多少米?第二届华博士小学数学奥林匹克网上竞赛试题选择正确的答案:(1)在下列算式中加一对括号后,算式的最大值是( )。

7 × 9 + 12 ÷ 3 - 2A 75B 147C 89D 90(2)已知三角形的内角和是180度.一个五边形的内角和应是( )度.A 500B 540C 360D 480(3)甲乙两个数的和是15.95,甲数的小数点向右移动一位就等于乙数,那么甲数是( ).A 1.75B 1.47C 1.45D 1.95(4)一个顾客买了6瓶酒,每瓶付1.3元,退空瓶时,售货员说,每只空瓶钱比酒钱少1.1元,顾客应退回的瓶钱是( )元.A 0.8B 0.4C 0.6D 1.2(5)两数相除得3余10,被除数,除数,商与余数之和是143,这两个数分别是( )和( ). A 30和100 B 110和30 C 100和34 D 95和40(6) 今年爸爸和女儿的年龄和是44岁,10年后,爸爸的年龄是女儿的3倍,今年女儿是多少岁? A16 B11 C9 D10(7)一个两位数除250,余数是37,这样的两位数是( ).A 17 B38 C 71 D 91(8)把一条细绳先对折,再把它所折成相等的三折,接着再对折,然后用剪刀在折过三次的绳中间剪一刀,那么这条绳被剪成( )段.A 13B 12C 14D 15(9) 把两个表面积都是6平方厘米的正方体拼成一个长方体,这个长方体的表面积( ).A 12B 18 C10 D11(10)一昼夜钟面上的时针和分针重叠( )次.A 23B 12C 20 D13(11)某车间四月份实际生产机器76台,其中原计划生产的台数比超产台数多60台,求四月份比原计划超产多少台机器?A 16B 8C 10D 12(12)一块红砖长25厘米,宽15厘米,用这样的红砖拼成一个正方形最少需要多少块?A 15B 12C 75D 8 (13)一天,甲乙丙三人去郊外钓鱼已知甲比乙多钓6条,丙钓的是甲的2 倍,比乙多钓22条,问A 12D C他们三人一共钓了多少条?A 48B 50C 52D 58(14)张师傅以1元钱4个苹果的价格买进苹果若干个,又以2元钱5个苹果有价格把这些苹果卖出,如果他要赚得15元钱的利润,那么他必须卖出苹果多少个?A 10B 100C 20D 160容斥问题五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。

其中语文成绩优秀的有65人,数学优秀的有87人。

语文、数学都优秀的有多少人?学校文艺组每人至少喜欢一种文艺表演,已知喜欢唱歌的有12人,喜欢跳舞的有19人,其中两种都喜欢的有8人。

这个文艺组一共有多少人?四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?某班有40名学生,其中有15人参加数学小组,18人参加航模小组,有10人两个小组都参加.那么有多少人两个小组都不参加?一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。

两种报纸都没有订阅的有多少人?某班45个学生参加期末考试,成绩公布后,数学得满分的有10人,数学及语文均得满分的有3人,这两科都没有得满分的有29人.那么语文成绩得满分的有多少人?一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。

相关文档
最新文档