长方体和正方体的表面积奥数题
长方体与正方体奥数题及答案

1、一个长方体的棱长之和是80厘米,如果把这个长方体平均截成两段,就成了两个大小相等的正方体,求:这个长方体的表面积和体积。
80÷2÷8=5(cm) 表面积:5X5X5X2=250(平方厘米)体积:5X5X5=125(立方厘米)答:这个长方体的表面积是250平方厘米,体积是125立方2、把3个完全相等的正方体拼成一个长方体,这个长方体的表面积是350平方厘米,每个正方体的表面积是多少平方厘米?350÷14X6=150(平方厘米)答:每个正方体的表面积是150平方厘米?3、把一个长方体的木块截成两段,就成了两个完全相等的正方体,这两个正方体的棱长之和比原来那个长方体的棱长之和增加40厘米,原来那个长方体的体积是多少立方厘米?40÷8=5(厘米)5X2=10(厘米)5X5X10=250(平方厘米)答:原来那个长方体的体积是250立方厘米4、把一个长、宽、高分别是7厘米、6厘米、5厘米的长方体截成两个长方体,使这两个长方体的表面积之和最大,这时表面积之和是多少平方厘米?(7X6+7X5+6X5)X2=214(平方厘米)214+6X7X2=298(平方厘米)答:这时表面积之和是298平方厘米5、一个长方体,前面和上面的面积之和是290平方厘米,这个长方体的长宽高都是质数,这个长方体的体积和表面积各是多少?290=29X10=29X(7+3)体积:29X7X3=609(立方厘米)表面积:(29X7+29X3+7X3)=672(平方厘米)答:这个长方体的体积j 609立方厘米,表面积是672平方厘米6、一个长方体的表面积是78平方厘米,底面积是15平方厘米,底面周长是16厘米,求长方体的体积。
78-15-15=48(平方厘米)48÷16=3(厘米)15×3=45(立方厘米)答:长方体的体积是45立方厘米7、一个长方体水箱,从里面量,长20厘米,宽30厘米,深35厘米,箱中水面高5厘米,放进一个棱长20厘米的正方体的铁块后,铁块顶面仍高于水面,这时水面的高多少厘米?20×30×5=3000(立方厘米)20×30-20×20=200(平方厘米)3000÷200=15(厘米)答:这时水面的高15厘米8、一个长方体木块,从下部和上部分别截去3厘米和2厘米的长方体后,成了一个正方体,表面积减少了120平方厘米,原长方体的体积是多少立方厘米?120÷(3+2)=24(平方厘米)24÷4=6(厘米)6+3+2=11(厘米)6×6×11=369(立方厘米)答:原长方体的体积是369立方厘米。
长方体正方体奥数题精编版

25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。
2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。
8.一个长方体容器中注满了水,现在有大、中、小三块石头。
第一次把小石头沉入水中,再取出来。
第二次再把中石头沉入水中,再捞起来。
第三次再把大、小石头一起沉入水中。
每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。
10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。
11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。
12.一个底面是正方形的水箱(如下图),如果把它的侧面展开,正好得到一个边长为40厘米的正方形,现在水箱内装有半箱水,求没有与水接触的面的面积。
五年级奥数之长方体和正方体的表面积

五年级奥数之长方体和正方体的表面积例1:一个长方体的棱长之和是48厘米,长是5厘米,宽是4厘米,求它的表面积。
这个长方体的高可以用48减去长和宽的和(5+4=9)得到,即39厘米。
根据长方体表面积的公式,它的表面积为2×(5×4+5×39+4×39)=518平方厘米。
例2:一个零件形状大小如下图,求它的表面积。
由于这个零件由一个长方体和两个正方体组成,可以分别计算它们的表面积再相加。
长方体的表面积为2×(5×4+5×3+4×3)=94平方厘米,正方体的表面积为6×(3×3)=54平方厘米,因此这个零件的表面积为94+54=148平方厘米。
例3:有一个长方体形状的零件。
中间挖去一个正方体的孔(如下图)。
求它的表面积。
(单位:厘米)由于这个零件由一个长方体和一个正方体孔组成,可以先计算长方体的表面积,再减去正方体孔的表面积。
长方体的表面积为2×(8×6+8×2+6×2)=208平方厘米,正方体孔的表面积为6×2×2=24平方厘米,因此这个零件的表面积为208-24=184平方厘米。
例4:下图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积。
首先可以将这个立体图形分解为一个长方体和两个正方体。
长方体的长、宽、高分别为5、5、10,表面积为2×(5×5+5×10+5×10)=300平方厘米。
正方体的边长为5,表面积为6×(5×5)=150平方厘米。
因此这个立体图形的表面积为300+150+150=600平方厘米。
例5:一个正方体的表面积为54平方厘米,如果一刀把它切成两个长方体,那么,这两个长方体表面积的和是多少平方厘米?一个正方体的表面积为6a^2,其中a为边长。
(完整word版)五年级奥数《长方体与正方体的表面积与体积》

长方体和正方体的表面积和体积一、方法讲解我们学习了长方体和正方体,运用长方体和正方体的表面积和体积公式一般可以简单长方体和正方体问题,解决较复杂的立体图形问题要注意几点:1、必须以基本概念和方法为基础,同时吧构成几何图形的诸多条件融合贯通起来。
2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化。
3、求一些不规则的物体的体积时,可以通过变形的方法来解决。
二、例题讲解1、一个零件形状大小如右图所示:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)2、有一个长方体形状的零件,中间挖去一个正方体的孔(如图所示),你能算出它的体积和表面积吗?(单位:厘米)3、一个长方体沿着长的方向切掉一个小正方体,剩下的长方体的表面积比原来减少24平方厘米,求所切下的正方体的表面积是多少平方厘米?4、长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。
这个长方体的体积是多少立方厘米?5、一个凌长为6厘米的正方体木块,如果把它锯成凌长为2厘米的正方体若干块,表面积增加多少平方厘米?三、达标练习1、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图所示),剩下部分的表面积和体积各是多少?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加了2平方分米,求这根木料原来的体积.3、有一个长8厘米、宽1厘米、高3厘米的长方体,在它的左右两个角各切掉一个正方体(如图所示),求切掉正方体后的表面积和体积各是多少?4、有一个形状如上图所示的零件,求它的体积和表面积。
(单位:厘米)5、如果把上题中挖下的小正方体粘在另一个面上,(如图所示)那么得到的物体的体积和表面积各是多少?6、一个正方体和一个长方体刚好拼成新的长方体,其表面积比原来的长方体的表面积增加了60平方厘米,原来正方体的表面积是多少立方厘米?7、一根长1米,宽和高都是8厘米的长方体钢材,从钢材的一端锯下一个最大的正方体后,它的表面积减少了多少平方厘米?8、把两个完全相同的长方体木块拼成一个正方体,表面积比原来两个长方体的表面积的和减少了40 平方厘米,求原来每个长方体的表面积是多少平方厘米?9 。
小学六年级奥数试题详解 长方体和正方体

第五讲长方体和正方体长方体和正方体在立体图形中是较为简单的,也是我们较为熟悉的立体图形.如下图,长方体共有六个面(每个面都是长方形),八个顶点,十二条棱。
在六个面中,两个对面是全等的,即三组对面两两全等(叠放在一起能够完全重合的两个图形称为全等图形.两个全等图形的面积相等,对应边也相等).长方体的表面积和体积的计算公式是:长方体的表面积:S长方体=2(ab+bc+ac);长方体的体积:V长方体=abc.正方体是各棱相等的长方体,它是长方体的特例,它的六个面都是正方形.如果它的棱长为a,那么:S正方体=62a,V正方体=3a例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为22a平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+22a=240,可知,2a=25,故a=5(厘米).又因为22a+4ah=190,解得19022545h-⨯=⨯=7(厘米)所以,原来长方体的体积为:V=2a h=25×7=175(立方厘米).例2 如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长。
解:原来正方体的表面积为:6×3a×3a=6×92a(平方厘米).六个边长为a的小正方形的面积为:6×a×a=62a(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=122a(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=42a(平方厘米).根据题意:6×92a-62a+3(122a-42a)=2592,化简得:542a-62a+242a=2592,解得2a=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3 有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍。
长方体和立方体奥数题

长方体和立方体班级:姓名:得分:一、填空。
1、长方体有( 6 )个面,( 12 )条棱,( 8 )个顶点,相对的棱长度(),相对的面()。
2、一个长方体的长5厘米,宽3厘米,高2厘米,它的最大的一个面是()面,面积是()。
这个长方体的表面积是(),体积是()。
3、一个正方体的棱长总和是48厘米,它的表面积是( 96 ),体积是( 64 )。
4、把三个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是(),体积是()。
5、把一个棱长是a米的正方体木材,任意截成两个小长方体后,表面积比原来多()。
6、把一个棱长为4厘米的正方体,分割成两个长方体,这两个长方体表面积总和是()。
7、一个正方体的棱长扩大到原来的5倍,则表面积扩大到原来的()倍,它的体积扩大到原来的()倍。
8、一个长方体各条棱长和是96厘米,并且它的长是宽的2倍,宽与高相等,那么这个长方体的体积是()立方厘米。
9、将两块棱长相等的正方体木块拼成一个长方体,已知长方体的棱长总和是48厘米。
则这个长方体的体积是()10、将一个表面涂有红色的长方体分割成若干个体积为1立方厘米的小正方体,其中一点红色没有涂的小立方体只有3块。
原来长方体的体积是()立方厘米。
二、判断。
1、正方体是特殊的长方体。
()2、一个长方体可能有8条棱的长度都相等。
()3、棱长是6分米的正方体,它的表面积和体积相等。
()4、正方体的棱长缩小一半后,体积比原来少一半。
()5、一个正方体的棱长扩大a倍,那么它的体积扩大a2倍。
()6、用三个长3厘米,宽2厘米,高1厘米的长方体拼成一个大的长方体,这个大长方体的表面积最大是62平方厘米,最小是54平方厘米.三、基础题。
1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?2、把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。
- 2 -3、有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?4、 有一个长方体形状的零件。
五年级奥数-立体图形问题

课程五立体图形问题1.长方体、正方体表面积的计算 2。
长方体、正方体的切割问题 3。
长方体、正方体的体积4。
不规则物体的体积计算长方体和正方体的表面积应注意的问题(1)找出必备条件(长、宽、高或棱长),如题中没有直接给出,则 先求出必备条件,再求表面积(有盖还是无盖)。
(2)统一计量单位,单位不统一的,一般要通过化、聚,使单位统一 后再计算。
(3)求所需用的面积材料时,一般用“进一法“取近似值. (4)用同样多的立体拼图,由于拼法不同,重叠的次数不同,表面积 就会发生变化,每重叠一次,就减少两个面;每切一刀,就增加两个面。
1.长方体和正方体的体积概念及其计算公式 (1)长方体体积=长×宽×高 V 长方体=abc(2) 正方体体积=棱长×棱长×棱长 V 正方体=a 3 2.求不规则物体的体积水中物体的体积=容器的底面积×水上升或下降的高度。
水上升或下降的高度=水中物体的体积÷容器的底面积容器的底面积=水中物体的体积÷水上升或下降的高度例1有一个长15厘米,宽10厘米,高8厘米的长方体,现在要在这个长方体中挖去一个棱长为5厘米的小正方体,那么剩下部分的表面积是多少?学习目标重 点总 结(1) (2) (3)分析与解法根据长方体的特征我们可以知道,挖去小正方体的位置有3种情况,可能是在面上,如图(1),可能在顶点上,如图(2),可能在棱上,如图(3).在面上时,可以用长方体的表面积+小正方体4个面的面积;在角上时,正好等于长方体的表面积;在棱上时,要用长方体的表面积+小正方体2个面的面积。
解:原长方体表面积为:(15×10+15×8+10×8) ×2=700(平方厘米) 在角上时,剩下部分的表面积是700(平方厘米); 在面上时,剩下部分的表面积是: 700+5×5×4=800(平方厘米)在棱上时,剩下部分的表面积是:700+5×5×2=750(平方厘米)所以剩下部分的表面积是700平方厘米,或800平方厘米,或750平方厘米。
长方体正方体奥数题

For personal use only in studyand research; not forcommercial use25.看图计算,如图是长方体纸箱的展开图,请你根据有关数据,求出纸箱的体积.(单位:分米)29.有一个长方体,从上面截下一个高是2厘米的长方体后正好得到一个正方体,如图,正方体的表面积比原长体的表面积减少了48平方厘米,求原来长方体的体积.练习十二1.一个长方体,正好可以切成6个棱长3厘米的正方体,求原长方体的表面积。
2.把一个棱长4厘米的正方体木块如下图切割,共切成12块大小不一的长方体,那么这12块长方体的表面积和是多少?3.王老师买了一批书,如下图打包成长方体,每个结口处有3厘米重叠,求共用了多少米打包带?4.现在有6个礼品盒,每个礼品盒的长是16厘米,宽15厘米,高6厘米,现在将它们包装在一起,至少需要多少平方厘米的包装纸?5.一个长方体高减少了2厘米,长减少了4厘米,得到一个棱长6厘米的正方体,求原长方体的体积6.现在有2730块棱长1厘米的正方体,全部用完拼成一个大长方体,求这个大长方体的表面积最小是多少?7.下面的立体图形是用棱长1厘米的小正方体拼成的,求它的表面积。
8.一个长方体容器中注满了水,现在有大、中、小三块石头。
第一次把小石头沉入水中,再取出来。
第二次再把中石头沉入水中,再捞起来。
第三次再把大、小石头一起沉入水中。
每次溢出水的情况是,第二次是第一次的2倍,第三次是第一次溢出水的3倍,求大石头的体积是小石头的多少倍?9.大正方体的棱长是小正方体棱长的2倍,大正方体的体积比小正方体体积多21立方分米,求大小正方体的体积。
10.有一个长方体和一个正方体,正好可以拼成一个新的长方体、新长方体的表面积比原长方体的表面积增加60平方厘米,求正方体的表面积。
11.一个长方体,表面积为184平方厘米,底面积是20平方厘米,底面周长是18厘米,求这个长方体的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、一个正方体形状的木块,棱长为1米,沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又任意按尺寸锯成3块,共得到大大小小的长方体36块,问这36块长方体表面积的和是多少平方米?
长方体和正方体的表面积奥数题
一、将两个都是7厘米,宽都是5厘米,高都是3厘米的长方体拼成一个大长方体。那么大长方体表面积最大是多少平方厘米?
二、有一个长方体,长是12厘米,宽是9厘米,高是6厘米,把它米?
三、正方体木块的表面积是96平方分米,把它沿虚线截成体积相等的8个正方体木块,这时表面积增加多少平方米?