功率半导体的革命:SiC与GaN的共舞
功率器件的演变

在每个功率级(发电、配电、转换和消耗)所能达到 们需要根据需求去定制。
的能效将决定整个电力基础设施的负担增加程度。在
目 前, 功 率 开 关 有 几 种 不 同 的 选 择。 功 率
每个功率级,能效低会导致产生热量,这是主要的副 MOSFET 是最基本的器件,多用于击穿电压低于 200
产物。通常,消除热量或以其他方式处理热量需要消 V 的应用。超级结 MOSFET 是它的延伸,旨在实现更
可避免产生大量的热量。
这可直接转化为电源中更小的无源、磁性元件。另一
功率半导体的不断发展在很大程度上是由终端市 个优势是其相对没有反向恢复电流,能在各种电源拓
场的需求驱动的。如今,所有垂直行业、市场或应用 扑结构中代替二极管,这不仅提高了整体能效,而且
都有其特定的功率需求。即使在近期,这些不同的需 有可能实现全新的架构。
2 结束语
电子行业很清楚,能量转换始终会以热的形式产 生一定程度的损耗。然而,更高效的功率半导体的不 断发展正使逆变器和转换器的开关损耗接近绝对最 小。现在,在所有应用中都需要更多含量的功率半导 体及持续的更高能效。有利的是,安森美半导体在赋 能技术的持续投资使之处于有利地位,可很好地满足 这一需求。
IoT 无疑将带来大量的新设备,但实际上,有更 多的设备已经投入使用并消耗电力,还有相当数量的 设备正在开发或生产。虽然不是所有这些设备都将联 接到全球数据网络,但它们将以某种方式成为国家电 力网络的负荷。这些设备中的每一个所表现出的低能
功率半导体的发展

功率半导体的发展功率半导体最早的发展可以追溯到20世纪50年代末,当时主要是采用二极管和晶闸管进行功率控制和转换。
然而,二极管具有导通和关断功能,但不能实现可控的电流和电压,而晶闸管虽然可以实现电流和电压的控制,但是其调节精度和速度都较低。
因此,为了满足工业和民用电器对功率控制的要求,人们迫切需要一种能够实现高密度和高效率功率控制的新型半导体器件。
1960年代,随着功率场效应晶体管(MOSFET)和摩尔电晕二极管(MCT)的发明,功率半导体迎来了一个重要的发展阶段。
功率MOSFET具有电压驱动能力强、开关速度快、导通电阻低等特点,成为当时功率半导体领域的重要代表之一、而MCT则具有双向导电特性,可与晶闸管相比实现更高效率的功率控制。
这两种器件的出现,为功率半导体的广泛应用奠定了基础。
到了20世纪70年代,silicon controlled rectifier(SCR)和power BJT等器件的出现进一步推动了功率半导体的发展。
SCR具有双向导电性和可控性,广泛应用在电力系统中,如调压和调频设备。
而power BJT则具有高电流承受能力和高频特性,适用于高频功率放大等领域。
进入20世纪80年代,随着各项电子技术的快速发展,功率半导体也逐渐进入了一个新的阶段。
功率MOSFET和IGBT等器件开始得到广泛应用。
功率MOSFET以其快速开关速度、低导通电压降等优点,成为交流、直流电源的重要开关元件。
IGBT则结合了功率MOSFET的低导通电压降和晶闸管的高控制性能,更适用于大功率、高压的应用。
到了21世纪,功率半导体的发展进入了一个全新的阶段。
随着可再生能源(如太阳能、风能等)的快速发展和电动汽车的普及,功率半导体需要更高的性能和可靠性。
新材料的应用,如碳化硅(SiC)和氮化镓(GaN),使得功率半导体能够应对更高的电压、温度等工作环境。
这些新材料的应用,使功率半导体能够实现更高效的能量转换,同时减少了功率器件的体积和重量。
第三代半导体材料双雄并立,难分高下

第三代半导体材料双雄并立,难分高下作者:来源:《今日电子》2013年第01期进入21世纪以来,随着摩尔定律的失效大限日益临近,寻找半导体硅材料替代品的任务变得非常紧迫。
在多位选手轮番登场后,有两位脱颖而出,它们就是氮化镓(GaN)和碳化硅(SiC)——并称为第三代半导体材料的双雄。
SiC早在1842年就被发现了,但直到1955年,才有生产高品质碳化硅的方法出现;到了1987年,商业化生产的SiC进入市场;进入21世纪后,SiC的商业应用才算全面铺开。
相对于Si,SiC的优点很多:有10倍的电场强度,高3倍的热导率,宽3倍禁带宽度,高一倍的饱和漂移速度。
因为这些特点,用SiC制作的器件可以用于极端的环境条件下。
微波及高频和短波长器件是目前已经成熟的应用市场。
42GHz频率的SiCMESFET,用在了军用相控阵雷达、通信广播系统中,用SiC作为衬底的高亮度蓝光LED则是全彩色大面积显示屏的关键器件。
现在,SiC材料正在大举进入功率半导体领域。
一些知名的半导体器件厂商,如ROHM,英飞凌,Cree,飞兆等都在开发自己的SiC功率器件。
英飞凌公司在今年推出了第五代SiC肖特基势垒二极管,其结合了第三代产品的低容性电荷(Qc)值与第二代产品的正向电压(Vf)水平相结合,使PFC电路达到最高效率水平,击穿电压则达到了650V。
飞兆半导体发布了SiCBJT,其实现了1200V的耐压,传到和开关损耗相对于传统的Si器件降低了30%~50%,从而能够在相同尺寸的系统中实现高达40%的输出功率提升。
ROHM公司则推出了1200V的第二代SiC制MOSFET产品,其实现了SiC-SBD与SiC-MOSFET的一体化封装,与Si-IGBT相比,工作损耗降低了70%,并可达到50kHz以上的开关频率。
值得一提的是,IGBT的驱动比较复杂,如果使用SiC基的MOSFET,则能使系统开发的难度大为降低。
现在,SiC的市场颇为看好,根据预测,到2022年,其市场规模将达到40亿美元,年平均复合增长率可达到45%。
功率半导体器件发展概述

功率半导体器件发展概述功率半导体器件是指能够承受较高电流和电压的半导体器件。
它们广泛应用于电力电子、汽车电子、航天航空等领域,具有高效率、小体积、轻量化等优势,对能源的高效利用和环境保护具有重要作用。
下面将对功率半导体器件的发展历程进行概述。
20世纪40年代,晶体管的发明和发展催生了功率半导体器件的诞生。
最早的功率半导体器件是由晶体管和二极管组成的,如功率晶体三极管和功率二极管。
这些器件应用于通信、电视、广播等领域,开启了功率半导体器件的发展之路。
20世纪50年代,随着半导体材料和制造工艺的不断改进,出现了一系列新型功率半导体器件,如功率MOSFET、功率势控晶体管(SCR)等。
这些器件具有更高的电压、电流承受能力,广泛应用于电力电子和工业自动化控制系统。
20世纪60年代至70年代,随着功率电子技术的进一步发展,功率半导体器件的性能得到了进一步提升。
功率MOSFET得到了广泛应用,功率MOSFET的开关速度和导通电阻都有很大改进,使其在高频率开关电源和高速交流电机等应用中具有重要作用。
此外,绝缘栅双极晶体管(IGBT)也成为功率半导体器件的重要代表,它结合了功率MOSFET和功率BJT的优点,具有低导通压降和高开关速度等优势,被广泛应用于交流变频调速系统。
20世纪80年代至90年代,功率半导体器件的发展受到了电子信息技术快速发展的推动。
新型器件的不断涌现,如GTO(大功率双极晶闸管)、SIT(静电感应晶体管)、电流模式控制晶闸管(IGCT)等,使得功率半导体器件在电动车、电力系统和工业自动化等领域得到了广泛应用。
进入21世纪以来,功率半导体器件的发展重点逐渐从性能提升转向能源效率和可靠性改进。
新型器件的研究和开发不断涌现,如SiC(碳化硅)功率器件、GaN(氮化镓)功率器件等。
这些器件具有更低的开关损耗和更高的工作温度,具备更高的效率和更小的体积,被广泛应用于新能源、新能源汽车等领域。
总的来说,功率半导体器件在过去几十年中经历了从晶体管、二极管到MOSFET、SCR,再到IGBT、GTO和新材料器件的发展过程。
氮化镓(gan)和碳化硅(sic)芯片的生产工艺流程_概述说明

氮化镓(gan)和碳化硅(sic)芯片的生产工艺流程概述说明1. 引言1.1 概述本文将对氮化镓(GaN)和碳化硅(SiC)芯片的生产工艺流程进行概述说明。
GaN和SiC是两种具有广泛应用前景的半导体材料,它们在高频功率电子器件以及光电子器件等领域有着重要的地位。
了解它们的生产工艺流程对于促进半导体行业的发展具有重要意义。
1.2 文章结构本文包括以下几个部分:引言、氮化镓芯片生产工艺流程、碳化硅芯片生产工艺流程、对比分析与讨论、结论与展望。
首先,我们将从一个总体角度介绍氮化镓和碳化硅芯片的生产工艺。
然后,我们将分别详细探讨每个芯片类型的生产过程。
接下来,我们将进行对比分析,比较它们在物理性质、生产效率以及应用领域上存在的差异。
最后,在结论与展望中,我们将总结已有的研究成果,并对未来氮化镓和碳化硅芯片发展趋势进行展望。
1.3 目的本文的目的是全面介绍氮化镓和碳化硅芯片的生产工艺流程,并通过对比分析它们在不同方面的差异来探讨其应用领域。
通过了解这些信息,读者将能够更好地理解半导体行业发展现状,并对未来的技术趋势有所了解。
此外,本文还旨在为相关领域的研究工作者提供参考和启示,促进半导体材料和器件的创新与发展。
2. 氮化镓芯片生产工艺流程:2.1 材料准备:氮化镓芯片的制备过程需要首先准备高纯度的氮化镓基板材料。
常用的氮化镓基板有非晶硅、蓝宝石和硅carb。
2.2 外延生长:在外延生长工艺中,使用金属有机化合物气相沉积(MOCVD) 或分子束外延(MBE) 等技术,在镓基板上逐层沉积氮化镓薄膜。
这些技术通过将金属有机化合物或分子束引向加热的基板表面,使其发生反应并形成晶格匹配的氮化镓晶体。
2.3 制备晶圆:在这一步骤中,利用切割和抛光等工艺对外延生长得到的氮化镓薄膜进行处理,以制备成符合特定尺寸和规格要求的圆形晶圆。
常见工艺包括锯切、打磨和抛光等步骤,以提高晶圆表面的平整度。
以上是氮化镓芯片生产工艺流程中主要的三个环节。
GaN次接触层对SiC光导开关欧姆接触的改进研究

GaN次接触层对SiC光导开关欧姆接触的改进研究摘要:大功率SiC光导开关存在接触电阻过高、接触退化的问题。
为此,在接触金属与SiC基片之间增加一层n+-GaN次接触层,光导开关的导通电阻随之下降两个数量级,而光电流效率增加两个数量级。
关键词:SiC光导开关GaN 欧姆接触光导半导体开关(PCSS)是利用超快脉冲激光器照射光电半导体材料(Si,GaAs,InP等),形成导通的一种开关器件[1],其工作原理是,激光能量激励半导体材料,产生电子-空穴对,使其电导率发生变化,改变开关的通断状态,产生电脉冲。
光导开关因为上升时间短、寄生电感小、传输功率高、重量轻、体积小等优点,广泛应用于超快瞬态电子学、超宽带通讯、超宽带雷达等领域。
光导开关的半导体材料有三种:1、Si[2]的暗电流较大,载流子寿命长,所以电脉冲宽度在ns级以上,且容易热击穿;2、GaAs、InP为代表的III-V 族化合物半导体[3],载流子寿命短,电脉冲宽度缩短至ps级,GaAs 击穿电压高、电压转换效率高,而InP的触发抖动更小,输出电脉冲波形更平稳;3、SiC为代表的宽禁带半导体材料[4],是非常理想的材料,近年来成为研究热点。
光导开关金属电极与半导体之间的接触电阻关系输出功率和开关寿命,而高温大功率工作环境会造成接触退化。
该文使用有机金属气相外延(OMVPE)在SiC基片表面制备一层重掺杂的n+-GaN次接触层,以改善欧姆接触。
1 实验制备的器件为横向结构,电极宽度为4?mm,设置不同电极间隙0.5、0.75、1.25和1.75?mm。
基片为掺钒的半绝缘6H-SiC晶片,晶面方向(0001),厚度0.5?mm。
基片先经过1600?℃的表面氢退火处理16?h,再浸入200?℃熔融态KOH中刻蚀3?min,然后浸入稀氢氟酸中浸泡12?h,最后使用丙酮、甲醇、去离子水清洗。
n+-GaN外延层采用OMVPE工艺沉积在基片表面,厚度100?nm,掺杂率6×1019。
三代半导体功率器件的特点与应用分析

三代半导体功率器件的特点与应用分析一、概览随着科技的飞速发展,半导体功率器件在各个领域得到了广泛的应用,尤其是三代半导体功率器件。
三代半导体功率器件是指以氮化镓(GaN)、碳化硅(SiC)等新型半导体材料为主要成分的功率器件。
相较于传统的硅基半导体功率器件,三代半导体功率器件具有更高的性能、更低的功耗和更高的可靠性,因此在新能源、智能电网、电动汽车等领域具有巨大的潜力和市场前景。
自20世纪80年代以来,随着半导体材料和工艺的不断进步,三代半导体功率器件逐渐成为研究热点。
从第一代的金属氧化物半导体场效应晶体管(MOSFET)到第二代的双极型晶体管(BJT),再到第三代的功率半导体器件,如肖特基二极管(SBD)、金属有机半导体场效应晶体管(MOSFET)和碳化硅功率器件等,其性能和应用范围都在不断提高。
高性能:与传统硅基半导体功率器件相比,三代半导体功率器件具有更高的工作电压、更高的电流承载能力和更高的开关速度,能够实现更高的能效转换。
低功耗:由于其较低的导通电阻和较高的载流子迁移率,三代半导体功率器件具有较低的功耗,有利于提高系统的整体能效。
高可靠性:三代半导体功率器件具有较低的温升系数和较好的抗辐射性能,能够在恶劣环境下稳定工作,提高了系统的可靠性。
随着三代半导体功率器件性能的不断提升,其在各个领域的应用也日益广泛。
主要应用于新能源汽车、智能电网、太阳能发电、风力发电、储能系统等领域,为实现能源的高效利用和清洁能源的发展提供了有力支持。
此外随着5G通信技术的普及,三代半导体功率器件在无线充电、数据中心等新兴领域也展现出巨大的潜力。
1. 背景介绍随着科技的飞速发展,半导体技术在各个领域都取得了显著的成果。
特别是三代半导体功率器件,因其高效、节能、环保等特点,已经成为现代电力电子、通信、照明等领域的关键元件。
本文将对三代半导体功率器件的特点与应用进行深入分析,以期为相关领域的技术研究和产业发展提供参考。
半导体材料Si、SiC和GaN 优势及瓶颈分析

溺于刷“帅哥美女”。
今天我们再来聊聊这三兄弟~1.厚积薄发,应运而生作为半导体材料“霸主“的Si,其性能似乎已经发展到了一个极限,而此时以SiC和GaN为主的宽禁带半导体经过一段时间的积累也正在变得很普及。
所以,出现了以Si基器件为主导,SiC和GaN为”游击”形式存在的局面。
在Si之前,锗Ge是较早用于制造半导体器件的材料,随后Si以其取材广泛、易形成SiO2绝缘层、禁带宽度比Ge大的优势取代了Ge,成为主要的半导体材料。
随着电力电子技术的飞速发展,Si基半导体器件也在飞速发展,电流、电压等级越高,芯片越薄越小、导通压降越小、开关频率越高、损耗越小等等。
任何事物的发展,除了外在力的作用,自身特性也会限制发展,Si基半导体器件似乎已经到了”寸步难行”的地步。
而此时,以碳化硅SiC和氮化镓GaN 为主的新型半导体材料,也就是我们常说的第三代宽禁带半导体(WBG)”破土而出”,以其优越的性能突破的Si的瓶颈,同时也给半导体器件应用带来了显著的提升。
相对于Si,SiC和GaN有着以下几点优势:❶禁带宽度是Si的3倍左右,击穿场强约为Si的10倍;❷更高的耐压能力以及更低的导通压降;❸更快的开关速度和更低的开关损耗;❹更高的开关频率;❺更高的允许工作温度;❻SiC具有更高的热导率;根据上面的优势,第三代宽禁带半导体器件,能够达到更高的开关频率,提高系统效率,同时增大功率密度等,但是目前推动的最大推动力还得看成本!2. SiC&GaN目前,SiC和GaN半导体器件早已进入商业化,常见的SiC半导体器件是SiCDiode、JFET、MOSFET,GaN则以HEMT(高电子迁移率晶体管)为主。
2.1 SiC半导体器件不同类型的碳化硅器件结构和工艺难度都不一样,一般都是依据其工艺难度依次推出的。
可知,SiCDiode便是较早实现商业化碳化硅半导体器件,同时也是历经内部结构和外部封装优化最多的器件,自身耐压能力、抗浪涌能力和可靠性都得到了大大提高,是目前成熟的SiC半导体器件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
功率半导体的革命:SiC与GaN的共舞
功率半导体多被用于转换器及逆变器等电力转换器进行电力控制。
目前,功率半导体材料正迎来材料更新换代,这些新材料就是SiC(碳化硅)和GaN(氮化镓),二者的物理特性均优于现在使用的Si(硅),作为节能王牌受到了电力公司、汽车厂商和电子厂商等的极大期待。
将Si换成GaN或SiC等化合物半导体,可大幅提高产品效率并缩小尺寸,这是Si功率半导体元件(以下简称功率元件)无法实现的。
目前,很多领域都将Si二极管、MOSFET及IGBT(绝缘栅双极晶体管)等晶体管用作功率元件,比如供电系统、电力机车、混合动力汽车、工厂内的生产设备、光伏发电系统的功率调节器、空调等白色家电、服务器及个人电脑等。
这些领域利用的功率元件的材料也许不久就将被GaN和SiC所替代。
例如,SiC已开始用于铁路车辆用马达的逆变器装置以及空调等。
电能损失可降低50%以上
利用以GaN和SiC为材料的功率元件之所以能降低电能损失,是因为可以降低导通时的损失和开关损失。
比如,逆变器采用二极管和晶体管作为功率元件,仅将二极管材料由Si换成SiC,逆变器的电能损失就可以降低15~30%左右,如果晶体管材料也换成SiC,则电能损失可降低一半以上。
有助于产品实现小型化
电能损失降低,发热量就会相应减少,因此可实现电力转换器的小型化。
利用GaN和SiC 制作的功率元件具备两个能使电力转换器实现小型化的特性:可进行高速开关动作和耐热性较高。
GaN和SiC功率元件能以Si功率元件数倍的速度进行开关。
开关频率越高,电感器等构成电力转换器的部件就越容易实现小型化。
耐热性方面,Si功率元件在200℃就达到了极限,而GaN和SiC功率元件均能在温度更高的环境下工作,这样就可以缩小或者省去电力转换器的冷却机构。
这些优点源于GaN和SiC具备的物理特性。
与Si相比,二者均具备击穿电压高、带隙宽、。