算术-几何平均值不等式的证明

合集下载

2. 三个正数的算术——几何平均不等式

2. 三个正数的算术——几何平均不等式

∴E2=1k62 ·sin2θ·cos4θ=3k22 (2sin2θ)·cos2θ·cos2θ ≤3k22 ·(2sin2θ+co3s2θ+cos2θ)3=1k028, 当且仅当 2sin2θ=cos2θ 时取等号, 即 tan2θ=12,tan θ= 22时,等号成立. ∴h=2tan θ= 2,即 h= 2时,E 最大. 因此选择灯的高度为 2米时,才能使桌子边缘处最亮.
∵2x2+(1-x2)+(1-x2)=2,
∴y2≤12(2x2+1-3x2+1-x2)3=247.
当且仅当 2x2=1-x2,
即 x= 33时等号成立.
∴y≤2
9
3,∴y
的最大值为2 9
3 .
1.解答本题时,有的同学会做出如下拼凑: y=x(1-x2)=x(1-x)(1+x)=12·x(2-2x)·(1+x)≤12 (x+2-23x+1+x)3=12. 虽然其中的拼凑过程保证了三个数的和为定值,但忽略了取 “=”号的条件,显然 x=2-2x=1+x 无解,即无法取“=”号,也 就是说,这种拼凑法是不正确的. 2.解决此类问题时,要注意多积累一些拼凑方法的题型及数 学结构,同时也要注意算术-几何平均不等式的使用条件,三个 缺一不可.
用平均不等式求解实际问题 例 3 如图所示,在一张半径是 2 米的 圆桌的正中央上空挂一盏电灯.大家知道, 灯挂得太高了,桌子边缘处的亮度就小; 挂得太低,桌子的边缘处仍然是不亮的.
由物理学知识,桌子边缘一点处的照亮度 E 和电灯射到 桌子边缘的光线与桌子的夹角 θ 的正弦成正比,而和这一点 到光源的距离 r 的平方成反比.
变式训练
若 2a>b>0,试求 a+
4
的最小值.
(2a-b)·b
【解】 a+2a-4b·b=2a-2b+b+2a-4b·b =2a- 2 b+b2+2a-4b·b

【免费下载】算术 几何平均值不等式

【免费下载】算术 几何平均值不等式

算术-几何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是一组包括它的不等式的合称。
.可见
历史上的证明
的情况,设:

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

几个著名的不等式公式

几个著名的不等式公式

⼏个著名的不等式公式在数学领域⾥,不等式知识占有⼴阔的天地,⽽⼀个个的重要不等式⼜把这⽚天地装点得更加丰富多彩.下⾯择要介绍⼀些著名的不等式。

三⾓形内⾓的嵌⼊不等式三⾓形内⾓的嵌⼊不等式,在不⾄于引起歧义的情况下简称嵌⼊不等式。

该不等式指出,若A、B、C是⼀个三⾓形的三个内⾓,则对任意实数 x、y、z,有:算术-⼏何平均值不等式在数学中,算术-⼏何平均值不等式是⼀个常见⽽基本的不等式,表现了两类平均数:算术平均数和⼏何平均数之间恒定的不等关系。

设为 n 个正实数,它们的算术平均数是,它们的⼏何平均数是。

算术-⼏何平均值不等式表明,对任意的正实数,总有:等号成⽴当且仅当。

算术-⼏何平均值不等式仅适⽤于正实数,是对数函数之凹性的体现,在数学、⾃然科学、⼯程科学以及经济学等其它学科都有应⽤。

算术-⼏何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是⼀组包括它的不等式的合称。

例⼦在 n = 4 的情况,设: ,那么可见。

历史上,算术-⼏何平均值不等式拥有众多证明。

n = 2的情况很早就为⼈所知,但对于⼀般的 n,不等式并不容易证明。

1729年,英国数学家麦克劳林最早给出了⼀般情况的证明,⽤的是调整法,然⽽这个证明并不严谨,是错误的。

柯西的证明1821年,法国数学家柯西在他的著作《分析教程》中给出了⼀个使⽤逆向归纳法的证明:命题P n:对任意的 n 个正实数,1. 当 n=2 时,P2显然成⽴。

2. 假设Pn成⽴,那么P2n成⽴。

证明:对于2n 个正实数,3. 假设P n成⽴,那么P n-1成⽴。

证明:对于n - 1 个正实数,设,,那么由于Pn成⽴,。

但是,,因此上式正好变成综合以上三点,就可以得到结论:对任意的⾃然数,命题P n都成⽴。

这是因为由前两条可以得到:对任意的⾃然数 k,命题都成⽴。

因此对任意的,可以先找 k 使得,再结合第三条就可以得到命题P n成⽴了。

归纳法的证明使⽤常规数学归纳法的证明则有乔治·克⾥斯托(George Chrystal)在其著作《代数论》(algebra)的第⼆卷中给出的:由对称性不妨设xn+1是中最⼤的,由于,设,则,并且有。

算术—几何平均值不等式的证法

算术—几何平均值不等式的证法

算术—几何平均值不等式的证法记A、B两个集合的元素分别为$a_1,a_2,...a_n$和$b_1,b_2,...b_m$,则几何平均值不等式的证法有以下几种:一、全等不等式若A集合的平均数$\frac{\sqrt[n] {a_{1} a_{2} \cdots a_{n}}}{n}$大于B集合的平均数$\frac{\sqrt[m] {b_{1} b_{2} \cdots b_{m}}}{m}$,则有$\sqrt[n] {a_{1} a_{2} \cdots a_{n}} >\sqrt[m] {b_{1}b_{2} \cdots b_{m}}$,若A集合的平均数$\frac{\sqrt[n] {a_{1} a_{2} \cdots a_{n}}}{n}$小于B集合的平均数$\frac{\sqrt[m] {b_{1} b_{2} \cdots b_{m}}}{m}$,则有$\sqrt[n] {a_{1} a_{2} \cdots a_{n}}<\sqrt[m] {b_{1}b_{2} \cdots b_{m}}$二、非全等不等式若$c_i$为正数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2} \cdotsa_{n}}}{n} > \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m}}{c_1 + c_2 + \cdots +c_m}$,若$c_i$为负数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2} \cdotsa_{n}}}{n} < \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m}}{c_1 + c_2 + \cdots +c_m}$三、全小或全大不等式若$c_i$ 为大于0的数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2} \cdotsa_{n}}}{n} \ge \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m}}{c_1 + c_2 + \cdots + c_m}$,若$c_i$ 为小于0的数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2}\cdots a_{n}}}{n} \le \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m}}{c_1 + c_2 +\cdots + c_m}$四、主子不等式若$c_i$为正数,$d_i$为负数,$i=1,2,...,m$,则有$\frac{\sqrt[n] {a_{1} a_{2}\cdots a_{n}}}{n} > \frac{\sqrt[m] {c_1 b_1 c_2 b_2 \cdots c_m b_m + \sum_{i=1}^{m} d_i}}{c_1 + c_2 + \cdots + c_m + \sum_{i=1}^{m} d_i}$。

算术几何平均不等式与其应用

算术几何平均不等式与其应用

算术几何平均不等式与其应用算术几何平均不等式是数学中的一种重要的不等式关系,它在数学推导和实际问题中具有广泛的应用。

本文将介绍算术几何平均不等式的概念、证明以及一些常见的应用。

一、算术平均与几何平均的定义与性质在介绍算术几何平均不等式之前,我们先来了解一下算术平均和几何平均的定义与性质。

1. 算术平均:对于一组数a₁,a₂,...,aₙ,它们的算术平均记为A,即A=(a₁+a₂+...+aₙ)/n。

算术平均是指将一组数的和除以这组数的个数所得到的值。

2. 几何平均:对于一组正数a₁,a₂,...,aₙ,它们的几何平均记为G,即G=(a₁a₂...aₙ)^(1/n)。

几何平均是指将一组数的乘积开n次方所得到的值。

算术平均和几何平均都是常见的求平均值的方法,它们有以下性质:性质1:对于任意一组正数a₁,a₂,...,aₙ,有G≤A。

性质2:当且仅当a₁=a₂=...=aₙ时,有G=A。

二、算术几何平均不等式的概念与证明算术几何平均不等式是指对于一组正数a₁,a₂,...,aₙ,有G≤A,即几何平均不大于算术平均。

下面我们将给出算术几何平均不等式的证明。

假设a₁,a₂,...,aₙ是一组正数,我们来证明G≤A。

首先,我们考虑当n=2的情况。

此时,算术平均和几何平均分别为A=(a₁+a₂)/2,G=(a₁a₂)^(1/2)。

我们可以通过平方的方式来证明G≤A。

由(a₁-a₂)²≥0可得a₁²-2a₁a₂+a₂²≥0,进一步变形得到a₁²+a₂²≥2a₁a₂。

再对不等式两边同时开2次方,即得到(a₁²+a₂²)^(1/2)≥(2a₁a₂)^(1/2)。

即G≥(2a₁a₂)^(1/2),进一步化简得到G≥(a₁+a₂)/2=A。

所以,当n=2时,算术几何平均不等式成立。

接下来,我们假设当n=k时,算术几何平均不等式成立。

即对于一组正数a₁,a₂,...,aₙ,有G≤A。

算术-几何平均值不等式

算术-几何平均值不等式

算术-几何平均值不等式信息来源:维基百科在数学中,算术-几何平均值不等式是一个常见而基本的不等式,表现了两类平均数:算术平均数和几何平均数之间恒定的不等关系。

设为个正实数,它们的算术平均数是,它们的几何平均数是。

算术-几何平均值不等式表明,对任意的正实数,总有:等号成立当且仅当。

算术-几何平均值不等式仅适用于正实数,是对数函数之凹性的体现,在数学、自然科学、工程科学以及经济学等其它学科都有应用。

算术-几何平均值不等式经常被简称为平均值不等式(或均值不等式),尽管后者是一组包括它的不等式的合称。

例子在的情况,设: ,那么.可见。

历史上的证明历史上,算术-几何平均值不等式拥有众多证明。

的情况很早就为人所知,但对于一般的,不等式并不容易证明。

1729年,英国数学家麦克劳林最早给出了一般情况的证明,用的是调整法,然而这个证明并不严谨,是错误的。

柯西的证明1821年,法国数学家柯西在他的著作《分析教程》中给出了一个使用逆向归纳法的证明[1]:命题:对任意的个正实数,当时,显然成立。

假设成立,那么成立。

证明:对于个正实数,假设成立,那么成立。

证明:对于个正实数,设,,那么由于成立,。

但是,,因此上式正好变成也就是说综上可以得到结论:对任意的自然数,命题都成立。

这是因为由前两条可以得到:对任意的自然数,命题都成立。

因此对任意的,可以先找使得,再结合第三条就可以得到命题成立了。

归纳法的证明使用常规数学归纳法的证明则有乔治·克里斯托(George Chrystal)在其著作《代数论》(algebra)的第二卷中给出的[2]:由对称性不妨设是中最大的,由于,设,则,并且有。

根据二项式定理,于是完成了从到的证明。

此外还有更简洁的归纳法证明[3]:在的情况下有不等式和成立,于是:所以,从而有。

基于琴生不等式的证明注意到几何平均数实际上等于,因此算术-几何平均不等式等价于:。

由于对数函数是一个凹函数,由琴生不等式可知上式成立。

平均值不等式公式四个

平均值不等式公式四个平均值不等式是不等式理论中的一种重要的不等关系,它是基于算术平均数的性质而推导出的。

平均值不等式有许多不同的形式,但它们都可以用来比较一组数的平均值和它们的各个分量之间的关系。

下面将介绍4个常见的平均值不等式公式。

第一个平均值不等式是算术平均值和几何平均值之间的关系。

对于任意一组非负实数$a_1,a_2,...,a_n$,它们的算术平均值和几何平均值之间有如下关系:$\frac{a_1+a_2+...+a_n}{n} \geq \sqrt[n]{a_1 \cdot a_2\cdot...\cdot a_n}$这个不等式表明,一组数的算术平均值至少大于或等于它们的几何平均值。

当且仅当$a_1=a_2=...=a_n$时,等号成立。

第二个平均值不等式是算术平均值和调和平均值之间的关系。

对于任意一组正实数$a_1,a_2,...,a_n$,它们的算术平均值和调和平均值之间有如下关系:$\frac{a_1+a_2+...+a_n}{n} \geq \frac{n}{\frac{1}{a_1}+\frac{1}{a_2} +...+\frac{1}{a_n}}$这个不等式表明,一组数的算术平均值至少大于或等于它们的调和平均值。

当且仅当$a_1=a_2=...=a_n$时,等号成立。

第三个平均值不等式是几何平均值和调和平均值之间的关系。

对于任意一组正实数$a_1,a_2,...,a_n$,它们的几何平均值和调和平均值之间有如下关系:$\sqrt[n]{a_1 \cdot a_2 \cdot...\cdot a_n} \geq\frac{n}{\frac{1}{a_1} +\frac{1}{a_2} +...+\frac{1}{a_n}}$这个不等式表明,一组数的几何平均值至少大于或等于它们的调和平均值。

当且仅当$a_1=a_2=...=a_n$时,等号成立。

第四个平均值不等式是根据夹逼定理得到的一种推广形式。

平均值不等式证明中的常用技巧


2 3 项 的 巧凑 .
例 7 设 n, 2 。 两两互 不相 等的 正整数, ln … 为
求 证 a+ 一 +… + ≥ l + 1+… +I


>√1音 ( ) 。
添乘常数因子 1 即改正 : ,
1 高
由均值 + “ n )(+ = t
维普资讯
20 0 2年 第 l 期
中学数 学教学
平均值不等式证 明中的常 用技巧
安徽铜陵财专 胡松年 ( 邮编 : 4 O ) 2 OO 4
算术一几何平均值不等式 ( 叉称平均值不等式 ) 是
指:
对于 个正数 。 . 2 , 有 1。 .一 。 .
2 …等 ≥ , ≥ , 2 署 2 *一
上各式相加, 原命题即得证 。
2 2 项 的巧 拆 .
÷ …÷c b 7 ++≥ + c a +-
— 一 .

倒 5 设 z . , z为正整数, 求证

证明 ,。

舌 )乞 . 砖 ) 再 ≥皇 。 6 . f _ _ +
1 1 常数的巧取 -


于 得1 是(
2 巧变项
2 1 项 的巧 添 .
) ( 吉 >1 ) 。
例 4 设 X , . 求证 l 2 …z 6R ,


Z ̄-等 + 。’- 23-2 署 。 + Z + ++ ・ l z j - ~

侧 1 若 n 、 自 、 c为 然数. 求证
l 1 奎局 整体
即把问题 的某一可分解 的部分看作一个单一的整 体考虑 。 倒 2 已知函数 , z) +盯 ( = +缸 一8 f 一 ) . ( 2 =1 . 0 那么 , 2 等于( () )

调和平均数平方平均数算术平均数几何平均数关系证明

调和平均数、平方平均数、算术平均数和几何平均数的关系证明一、引言在数学中,调和平均数、平方平均数、算术平均数和几何平均数是常见的四种平均数。

它们各自具有不同的定义和性质,但它们之间存在着一定的关系。

本文将探讨调和平均数、平方平均数、算术平均数和几何平均数之间的关系,并给出相应的证明。

二、调和平均数(Harmonic Mean)1. 定义给定n个正数x1,x2,...,x n,它们的调和平均数H定义为它们的倒数的算术平均数的倒数,即H=n1x1+1x2+...+1x n2. 性质•调和平均数始终小于等于它的算术平均数。

即对于任意的正数x1,x2,...,x n,有H≤x1+x2+...+x nn。

•当且仅当x1=x2=...=x n时,调和平均数等于算术平均数。

三、平方平均数(Root Mean Square)1. 定义给定n个正数x1,x2,...,x n,它们的平方平均数Q定义为它们的平方的算术平均数的平方根,即Q=√x12+x22+...+x n2n2. 性质•平方平均数始终大于等于它的算术平均数。

即对于任意的正数x1,x2,...,x n,有Q≥x1+x2+...+x nn。

•当且仅当x1=x2=...=x n时,平方平均数等于算术平均数。

四、算术平均数(Arithmetic Mean)1. 定义给定n个数x1,x2,...,x n,它们的算术平均数A定义为它们的和除以个数,即A=x1+x2+...+x nn2. 性质•算术平均数是最常见的平均数,它对数据的大小关系不敏感。

•对于任意的数x1,x2,...,x n,有A=x1+x2+...+x nn。

五、几何平均数(Geometric Mean)1. 定义给定n个正数x1,x2,...,x n,它们的几何平均数G定义为它们的积的n次方根,即G=√x1⋅x2⋅...⋅x nn2. 性质•几何平均数始终小于等于它的算术平均数。

即对于任意的正数x1,x2,...,x n,有G≤x1+x2+...+x nn。

均值不等式的多种证明方法许兴华数学

均值不等式是数学中常见的一类不等式,它指出了一组数的平均值和它们的其他性质之间的关系。

在本文中,我们将介绍均值不等式的多种证明方法,并以许兴华数学中的相关内容为例加以说明。

1. 均值不等式的定义均值不等式是数学中一类具有广泛应用的不等式定理,它描述了数列的平均值与其他性质之间的关系。

一个常见的均值不等式是算术平均数与几何平均数之间的关系,即对于任意非负实数集合,它们的算术平均数大于等于几何平均数。

2. 均值不等式的证明方法均值不等式的证明方法有多种,其中比较常见的方法包括数学归纳法、几何法、代数法等。

下面我们将分别对这些方法进行介绍,并结合许兴华数学中的相关例题进行说明。

2.1 数学归纳法证明数学归纳法是一种常用的数学证明方法,它通常用于证明对于一切自然数n成立的命题。

在均值不等式的证明中,数学归纳法可以用于证明一些形如An≤Bn的不等式,其中n为自然数。

对于n个非负实数的情况,可以使用数学归纳法证明它们的算术平均数不小于几何平均数。

许兴华数学中的例题:证明n个非负实数的算术平均数不小于几何平均数。

解:首先证明n=2的情况成立,即对于两个非负实数a和b,有(a+b)/2≥√(ab)。

然后假设对于n=k的情况成立,即对于k个非负实数成立均值不等式,即(k个非负实数的算术平均数不小于几何平均数)。

那么对于n=k+1的情况,我们可以通过考虑第k+1个数与前面k个数的平均值的大小关系,来证明均值不等式对于n=k+1的情况也成立。

2.2 几何法证明几何法是另一种常用的证明方法,它通常通过在平面几何图形上进行推理,来证明一些数学定理。

在均值不等式的证明中,几何法可以用于证明一些形如a²+b²≥2ab的不等式。

在许兴华数学中,可以通过在平面上绘制平行四边形、三角形等几何图形,来证明一些均值不等式。

3. 结语以上,我们介绍了均值不等式的多种证明方法,并结合许兴华数学中的相关内容进行了说明。

均值不等式作为数学中的重要概念,在不同的数学领域都有着重要的应用,它的证明方法也有很多种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档