轮机自动化教程---轮机自动化基本概念
轮机自动化

轮机自动化1.轮机自动化是指在船舶中应用自动化技术,对轮机设备进行远程监控、自动控制和故障检测与处理的一种技术手段。
它通过引入先进的仪器仪表、控制系统和信息技术,提高了船舶轮机系统的可靠性、安全性和工作效率。
2. 轮机自动化系统的组成轮机自动化系统由以下几部分组成:2.1 传感器与仪表传感器与仪表是轮机自动化系统的重要组成部分。
它们用于收集和监测轮机设备的各种参数,如温度、压力、转速等。
这些传感器将收集到的数据传输给控制系统,用于判断设备的工作状态,并做出相应的控制和调整。
2.2 控制系统控制系统是轮机自动化系统的核心部分。
它通过接收传感器传递的数据,并根据预设的逻辑和算法进行处理,最终控制轮机设备的工作状态。
控制系统通常包括集散控制系统和主控制系统,它们协同工作实现对轮机设备的远程控制和自动化管理。
2.3 监控与故障诊断系统轮机自动化系统还配备了监控与故障诊断系统,用于监测轮机设备的运行状况,并在出现故障时进行故障诊断和处理。
这些系统通常采用数据分析和故障模式识别的方法,能够及时发现并解决轮机设备的故障问题,保证船舶的安全运行。
3. 轮机自动化的优势轮机自动化技术带来了许多优势,主要包括:3.1 提高工作效率自动化系统能够实现对轮机设备的远程监控和控制,减少了人工操作的需求,降低了船员的工作强度,提高了工作效率。
此外,自动化系统的快速响应和智能调整功能,可以更好地满足船舶运行的需求,提高工作效率。
3.2 降低风险和事故的发生率通过自动化系统对轮机设备进行实时监控和故障诊断,能够及时发现设备运行异常和故障,采取措施进行处理,减少事故的发生率。
自动化系统还能够提供实时的报警和监控信息,及时通知船员并采取相应的应对措施,减少风险。
3.3 提高设备可靠性和船舶安全性轮机自动化系统能够实现对轮机设备的智能监控和控制,及时调整设备的工作状态,避免设备的过载运行和故障,提高设备的可靠性和寿命。
通过准确和可靠的监控信息,船舶可以更好地管理设备运行,提高船舶的安全性。
轮机自动化知识点

轮机自动化知识点一.反馈控制系统的基本概念1.反馈控制系统的组成,要求画出组成框图,能够描述系统的工作过程扰动d比较器r e p q 被控量+ - yz2.自动控制系统的典型输入信号阶跃形式、线性形式、脉冲形式、正弦形式其中阶跃形式是最严重的扰动。
3.反馈控制系统动态过程的品质指标有哪些方面?各包括哪些指标?各种指标的含义?稳定性指标: 衰减率φ:是指在衰减震荡中,第一个波峰的峰值A=emax减去第二个同相波峰峰值B除以第一个波峰峰值A,即φ=(A-B)/A震荡次数N:是指在衰减震荡中,被控量震荡的次数超调量σp :是指在衰减震荡中,第一个波峰ymax减去新稳态值y(∞)与新稳态值之比的百分数准确性指标:最大动态偏差emax:是指在衰减震荡中第一个波峰的峰值。
静态偏差ε:是指动态过程结束后,被控量新稳定值与给定值之间的差值快速型指标:上升时间tr:是指在衰减震荡中,被控量从初始平衡状态第一次到达新稳态值y(∞)所需的时间峰值时间tp:是指在衰减震荡中,被控量从初始状态到达第一个波峰所需要的时间过渡时间ts:是指被控量从受到扰动开始到被控量重新稳定下来所需的时间穿越次数:振荡周期:二.控制器作用规律1.调节器的种类及其作用规律表达式.各种调节规律的开环阶跃响应特性(输出曲线形状)双位是调节器:比例调节器(P):P(t)=K·e(t)比例积分调节器(PI):P(t)=K﹝e(t)+∫e(t)dt﹞比例微分调节器(PD):P(t)= K〔e(t)+Td〕比例积分微分调节器(PID):P(t)=K﹝e(t)+∫e(t)dt+ Td﹞e ep t p tε2KeKe Ke给定单元控制单元执行单元控制对象测量单元t Tit 比例调节器输出特性比例积分调节器输出特性e ep t tpt t 比例微分调节器输出特性比例积分微分调节器输出特性2.正、负反馈的含义及其强弱对调节器参数(PB、Ti、Td)的影响正反馈:是指经反馈能加强闭环系统输入效应,即使偏差e增大负反馈:是指经反馈能减弱闭环系统输入效应,即使偏差e减小正反馈可以增大调节器的放大倍数,负反馈用来提高自动调节系统(或者调节器)的稳定性。
《轮机自动化》课程教学大纲

《轮机自动化》课程教学大纲一、本课程的性质与任务轮机自动化属于轮机管理专业的专业课性质。
其目的是讲解轮机自动化所涉及的基本控制理论和船舶机舱典型自动控制系统的组成、结构、工作原理、管理要点和故障分析方法,为学生能够适应现代船舶机舱的管理奠定基础。
二、课程简介“轮机自动化”课程讲授轮机自动化所涉及的基本控制理论和船舶机舱典型自动控制系统的组成、结构、工作原理、管理要点和故障分析方法。
课程内容包含14个部分,即反馈控制系统的基本概念、调节器基本作用规律、传感器和变送器、执行机构、船舶冷却水温度自动控制系统、燃油粘度自动控制系统、分油机自动控制系统、船用燃油辅锅炉的自动控制系统、阀门遥控及液舱遥测系统、主机遥控系统基础知识、船舶柴油主机气动操纵系统、AUTOCHIEF-Ⅳ主机遥控系统、监视与报警系统概述和DATACHIEF-C20监视与报警系统。
三、课程知识体系架构及教学要求(一) 理论授课1.反馈控制系统的基本概念1.1反馈控制系统的组成概念:●反馈控制系统、反馈、控制对象、测量单元、调节单元、执行机构、环节、扰动、闭环系统◎输入、输出、设定值、测量值、偏差、被控量、控制量、基本扰动、外部扰动○前向通道、反馈通道、开环控制、复合控制、前馈知识点及应用:●(1)反馈控制系统的基本组成环节●(2)反馈控制系统的传递方框图●(3)反馈控制系统的工作过程●(4)反馈控制系统的分类○(5)自动控制系统的其他形式案例:○柴油主机缸套冷却水温度控制系统1.2反馈控制系统的动态过程概念:●稳态(平衡态)、动态(过渡)过程、阶跃输入、衰减率、超调量、静态偏差、过渡过程时间◎速度输入、脉冲输入、发散振荡、等幅振荡、衰减振荡、非周期过程、最大动态偏差○正弦输入、振荡次数、上升时间、峰值时间知识点及应用:●(1)控制系统动态过程的概念●(2)控制系统的典型输入信号●(3)评定控制系统动态过程品质的指标案例:●(1)定值控制系统的动态过程●(2)随动控制系统的动态过程2.调节器基本作用规律2.1双位作用规律概念:●双位控制、双位作用规律、压力开关、上限值、下限值、幅差知识点及应用:●(1)双位控制的概念●(2)双位控制的特点●(3)双位控制中被控量上、下限的调整案例:●(1)浮子式辅锅炉水位双位调节器●(2)YT-1226型压力调节器2.2比例作用规律概念:●比例作用、比例系数、比例带◎正作用式调节器、反作用式调节器○量程系数知识点及应用:●(1)比例作用的概念及其表达式●(2)比例作用的控制过程●(3)比例作用的特点●(4)比例带的概念及其大小对比例作用强度的影响●(5)比例作用的开环阶跃响应特性案例:●(1)浮子式水位比例控制系统◎(2)气动比例调节器2.3比例积分作用规律概念:●积分作用、比例积分作用、积分时间知识点及应用:●(1)积分作用的概念及其表达式●(2)比例积分作用的的概念及其表达式●(3)积分作用的特点●(4)积分时间的概念及其物理意义●(5)比例带的概念及其大小对比例作用强度的影响●(6)比例积分作用的开环阶跃响应特性案例:◎气动比例积分调节器2.4微分作用规律概念:●理想的微分作用、实际的微分作用、微分时间知识点及应用:●(1)微分作用的概念及其表达式●(2)比例微分作用的概念及其表达式●(3)微分时间的概念及其大小对微分作用强弱的影响●(4)微分作用的特点●(5)实际微分作用的开环阶跃响应特性案例:◎气动比例微分调节器2.5比例积分微分作用规律概念:●比例积分微分作用知识点及应用:●(1)比例积分微分作用的概念及其表达式●(2)比例积分微分作用的开环阶跃响应特性●(3)比例积分微分作用的气动实现方法◎(4)比例积分微分作用的集成电路实现方法○(5)比例积分微分作用的数字实现方法案例:●(1)QTM-23J气动PID调节器◎(2)NAKAKITA气动PID调节器◎(3)由运算放大器组成的PID调节器○(4)增量式数字PID控制算法流程3.传感器和变送器3.1船舶机舱常用传感器概念:●温度传感器、压力传感器、液位传感器、流量传感器、转速传感器、转矩传感器知识点及应用:●(1)各种传感器的测量原理◎(2)信号变换原理案例:◎(1)热电阻、热电偶温度传感器及其转换电路◎(2)滑动电阻式、金属应变片式、电磁感应式压力传感器◎(3)变浮力式、吹气式液位传感器◎(4)容积式、电磁式、差压式流量传感器◎(5)测速发电机式、磁脉冲式转速传感器◎(6)相位差式转矩传感器3.2变送器概念:●变送器、零点、量程、迁移知识点及应用:●(1)变送器的构成原理●(2)变送器零点和量程的概念●(3)变送器的标准输出信号●(4)气动差压变送器的工作原理及其调整方法◎(5)电动差压变送器的工作原理及其调整方法●(6)变送器的应用方法案例:◎(1)气动差压变送器◎(2)电动差压变送器◎(3)变送器测量锅炉水位的实例4执行机构概念:●气开式调节阀、气关式调节阀、阀门定位器、位置反馈知识点及应用:●(1)气动调节阀的类型●(2)气动阀门定位器的工作原理●(3)电动执行机构的组成原理●(4)电/气动执行机构的组合方式案例:◎带阀门定位器的气动薄膜调节阀5船舶冷却水温度自动控制系统概念:●开式冷却、闭式冷却、高温淡水、低温淡水、缸套水知识点及应用:●(1)主机缸套水的冷却方法●(2)主机缸套冷却水温度控制系统的组成●(3)控制系统工作原理及操作方法案例:◎ENGARD型中央冷却水温度自动控制系统6燃油黏度自动控制系统概念:●燃油粘度、燃油粘度控制、燃油温度控制、燃油切换知识点及应用:●(1)燃油粘度控制方法●(2)燃油粘度测量原理●(3)燃油粘度控制系统的组成及其工作原理案例:◎NAKAKITA型燃油粘度控制系统7分油机自动控制系统概念:●操作水、排渣、排水、分油机时序控制、报警知识点及应用:●(1)分油机自动控制系统的组成●(2)控制系统的时序控制过程●(3)控制系统的操作和管理案例:◎ALFA-LAVAL EPC-40分油机自动控制系统8船舶燃油辅锅炉自动控制系统概念:●预扫风、点火、燃烧时序、时序控制器、火焰检测器、风压保护、熄火保护、水位控制、燃烧控制知识点及应用:●(1)辅锅炉的水位双位控制●(2)辅锅炉的蒸汽压力自动控制●(3)辅锅炉的燃烧时序控制过程◎(4)采用PLC的辅锅炉燃烧时序控制案例:◎采用PLC的辅锅炉燃烧时序控制实例9阀门遥控及液舱遥测系统概念:●阀门遥控、液位遥测知识点及应用:●(1)阀门遥控系统的功能、组成及原理●(2)液位遥测系统的功能、组成及原理案例:无10主机遥控系统基础知识概念:●自动遥控、手动遥控、起动、换向、能耗制动、强制制动、重复起动、重起动、慢转起动、加速速率限制、程序负荷、转速限制、临界转速回避、负荷限制、应急操纵、越控知识点及应用:●(1)主机遥控系统的组成●(2)主机遥控系统的主要功能●(3)主机遥控系统的分类●(4)车钟系统●(5)起动逻辑回路●(6)换向逻辑回路●(7)制动逻辑回路●(8)转速与负荷控制●(9)主机遥控系统的信号转换和执行机构案例:◎(1)车钟系统实例◎(2)起动、换向逻辑回路实例◎(3)电/气转换器实例◎(4)电/液伺服器实例◎(5)电动执行机构实例11船舶柴油主机气动操纵系统概念:●气动操纵系统、两位三通阀、主起动阀、起动控制阀、气缸起动阀、空气分配器、操作部位切换、遥控、机旁操作、起动油量、可变喷油定时知识点及应用:●(1)气动操纵系统的气源及其分布●(2)机旁/遥控切换●(3)集控/驾控切换●(4)机旁操作时的停车、换向和起动过程●(5)集控操作时的停车、换向和起动过程●(6)驾控操作时的停车、换向和起动过程●(7)VIT动作原理案例:◎MAN-B&W-S-MC/MCE型主机气动操纵系统12 AUTOCHIEF-Ⅳ主机遥控系统概念:●驾驶台控制单元、集控室控制单元、车钟记录装置、安全保护单元(SSU8810)、数字调速单元(DGU8800e)知识点及应用:●(1)AC-4主机遥控系统的组成●(2)驾驶台控制面板及其功能●(3)集控室控制面板及其功能●(4)AC-4主机遥控系统的主要控制功能●(5)AC-4主机遥控系统在不同车令下的工作过程●(6)AC-4主机遥控系统的参数显示与设置●(7)AC-4主机遥控系统的装置功能试验案例:◎AC-4主机遥控系统的结构组成及其主要操作方法13 机舱监视与报警系统概述概念:●监视与报警、延伸报警、延时报警、报警闭锁、连续监视、扫描监视知识点及应用:●(1)监测参数的类型●(2)监视与报警系统的监测方式●(3)监视与报警系统的组成与功能案例:无14 DATACHIEF-C20监视与报警系统概念:●网络、分布式处理单元(DPU)、远程操作站(ROS)、值班呼叫系统(WCS)、网关知识点及应用:●(1)DC C20监控系统的结构组成●(2)分布式处理单元(DPU)●(3)远程操作站(ROS)及系统功能案例:◎DATACHIEF-C20监视与报警系统(二) 实验授课1.反馈控制系统实验实验内容:单容水柜水位控制系统演示与实操实验要求:(1)结合水位控制系统实验装置了解反馈控制系统的结构组成,熟悉实验装置的管路和信息流程,对反馈控制系统的基本组成环节进行对号入座;(2)将控制对象(单容水柜)、将调节器、测量单元和执行机构连成闭环系统,并投入运行,观察实际水位的变化情况,理解调节过程;(3)通过电脑屏幕观察反馈控制系统的动态过程。
《轮机自动化》课程标准

《轮机自动化》课程标准课程代码:课程类型:理实一体化课程性质:必修课适用专业:轮机工程技术专业总学时:90一、课程性质与作用《轮机自动化》是海洋船舶轮机工程技术〈轮机管理〉专业核心课程,是海船船员三管轮适任考试课程之一,是从事船舶控制设备运行、维护、安装、调试,航运部门机务管理必备的课程。
二、课程目标按照STCW公约(2010修正案)、中华人民共和国海船船员适任考试和发证规则、中华人民共和国《轮机自动化》课程考试大纲所规定的船舶轮机员(三管轮)适任标准与岗位能力标准,确定本课程的知识目标、能力目标以及素质目标。
(一)知识目标・能表述自动控制系统的基本组成和动态过程形式;・能表述调节规律的类型、作用和特点;・能表述常用传感器、变送器、调节器、执行机构的作用、基本原理和特点;・能表述典型的机舱自动控制系统的作用、组成和工作原理;・能表述主机遥控系统的类型、组成和主要功能;・能表述机舱监视与报警系统的类型和主要功能;・能表述火灾自动报警系统的类型、主要功能和特点。
(二)能力目标・具备变送器、调节器、执行机构等自动化仪表的使用操作与调整的能力;・具备冷却水温度、燃油供油单元、燃油净油单元、燃油辅锅炉、自清滤器、阀门遥控及液舱遥测等自动控制系统的操作与管理能力;・具备主机遥控系统的操作与管理能力;・具备机舱监视与报警系统的操作与管理能力;(三)素质目标・具备良好的职业道德、工作责任心和吃苦耐劳的品质。
具备服从意识与团队协作精神,具有良好的语言表达能力尤其是英语表达能力和涉外事务的处理能力。
・具有良好的行为习惯和人际关系,尊重他人、服从集体。
具有敏捷的情景意识与正确判断能力。
严格遵守劳动合同及涉外纪律,具有良好的通信与沟通能力。
三、课程设计理念与思路课程设置依据:依据STCwlo公约、国家海事局高级船员最新考纲和现代船舶轮机管理的工作需求设置“轮机自动化”课程;同时考虑到“以职业素质为基础,以适岗能力为本位”的教育教学指导思想和航海高职高专学生的认知规律,以满足远洋船舶轮机人才需求、船舶轮机岗位群能力的需求和对于高级船员的适任要求。
轮机自动化基础讲义

开环控制系统精度不高和适应性不强的主要原因是缺少从系统输出到输入的 反馈回路。若要提高控制精度,必须把输出量的信息反馈到输入端,通过比较输入 值与输出值,产生偏差信号,该偏差信号以一定的控制规律产生控制作用,逐步减 小以至消除这一偏差,从而实现所要求的控制性能。 控制器与控制对象之间既有顺向作用又有反向联系的控制过程,既控制系统的 输出量对系统的控制作用有影响,即反馈(feedback)。因此,又称为反馈控制。 以液箱水位控制系统为例:
(4)脉冲输入:
1 r (t ) h 0
(0 t h ) (t 0, t h)
r (t ) A sin t (5)正弦输入: 其中,阶跃输入对系统的工作最为不利。 4.自动控制系统过渡过程的性能要求
方法:给系统施加阶跃输入,得到系统过渡过程曲线,分析系统过渡过程的各 项性能指标。 采用阶跃输入的原因: (1)信号的阶跃变化在实际中比较常见(近似的阶跃变化) ; (2)阶跃信号的数学处理比较简单; (3)阶跃输入对系统的工作最为不利。 一般说来,对系统品质指标的基本要求可以归纳为三个字:稳、准、快。评定 系统过渡过程性能指标的三个方面: (1)稳定性; (2)准确性; (3)快速性。 (1)稳定性:系统受到扰动之后能够恢复到稳定状态的能力。实际控制系统,至少 要求是率减过程或非周期过程,以率减为佳。 评定指标:衰减率 φ,衰减比N (a)定值控制系统:给定值不变,外部扰动发生阶跃变化; (b)随动控制系统:假定外部扰动不变,给定值阶跃变化。 (2)准确性:被控量偏离给定值的程度 评定指标: (a)定值控制系统:最大动态偏差emax;静态偏差Δys (b)随动控制系统:最大动态偏差emax;超调量δ;静态偏差Δys 。 (3)快速性: 评定指标:过渡过程时间 ts——从扰动发生到被控量又重新趋于稳定达到新的 平衡态所需的时间。
第1章 轮机自动化基础PPT课件

(1)稳定性:系统受到扰动之后能够恢复到稳定状态的能力。实 际控制系统,至少要求是率减过程或非周期过程,以率减为佳。
评定指标:衰减率 φ,衰减比N
(a)定值控制系统:给定值不变,外部扰动发生阶跃变化; fig.1-15◎
(b)随动控制系统:假定外部扰动不变,给定值阶跃变化。 fig.1-16 ◎
R
(1)阶跃输入: r(t)0 (2)速度输入 :r(t)0Rt
(t 0) (t 0) (t 0) (t 0)
Fig.1-9◎ Fig.1-10◎
(3)加速度输入:r(t)
1 2 0
Rt2
(t 0) (t 0)
(4)脉冲输入:
1
r(t)
h
0
(0t h) (t 0,t h)
Fig.1-11◎ Fig.1-12◎
轮机自动化基础
•自动控制发展概况
• 公元前1400-1100 年,中国、埃及和 巴比伦相继出现自 动计时漏壶,人类 产生了最早期的控 制思想。
• 公元前300年秦昭王时,由李冰父子主持设计修 筑的著名水利工程都江堰,是一种液面控制, 是“系统”观念的杰出体现。
• 公元100年,亚历山大的希罗发明开闭庙 门和分发圣水的自动计时装置。
• 公元132年,中国科学家张衡(公元78~139)发 明水运浑象,研制出自动测量地震的候风地动 仪。
• 公元235年, 中国马钧研 制出用齿轮 传动的自动 指示方向的 指南车(司南 车)
另有发明 击鼓记里
• 公元1637年, 中国明代宋 应星所著 《天工开物》 记载有程序 控制思想的 提花织机结 构图。
若控制单元、测量单元和执行单元合为一体,则称为 基地式控制仪表;若三者分开,则称为组合式控制仪表。
轮机自动化 大连海事大学

ST
§1-4
自动控制的性能指标
3.自动控制系统的典型输入信号 为便于系统分析,定义几种常见的系统输入信号: (1)阶跃输入: (2)速度输入 : Fig.1-9◎ Fig.1-10◎
(3)加速度输入: (4)脉冲输入:
Fig.1-11◎ Fig.1-12◎
(5)正弦输入: Fig.1-13◎ 其中,阶跃输入对系统的工作最为不利。 ST
§1-4
自动控制的性能指标
4.自动控制系统过渡过程的性能要求
方法:给系统施加阶跃输入,得到系统过渡过程曲线,分析系 统过渡过程的各项性能指标。
采用阶跃输入的原因: (1)信号的阶跃变化在实际中比较常见(近似的阶跃变化); (2)阶跃信号的数学处理比较简单; (3)阶跃输入对系统的工作最为不利。 评定系统过渡过程性能指标的三个方面: (1)稳定性;(2)准确性;(3)快速性。
§1-4 自动控制系统的性能要求 ◎
§1-1
引言
所谓自动控制,是指在没有人参与的情况下利用控制器 使被控对象(即生产设备或生产过程)自动地按预定的规 律运行。包括参数控制和程序控制 例如: (1)锅炉水位和压力保持在规定的范围或设定值上; (2)船舶的舵角按发出的舵令变化; (3)柴油主机的起动按规定的操作规程进行;
轮 机 自 动 化
轮机自动化基础
轮 机 自 动 化 基 础
第一章 反馈控制系统的基本概念
第二章 自动控制系统的数学模型
第三章 控制对象的动态特性 第四章 控制器的作用规律 第五章 时域分析法
轮机自动化基础
第一章
§1-1 引言◎
反馈控制系统的基本概念
§1-2 自动控制系统的基本方式◎
§1-3 反馈控制系统的概念◎
轮机自动化

轮机自动化1. 简介轮机自动化是指通过自动化控制系统对船舶或者其他海洋工程设备的轮机设备进行自动操作和监控。
它包括了船舶的动力系统、操纵系统以及其他相关设备的自动化控制。
轮机自动化的应用可以提高船舶的安全性、效率和可靠性,减少人为操作的繁杂程度,提高船员工作的舒适性。
2. 轮机自动化系统的组成轮机自动化系统主要由以下几个部分组成:2.1 控制系统轮机自动化的核心是控制系统,它负责对船舶的各种设备进行自动化控制和监控。
控制系统通常由硬件和软件两部分组成。
硬件部分包括传感器、执行器和相关的电气设备;软件部分包括控制算法、界面程序等。
2.2 通信系统通信系统是轮机自动化中重要的一部分。
它负责船舶内部各个设备之间的通信,以及船舶与岸上控制中心之间的通信。
常用的通信方式包括有线通信和无线通信两种。
2.3 监控系统监控系统用于对船舶的各种设备进行实时监测和数据采集。
它可以显示设备的工作状态、报警信息等,并将这些信息传输给控制系统。
监控系统通常由一台或多台监控台组成,每个监控台上都有相应设备的显示屏和控制面板。
2.4 电气系统电气系统是轮机自动化中重要的一部分。
它负责为各种设备提供电力,并对电力进行分配和管理。
电气系统通常由发电机、开关设备、配电盘等组成。
3. 轮机自动化的应用轮机自动化广泛应用于各种船舶和海洋工程设备。
它可以用于船舶的动力系统、航行操纵系统、货物装卸系统等方面。
3.1 动力系统在船舶的动力系统中,轮机自动化可以实现对主机、辅机以及相关设备的自动化控制。
通过控制系统,可以实现对船舶的动力分配、转速控制、负荷分配等功能。
同时,轮机自动化还可以监测主机和辅机的工作状态,及时发现并解决可能的故障。
3.2 操纵系统轮机自动化可以实现对船舶的操纵系统的自动化控制。
通过控制系统,可以实现对舵机的自动控制、航向稳定控制等功能。
同时,轮机自动化还可以实时监测船舶的姿态信息,保证船舶的航向稳定和安全操纵。
3.3 货物装卸系统在货物装卸系统中,轮机自动化可以实现对各种装卸设备的自动化控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (2)程序控制系统 • 特点:给定值按确定的规律随时间变化,即给定值是确
定的时间函数。
• 系统主要任务:使被控量跟随给定值的变化而变化。 • 实例:主机加速速率限制和程序负荷控制;
辅锅炉自动点火控制。
• (3)随动控制系统 • 特点:给定值随时间变化且无法预知变化规律,即给定
衰减振荡
•
Ψ=0
等幅振荡
•
Ψ<0
发散振荡
• 理想的衰减率
Ψ=0.75~0.9(即衰减比为4∶1~10:1)
结论:Ψ越大,稳定性越好。若Ψ=1,则稳定性最好, 但动态偏差较大、调节时间偏长。
• (2)超调量σp
•
定义: p
ymax y() 100 % y()
• σp越小,稳定性越好,反之亦然。
• 非周期过程的超调量: σp=0
• 调节器接收测量单元送来的被控量的测量信号,并与
给定值相比较得到偏差信号,再根据偏差信号的大小 和方向,依据某种调节作用规律输出控制信号送至执 行机构,对被控对象施加调节作用。
• 给定值r:被控量所希望控制的最佳值。被控量的测
偏差值e:被控量的测量值和给定值的差值,即
e=r-z。
• e>0,称为正偏差; • e<0,称为负偏差; • e=0,称为无偏差。
——电、气、液动式自动控制系统。
• 〈2〉按被控参数的名称分类
——温度、压力、水位等自动控制系统。
• 〈3〉按仪表的结构形式分类
——基地式仪表;单元组合式仪表。
• 〈4〉按被控参数给定值的变化规律分类
•
定值控制系统
• 随动控制系统
• 程序控制系统
• (1)定值控制系统 • 特点: 给定值恒定不变。 • 系统主要任务:克服外部扰动影响,维持被控量不变。 • 实例: 主机冷却水温度控制系统;辅锅炉水位控制
机等。
• 执行机构通常为比例环节。
二、反馈控制系统的传递方框图
• 1、环节 • 输出量的变化取决于输入量的变化和环节特
性两个因素。
• 信号传递的单向性:
输入决定输出而不是反之;
输出量的变化不会直接影响输入量。
• 2、扰动 • 外部扰动:不可控制的扰动,如负荷的变化、
电源的波动等。
• 基本扰动:人为的扰动,如给定值的变化、
• §1—1 反馈控制系统的基本概念
• 一、反馈控制系统的组成
• 实例— 柴油机冷却水温的自动控制系统 • 反馈控制系统的组成: • 〈1〉控制对象 • 〈2〉测量单元 • 〈3〉调节单元 • 〈4〉执行机构
手动控制过程
眼
淡水泵
主 机
三通阀
海水出口
冷却器
海水入口
柴油机气缸冷却水温度手动控制过程
脑 手
(排除扰动)
•定 •值 •控 •制 •系 •统 •的 •动 •态 •过 •程
改 变 给 定 值 系 统 的 动 态 过 程
• 2、衡量动态过程的品质指标
• 1)稳定性
• (1)衰减率Ψ
•
设A、B为衰减振荡过程中同方向第一、第二个波
峰的幅度。即:
Ψ=(A-B)/A
• 讨论: Ψ=1
非周期过程
•
0<Ψ<1
自动控制过程
温度变送器
淡水泵
主 机
三通阀
海水出口
冷却器
海水入口
柴油机气缸冷却水温度自动控制过程
调节器
手 执行机构
• (1)控制对象 • 控制系统所要控制的机器、设备或装置。 • 被控量:控制系统所要控制的工况参数。
在柴油机气缸冷却水温度控制系统中,淡水冷却 器是控制对象,冷却水温度是被控量。
• (2)测量单元
• 测量单元一般由测量元件和变送器组成。
• 作用:将被控量成比例地转换成统一的标准信号
即测量信号送至调节器。
• 统一的标准气压信号是0.02~0.1MPa; • 统一的标准电流信号是0~10mA或4~20mA,
现在一般多采用4~20mA。
• (3)调节单元(控制单元)
• 调节单元是指具有各种调节作用规律的调节器。
往往采用局部正反馈。
• 4、闭环和开环
• 开环控制的两种情形:
按给定值进行控制;
按扰动进行控制。
• 开环控制系统实例:
主机遥控系统中的起动、换向、停油 和制动控制回路;
机舱集中监视与报警系统; 辅锅炉的自动点火控制; 分油机的自动排渣控制; 不可控相复励自励恒压装置。
• 三、自动控制系统的分类
• 〈1〉按仪表使用的能源分类
• 一般要求σp小于20%。
• (3)振荡次数N
• 过渡过程中被控参数振荡的次数,一般以2~
3次为宜。
2)准确性
• (1)最大偏差emax • 过渡过程中,被控参数偏离给定值的最大值。
在衰减振荡过程中,最大偏差就是第一个波的 峰值。
• (2)静态偏差(稳态误差)ε • 过渡过程结束时被控参数所达到的新稳态值与
Ψ、N、emax 、ε、ts。
• (2)改变给定值系统常用的品质指标
σp、N、ε、ts、tr、tp。
• (3)三方面的指标是有矛盾的,在实际系统中
应该:
以稳为主,兼顾准、快。
•
《轮机自动化》
绪论
• 一、轮机自动化发展简史 • (1)1950年代末以前:单项自动化。 • (2)1960年代初:出现机舱集中监控与主机遥控。 • (3)1960年代中期:出现“无人机舱”。 • (4)1960年代末期:出现了用电子计算机实现自
动化的所谓“超自动化”船舶,采用集中控制或
分散控制。
调节器参数的调节等。
• 3、反馈
• 含义: 将输出全部或部分地回送到输入端以影
响输入效应。
• 负反馈 削弱输入效应的反馈。
只有采用负反馈,才能形成偏差。
运行参数的自动控制系统必定是负反馈
控制系统,亦称为偏差控制系统。
• 正反馈 加强输入效应的反馈。
为了实现某种复杂的控制规律和作用 (如积分作用),自动化仪表(如气动调节器)
舱进行全面管理;
• 推广使用模糊控制、神经元网络、专家系统等
智能控制技术;
• 智能柴油机和电力推进的迅速发展。
• 二、本课程主要内容:
• (1)反馈控制系统 • (2)气动自动化仪表 • (3)机舱工况参数的自动控制系统 • (4)主机遥控 • (5)监视与报警系统 • (6)自动化电站
第一章 轮机自动化的基础知识
• (4)执行机构
• 执行机构的输入量是调节单元输出的控制信号;
执行机构的输出量通常是调节阀的开度。
• 调节单元输出的控制信号经执行机构直接改变调
节阀的开度,从而可改变流入控制对象的物质或 能量流量,使之能符合控制对象负荷的要求,进 而使被控量保持在给定值或给定值附近。
• 实际的执行机构:气动薄膜调节阀;三相伺服电
给定值之间的偏差。
• 3)快速性 • (1)过渡过程时间ts • 从扰动作用发生起,直到被控参数进入新
稳态值的±2%或±5%的范围内且不再越出时 所经历的时间。
• (2)上升时间tr
• 被控参数第一次达到新稳态值的时间。
• (3)峰值时间tp
• 被控参数达到峰值的时间。
• 说明: • (1)定值控制系统常用的品质指标
值是某个参数的函数且参数的变化是任意的。
• 实例:随动操舵;辅锅炉风量控制回路。
• 四、反馈控制系统的动态过程 • 1、动态过程
• 稳定状态(静态):被控参数不随
时间而变化的平衡状态。
• 过渡过ቤተ መጻሕፍቲ ባይዱ(动态过程):被控参数
随时间而变化的不平衡状态。
• 扰动作用
调节作用
• 稳态
动态过程
新稳态(平衡)
平衡破坏
• (5)1970年代末期:出现了采用多台微型计算机组成
的集中-分散式控制系统(集散式,分布式系
统)。
• (6)1980年代之后:广泛采用集散式控制系统,下位
机采用可编程控制器(PLC)或单片机。
• (7)当前及发展趋势 • 广泛应用现场总线型(FCS)的网络型控制系统; • 以太网技术用于机舱控制; • 用计算机实现船舶动力装置的最佳控制和对机