合成孔径雷达的物理原理及其在军事上的应用

合集下载

合成孔径雷达原理

合成孔径雷达原理

合成孔径雷达原理合成孔径雷达(Synthetic Aperture Radar, SAR)是一种通过合成长天线来实现高分辨率雷达成像的技术。

它利用雷达信号的相位信息和干涉技术,可以在地面上合成一条长天线,从而实现高分辨率的成像。

合成孔径雷达具有全天候、全天时、高分辨率和独立于天气的特点,因此在地质勘探、军事侦察、环境监测等领域有着广泛的应用。

合成孔径雷达的原理是利用飞行器、卫星等平台通过发射雷达信号并接收回波,然后利用信号处理技术进行合成孔径成像。

一般来说,合成孔径雷达通过多次发射雷达信号,并在不同位置接收回波,然后利用这些回波数据进行处理,最终得到高分辨率的雷达图像。

这种成像技术可以克服传统雷达受天线尺寸限制而无法获得高分辨率图像的问题,因此在远距离观测和高分辨率成像方面具有显著的优势。

合成孔径雷达的成像原理是通过利用多个回波数据进行信号处理,从而合成一条长天线,实现高分辨率的成像。

在这个过程中,需要对回波数据进行时域和频域处理,包括距离压缩、运动补偿、多普勒频率补偿等。

这些处理步骤可以有效地提高合成孔径雷达的成像质量,同时也增加了数据处理的复杂性。

合成孔径雷达的原理是基于雷达信号的相位信息和干涉技术,通过合成长天线实现高分辨率的成像。

在信号处理方面,合成孔径雷达需要进行大量的数据处理和计算,因此对计算能力有着较高的要求。

同时,合成孔径雷达还需要考虑平台运动对成像质量的影响,需要进行运动补偿和多普勒频率补偿等处理,以保证成像的准确性和稳定性。

总的来说,合成孔径雷达是一种利用合成长天线实现高分辨率雷达成像的技术,具有全天候、全天时、高分辨率和独立于天气的特点。

它的原理是利用雷达信号的相位信息和干涉技术,通过多次发射雷达信号,并在不同位置接收回波,然后利用信号处理技术进行合成孔径成像。

合成孔径雷达在地质勘探、军事侦察、环境监测等领域有着广泛的应用前景,是一种非常重要的遥感成像技术。

合成孔径长度

合成孔径长度

合成孔径长度合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用微波射线成像的技术,通过利用目标反射回来的电磁波信号,从而获取反射体的距离、速度和方向等信息。

合成孔径雷达技术主要应用在军事、航天、地球科学、地球资源等领域。

其中,合成孔径雷达的重要参数是合成孔径长度,本文就合成孔径长度进行详尽论述。

1. 合成孔径雷达成像原理合成孔径雷达的分辨率一般由以下三个因素所影响:(1)发射频率。

由于发射频率越高,其波长越短,因此对于距离相同的目标,发射频率越高,其分辨率也越高。

(2)接收天线的大小。

天线大小越大,则接收信号的能力也会越强,因此其分辨率也会越高。

(3)合成孔径长度。

合成孔径长度是用于表示SAR图像分辨率的一个重要参数。

当合成孔径长度越大时,其所形成的图像分辨率越高。

合成孔径雷达的合成孔径长度(Synthetic Aperture Length)是合成孔径雷达成像分辨率的重要参数之一。

合成孔径长度是指从雷达发射天线到雷达接收天线所经过的距离。

合成孔径长度越大,则所形成的SAR图像的分辨率也越高。

合成孔径雷达的合成孔径长度一般有两种不同的定义方式,分别是实际合成孔径长度(Actual Synthetic Aperture Length)和等效合成孔径长度(Equivalent Synthetic Aperture Length)。

等效合成孔径长度是指将距离不同的反射体所接受到的信号利用计算的方法,将其处理成一条等价于以某一距离为合成孔径长度时所接受到的信号。

等效合成孔径长度多应用在机载雷达上,使得机载雷达系统可以在有限的距离条件下,获得更高分辨率的SAR图像。

综上,合成孔径长度是合成孔径雷达成像分辨率的重要参数之一。

实际合成孔径长度和等效合成孔径长度是两种不同的定义方式。

合成孔径雷达技术在军事、航天、地球科学、地球资源等领域有广泛的应用,未来随着技术的不断提高,合成孔径雷达技术的应用将会越来越广泛。

合成孔径技术的原理及应用

合成孔径技术的原理及应用

合成孔径技术的原理及应用合成孔径技术(Synthetic Aperture Radar,缩写为SAR)是一种使用雷达波束合成的方法,通过在雷达接收过程中利用平行移动的目标,以提高雷达图像的空间分辨率。

合成孔径雷达通过利用飞机、卫星或无人机的平行运动,将其接收到的雷达信号进行时间和空间的整合,从而获得高分辨率的地面图像。

其背后的原理是利用接收到的雷达波的相位信息,直接或间接地计算出目标场景的反射特性。

合成孔径雷达的工作原理主要包括以下几个步骤:1. 发射雷达波束:合成孔径雷达首先发送短脉冲的雷达波束到地面目标。

2. 接收回波信号:雷达波束在击中目标后,部分能量会被目标反射回来,并由雷达接收到。

接收到的信号包含了目标的形状和反射特性等信息。

3. 记录接收信号:接收到的信号经过放大和滤波等处理后,数传回地面进行记录。

4. 拼接信号:重复以上步骤,雷达发射多个波束,每个波束之间的位置有微小变化。

然后将所有接收信号进行记录,并按照波束的位置进行排列。

5. 合成图像:将所有记录的信号进行处理,包括相位校正、滤波和频谱分析等,最终将它们合成成一幅高分辨率的图像。

合成孔径雷达的应用非常广泛。

例如:1. 地质勘探:合成孔径雷达可用于勘探地下矿藏。

通过分析地下的反射信号,可以确定地下矿藏的位置、类型和大小等信息。

2. 海洋观测:合成孔径雷达可用于监测海洋表面的风浪情况,以及测量海洋的波浪和潮汐等参数。

3. 气象预测:合成孔径雷达可以用于测量大气中的降水量、降雪量和冰雹等,为天气预测和气候研究提供重要数据。

4. 地表变化监测:由于合成孔径雷达可以获取高分辨率的地表图像,因此可以用于监测土地利用变化、城市扩张和自然灾害等。

5. 军事侦察:合成孔径雷达具有高分辨率和覆盖范围广的特点,因此可用于军事侦察和目标识别。

6. 精准导航:合成孔径雷达可用于航空和航海领域,提供精确的导航和定位数据。

总结来说,合成孔径雷达技术通过利用波束合成方法,能够提供高分辨率和宽覆盖范围的地面图像,具有广泛的应用前景。

合成孔径雷达成像技术及应用

合成孔径雷达成像技术及应用

合成孔径雷达成像技术及应用合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种基于雷达技术的成像方法。

它利用了雷达回波信号的相位差异来合成一个大型的接收器孔径,从而提高雷达的分辨率和成像质量。

合成孔径雷达成像技术在军事、航空航天、地质勘探、环境监测等领域有着广泛的应用。

合成孔径雷达技术的基本原理是利用雷达发射信号与目标反射回来的信号之间的相对运动,通过对多个回波信号进行叠加处理,实现高分辨率的成像。

相对于传统雷达,合成孔径雷达不需要像传统雷达一样依赖于电磁波的波束扫描来进行探测,而是通过在距离和方位方面进行序列化的接收,使接收孔径长度远大于发射孔径长度,从而实现较高分辨率的成像。

合成孔径雷达成像的核心技术是信号处理和图像重建。

信号处理主要包括多普勒补偿、距离校正、视角效应校正等步骤。

多普勒补偿用于消除目标回波信号因相对速度引起的频率偏移,距离校正用于纠正由于平台高度变化引起的距离偏差,视角效应校正用于补偿因角度变化所引起的干涉效应。

经过信号处理后,可以得到目标回波信号的相位信息和强度信息。

在图像重建中,采用了一种被称为反向合成孔径雷达(Inverse Synthetic Aperture Radar,简称ISAR)的技术。

ISAR通过将雷达回波信号变换到频域,然后应用逆变换恢复成时域信号,从而实现图像的重建。

ISAR技术主要依赖于高分辨率的目标运动,通过目标在回波信号中的频率调制提供有关目标的细节信息。

通过对多个回波信号进行叠加和相位编码,可以获得高分辨率的目标图像。

合成孔径雷达成像技术具有许多优点。

首先,它可以实现在任意天气条件下对地面目标进行成像,不受光线、云层等地气条件的影响。

其次,合成孔径雷达可以产生高分辨率的成像结果,对于目标进行细节分析和精确定位具有重要意义。

此外,合成孔径雷达还可以实现夜间成像和全天候监测,具有广泛的应用前景。

合成孔径雷达成像技术在军事领域有着重要的应用。

合成孔径雷达的物理原理及其在军事上的应用

合成孔径雷达的物理原理及其在军事上的应用

(2)在性能上,合成孔径雷达应具备对小速度 州仪器公司共同为 X 、L 、C 波段研制了 S A R 有源
目标进行高分辨率成像的目标识别能力;利用对旋 阵列用的 T / R 组件,以及由 X 、L 、C 波段三部分
转物体的多维分辨和大的信息带宽,以提高分辨率。 子阵组成的有源阵列天线。
(3)在传输途径上,由单一的机 - 地实时传输,
四、结束语
向机 - 星 - 地、机 - 机 - 地、机 - 舰、地 - 地点面
合成孔径雷达是用途广泛的星载、机载设备,
联网配套等综合化方向发展。
其研制工作是一项高技术应用的系统工程,技术复
(4)三维成像:利用 SAR 干涉仪可测量散射体 杂,难度大,应集中国内有关研究所和院校,加大
的高度,从而获得三维图像,如美国的 P3-SAR 等。 开发研制力度,使这一高科技侦察装备能在未来信
(上接第 5 页)辨率、实时成像、高速图像处理、数据 A N / A P G 7 6 ,除具有 D B S / S A R 带状方式、聚束式
压缩、图像实时传输、二次图像分发等技术发展,合 工作状态外,也具有地面动目标检测能力。
成孔径雷达系统的技术性能越来越高,工作状态和
(6)多种工作状态相结合:如美国的 P3-SAR,
星载合成孔径雷达能克服云雾雨雪和夜暗条件
的限制对地面目标成像,可实现全天候侦察。特别
适于昼夜跟踪舰船和装甲车辆的活动,监视机动式
洲际弹道导弹的动向,还能揭露伪装,发现隐蔽的
武器装备和识别假目标。最为典型的就是美国在轨
的“长曲棍球”雷达成像卫星(见图 3),分辨率为
0.3 ~3m (三种
模式),与光学侦
一个大合成孔径天线从而提高雷达的方位分辨力。 天线的结果,这就是合成孔径雷达的基本原理,如

合成孔径雷达基础及应用

合成孔径雷达基础及应用

合成孔径雷达基础及应用合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用合成孔径技术实现地面高分辨率成像的遥感技术。

它利用雷达发射的微波信号与目标物体相互作用后的回波信号,通过接收多个不同位置上的回波信号并进行处理,从而合成一个相当于一个很长的天线的效果,从而获得高分辨率的地面图像。

合成孔径雷达的基本原理是,在雷达飞行器上安装一个小型并非实际物理长度的天线,在飞行器上行驶时进行多次连续的测量和记录回波信号。

然后,通过计算并结合这些独立测量结果,将这些分布在不同位置的测量数据结合起来,即可模拟达到一个理想长度甚至更长的天线,从而获得高分辨率的图像。

合成孔径雷达技术的应用非常广泛。

首先,它在地质勘探领域有着重要作用。

合成孔径雷达能够探测到地下油气储层,用于寻找石油和天然气资源。

其次,它在军事领域中也有着广泛应用。

合成孔径雷达能够实现地面目标的探测和识别,对于军事情报收集和军事侦察非常有价值。

再次,它在地貌测绘和环境监测方面也有重要意义。

合成孔径雷达可以高精度地获取地表信息,用于绘制地形图、检测地质灾害等。

此外,它还在大气科学、农业、气象等领域发挥了重要作用。

合成孔径雷达技术的发展也带来了许多挑战和难题。

首先,合成孔径雷达需要大量的计算和处理,对计算能力和算法要求较高。

同时,合成孔径雷达对于地表覆盖和地形的要求也比较严格,如果有大规模的遮挡物或者地表较为复杂,会对成像效果造成一定的影响。

此外,合成孔径雷达对气象条件的要求也比较高,气象因素如雨、雪、雾等会对信号传播和成像质量产生干扰。

在合成孔径雷达技术的进一步发展中,需要解决上述问题,并不断提高成像的分辨率和精度。

随着技术的不断进步,合成孔径雷达的应用领域将会更加广泛,成像效果将会更加精细。

此外,结合其他遥感技术如激光雷达技术,可更好地实现地理空间信息的综合利用。

总之,合成孔径雷达是一种利用合成孔径技术实现高分辨率成像的遥感技术,广泛应用于地质勘探、军事侦察、地貌测绘等领域。

合成孔径雷达在军事上的应用分析

合成孔径雷达在军事上的应用分析

本期特约本文2009208213收到,田锦昌系中国航天科工集团三院三部高级工程师合成孔径雷达在军事上的应用分析田锦昌摘 要 合成孔径雷达(S AR )研制关键技术已取得重大突破,由于S AR 优点突出,各军事强国已在争先研制、装备S AR 。

以平台划分,详细分析了机载S AR 、星载S AR 、弹载S AR 在军事上的具体应用情况。

关键词 合成孔径雷达 军事应用 分析引 言伊拉克战争中,美国利用6颗高分辨率成像侦察卫星,对伊拉克国土进行密切监视,几乎每一个小时就有一颗成像侦察卫星光顾伊拉克的领空。

在这6颗成像侦察卫星中,有3颗合成孔径雷达卫星(又称雷达成像卫星),分别是长曲棍球22(La 2cr osse 22)、长曲棍球23(Lacr osse 23)和长曲棍球24(Lacr osse 24)。

这3颗S AR 卫星分时、分区域对伊拉克重点地区进行侦察,为美英联军提供伊拉克军事活动的三维图像。

长曲棍球系列卫星是世界上最早的军用雷达成像侦察卫星,它是美国21世纪初空间雷达成像侦察的主要工具,不仅特别适于跟踪舰船的活动,监视机动式弹道导弹的动向,而且还能发现经伪装的武器装备,甚至能发现藏在地下数米深处的设施。

长曲棍球卫星具有多频段、多极化工作能力,空间分辨率优于1m 。

自从1951年美国Good Year 公司的Carl W iley 提出合成孔径概念以后,S AR 技术得到了迅速发展。

这主要是合成孔径雷达能克服云、雾、雨、雪和夜暗条件的限制对地面目标成像,可以全天时、全天候、高分辨率、大幅面对地观测,能够在军事侦察、军事测绘及诸多民用领域发挥重要作用,因此,自20世纪末以来,S AR 技术的军事应用受到世界各国高度重视,并得到迅速发展。

1 S AR 的性能S AR 是利用雷达对地辐射的后向散射微波来分辨不同物体的。

不同的物体一般具有不同的导电系数,导致不同物体对微波的后向散射系数不同。

因此,雷达接收不同物体反射的微波辐射强度不同。

合成孔径雷达原理

合成孔径雷达原理

合成孔径雷达原理合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种利用合成孔径技术获取地面目标信息的雷达系统。

合成孔径雷达通过利用雷达与飞行器(如卫星、飞机等)的运动合成一个大孔径,在距离上实现超分辨能力,从而实现对地面目标的高分辨率成像。

合成孔径雷达的工作原理如下:首先,发射器发射一束雷达波束,并接收目标反射回来的信号。

接收到的信号经过放大和混频等处理后,得到一连串雷达回波数据。

然后,这些回波数据被存储下来。

为了实现合成孔径雷达的高分辨率成像,需要通过飞行器的运动合成一个大孔径。

首先,飞行器沿着固定轨迹匀速飞行,在飞行的过程中,持续接收并记录目标的回波数据。

这些回波数据来自不同位置、不同时间上的目标反射。

在数据处理阶段,首先根据飞行器的速度和航向信息对回波数据进行校正,以消除因飞行器运动而引入的效应。

然后,将校正后的回波数据进行时域信号处理,如滤波、相位校正等。

接着,利用这些回波数据,进行合成孔径处理。

合成孔径处理的目标是将由不同位置和时间上的多个小孔径雷达所获取的回波数据合成为一个大孔径。

通常采用的方法是将这些回波数据叠加在一起,通过加权平均的方式获取高分辨率成像结果。

加权的原则是使得距离较远的目标点,其在不同位置和时间上的回波数据相位一致,从而进行叠加时能够增强目标特征。

最后,根据合成孔径雷达的系统参数和地面场景的需求,进行进一步的数据处理,如图像去噪、图像增强等操作,得到清晰的高分辨率合成孔径雷达图像。

总之,合成孔径雷达通过利用合成孔径技术,通过飞行器的运动合成一个大孔径,实现了对地面目标的高分辨率成像。

这种雷达系统在军事、航空、地质勘探等领域具有广泛的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

心,把信息化武器装备动员的技术扩散能力和生产 工技术、先进成形与连接技术、专用设备与自动化
扩张能力作为平时准备的重点,在人员、设备、生 技术、柔性生产技术,重点加强新武器装备的研发
产技术等方面进行准备,着力提高其战时紧急扩产 设计能力以及系统集成、总装和检测能力,在武器
能力,通过实时、精确、定向、高效的转化,保障 装备采购规模较小的情况下,进行敏捷制造、精益
(2)
该式表明:分辨力与波长和目标距离无关,与 天 线 的 孔 径 尺 寸 成 正 比 。这 恰 好 与 经 典 结 果( 1 )式 相反,在经典雷达中,天线越大分辨力越高,而在
由此式可以看出,要提高分辨力只有减小波长 合成孔径雷达的情况下,却是天线越小分辨力越高,
和增大天线方向孔径这两种方法,但这两种方法的 最适合于机载、星载使用。
天线在图 1 中的每
合成孔径雷达与普通雷达的重要区别在于它在 一个天线阵元位置上分时发射一次电磁波,以代替
方位和距离两个方向上都能获得很高的几何分辨力, 大孔径天线阵列同时发射电磁波。然后把从目标返
从而能对被测目标实现二维成像。
回的每一个回波信号储存起来,再根据电磁波的迭
方位向是通过雷达载体(飞机)的运动,形成 加原理把接收到的回波信号进行迭加,便能得到大
达在役,最高分辨力可达 0 . 1 m (L Y N X 雷达)。
三、合成孔径雷达的未来发展
未来战争将是空地一体化战争,目标的密集度
高,需要未来的侦察设备能够提供大面积、全空域
目标的不同物理性质。随着应用领域的扩大和要求
的不断增加,合成孔径雷达正向高分( 下转第 1 8 页)
2004 年第 4期 国防技术基础 - 5 -
3.借助虚拟动员,提高军工企业的耦合能力与 防科技企业的安全与保密工作,提高我国在武器装
武器装备动员的抗打击能力
备动员领域的信息遮蔽能力。
所谓虚拟动员,并不是一个真正存在的实体,
( 本 文 第 一 作 者:军 事 经 济 学 院 讲 师 )
而是对众多武器装备生产功能的一种有机组合,借
战争之需。对所选定的民用企业进行配套建设,使 生产。通过对武器装备生产功能的虚拟组合,虚拟
其在战时具备接受技术扩散的能力和及时保质保量 生产和虚拟动员,加强武器装备动员在非线式作战
地提供零配件的生产能力,从而形成结构合理的国 条件下的抗侦察、抗打击的防护能力,从而可以很
防科技工业体系。
好地在武器装备动员工作中实现信息遮蔽,加强国
四、结束语
向机 - 星 - 地、机 - 机 - 地、机 - 舰、地 - 地点面
合成孔径雷达是用途广泛的星载、机载设备,
联网配套等综合化方向发展。
其研制工作是一项高技术应用的系统工程,技术复
(4)三维成像:利用 SAR 干涉仪可测量散射体 杂,难度大,应集中国内有关研究所和院校,加大
的高度,从而获得三维图像,如美国的 P3-SAR 等。 开发研制力度,使这一高科技侦察装备能在未来信
装备与技术
图 2 合成孔径的形成
越小距离分辨率越好。若要通过信号处理来改善距 离分辨率,则发射信号的带宽愈大愈好。
二、合成孔径雷达在军事上的应用 合成孔径雷达作为一种全天时、全天候的微波 成像雷达,具有良好的分辨力,不仅可以详细地、较 准确地观测地形、地貌,获取地球表面的信息,还 可以透过地表和自然植被收集地表下面的信息。它 是从空间对地观测的一种有效手段,能够产生地面 目标区域或地域的高分辨力地图,提供类似于光学 照片的雷达图像,除了在国民经济和其他对地观测 领域的应用外,在军事上更有其广泛的应用,主要 包括军事侦察、军事测绘以及军事伪装的识别与检 测等,本文重点探讨其在军事侦察方面的应用。 1 .合 成 孔 径 雷 达 用 于 侦 察 的 优 点 军事上传统的成像侦察设备是光电、红外侦察 设备,是利用光电成像原理通过收集目标反射或自 身辐射的信息来获取目标的图像信息。与可见光和 红外成像技术相比,合成孔径雷达作为侦察监视设 备具有如下特点:①全天候、全天时侦察能力。合 成孔径雷达不受气候、昼夜等因素的影响,能够在 恶劣气候条件下全天候、全天时工作,且能穿透自 然植被发现隐蔽的军事目标和地下军事设施,这是 红外、光电等其他探测系统难以做到的。②远距离 侦察能力。合成孔径雷达具有远距离防区外探测能 力,一般采用侧视工作方式,可在安全空、海域对 敌进行远距离侦察测绘,获得目标的高分辨率雷达 图像。③高分辨率。合成孔径雷达能够以很高的分 辨率提供详细的地面测绘资料和图像,特别是通过 探测舰船尾流或海面内波异常,可以发现、识别海 上舰船和潜艇。
调节范围都是有限的。
合成孔径雷达的距离向高分辨力是通过发射宽
合成孔径雷达突破了经典雷达的分辨极限,它 带雷达信号和脉冲压缩技术实现的,距离向分辨率
是以电磁波的独立性传播原理和迭加原理为基础, 是指当第一个目标回波脉冲的后沿与第二个目标的
应用计算机技术而发展起来的一种相干雷达。
回波脉冲的前沿相接近以致不能区分出两个目标的
常用的工作方式是侧视雷达,其特点是雷达天线的
作用方向与航空平台的飞行方向垂直,从而使得载
机可沿边境飞行,不用进入敌领空,就可以探测到
敌纵深目标,使载机有较高的生存力。近二十年来,
很多国家先后研制并装备了第二、第三代机载合成
孔径成像雷达,尤其以美国的合成孔径成像雷达技
术水平较为领先,有多型 X、Ku 波段的合成孔径雷
体制组合也越来越复杂。其总的发展趋势为:
就具有带状测绘(用于粗测)与聚束式测绘(用于精测)
(1)在功能上向多平台、多频段、多极化、多 两种工作方式,只须通过测绘区一次便可以多种视
工作方式、多功能兼容、多域信息处理一体化等方 角对一个场景成像,可对多个较小区域成像。
向发展。
(7)SAR 逐步与相控阵结合: 西屋公司与德
2 .合 成 孔 径 雷 达 用 于 侦 察 的 领 域
(1)航天侦察
航天侦察在现代战争中具有极其重要的地位和
作用,它极大地扩展了现代侦察的空域,使太空成
为现代战争新的“制高点”。目前侦察卫星已成为战
场侦察监视的主力军,在世纪之交发生的几次局部
战 争 中 ,8 0 % 的 战 场 情 报 是 由 侦 察 卫 星 提 供 的 。
R a d e r ) 就 是 其 中 一 例 ,它 是 电 磁 波 的 独 立 性 、迭 加
根据波的
原理与计算机相结合的产物,是集信号形成、数据
独立性传
采集、高速率大容量数据记录、高速率数字信号处
播原理,
理、电子、机械等多项高新技术于一体的微波遥感
如果让小
成像系统。 一、合成孔径雷达的物理原理
图 1 N个元的线阵天线
(上接第 5 页)辨率、实时成像、高速图像处理、数据 A N / A P G 7 6 ,除具有 D B S / S A R 带状方式、聚束式
压缩、图像实时传输、二次图像分发等技术发展,合 工作状态外,也具有地面动目标检测能力。
成孔径雷达系统的技术性能越来越高,工作状态和
(6)多种工作状态相结合:如美国的 P3-SAR,
(5)SAR 体制与 GMTI 结合:如美国的 HISAR 息化战争中发挥重要作用。
ห้องสมุดไป่ตู้
雷达,除具有大范围的监视和侦察功能外,还具有 (本文第一作者:海军信息工程技术研究所高工)
地面、慢动目标显示;又如多功能机载战术雷达
- 18 - 国防技术基础 2004 年第 4 期
大孔径雷达一般是有 N 个天线阵元组成的天线 极限间距,计算公式为:
阵列,如图 1 所示。它之所以能得到高的分辨力,是 因为天线的孔径大,一方面各天线阵元之间相互干
(3)
涉形成很窄的波束;另一方面目标回波被天线接收
上式表明,由于光速是常数,所以(脉冲宽度)
- 4 - 国防技术基础 2004 年第 4 期
察卫星共同组成
了强大的天基侦
察阵容,昼夜不
停地监视着世界
各地的军事动
向,使美国在航
天侦察领域占有
明显的优势。
图 3 “长曲棍球”雷达成像卫星
(2)航空侦察
由于卫星发射成本高、定轨运行且有时间间隔
性,而有人机和无人机的低成本、高机动性和无时
间间隔性正好可弥补卫星的缺陷,所以合成孔径雷
达在航空侦察中应用更为广泛。机载合成孔径雷达
一个大合成孔径天线从而提高雷达的方位分辨力。 天线的结果,这就是合成孔径雷达的基本原理,如
经典雷达的方位分辨力计算公式为:
图 2 所示。
( 1)
合成孔径雷达的方位分辨力计算公式为:
ρ 式中: - - 方位分辨力;
λ - - 辐射电磁波波长; D - - 天线的方向孔径; у - - 目标到天线的距离。
装备与技术
合成孔径雷达的物理原理及其在军事上的应用
崔麦会 周建军 陈超
以信息化为主导的现代战争中,雷达扮演很重
后再进行
要的角色。在雷达技术中,现代雷达有着丰富的理
相干迭加
论 内 容 ,合 成 孔 径 雷 达 ( S A R:S y n t h e t i c a p e r t u r e
的结果。
(2)在性能上,合成孔径雷达应具备对小速度 州仪器公司共同为 X 、L 、C 波段研制了 S A R 有源
目标进行高分辨率成像的目标识别能力;利用对旋 阵列用的 T / R 组件,以及由 X 、L 、C 波段三部分
转物体的多维分辨和大的信息带宽,以提高分辨率。 子阵组成的有源阵列天线。
(3)在传输途径上,由单一的机 - 地实时传输,
星载合成孔径雷达能克服云雾雨雪和夜暗条件
的限制对地面目标成像,可实现全天候侦察。特别
适于昼夜跟踪舰船和装甲车辆的活动,监视机动式
洲际弹道导弹的动向,还能揭露伪装,发现隐蔽的
相关文档
最新文档