平行四边形、菱形典型题
人教中考数学综合题专题复习【平行四边形】专题解析附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.在四边形ABCD 中,180B D ∠+∠=︒,对角线AC 平分BAD ∠.(1)如图1,若120DAB ∠=︒,且90B ∠=︒,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图2,若将(1)中的条件“90B ∠=︒”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若90DAB ∠=︒,探究边AD 、AB 与对角线AC 的数量关系并说明理由.【答案】(1)AC AD AB =+.证明见解析;(2)成立;(3)2AD AB AC +=.理由见解析.【解析】试题分析:(1)结论:AC=AD+AB ,只要证明AD=12AC ,AB=12AC 即可解决问题; (2)(1)中的结论成立.以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 延长线于点E ,只要证明△DAC ≌△BEC 即可解决问题;(3)结论:AD +AB =2AC .过点C 作CE ⊥AC 交AB 的延长线于点E ,只要证明△ACE 是等腰直角三角形,△DAC ≌△BEC 即可解决问题;试题解析:解:(1)AC=AD+AB .理由如下:如图1中,在四边形ABCD 中,∠D+∠B=180°,∠B=90°,∴∠D=90°,∵∠DAB=120°,AC 平分∠DAB ,∴∠DAC=∠BAC=60°,∵∠B=90°,∴AB=12AC,同理AD=12AC.∴AC=AD+AB.(2)(1)中的结论成立,理由如下:以C为顶点,AC为一边作∠ACE=60°,∠ACE的另一边交AB延长线于点E,∵∠BAC=60°,∴△AEC为等边三角形,∴AC=AE=CE,∵∠D+∠ABC=180°,∠DAB=120°,∴∠DCB=60°,∴∠DCA=∠BCE,∵∠D+∠ABC=180°,∠ABC+∠EBC=180°,∴∠D=∠CBE,∵CA=CE,∴△DAC≌△BEC,∴AD=BE,∴AC=AD+AB.(3)结论:AD+AB=2AC.理由如下:过点C作CE⊥AC交AB的延长线于点E,∵∠D+∠B=180°,∠DAB=90°,∴DCB=90°,∵∠ACE=90°,∴∠DCA=∠BCE,又∵AC平分∠DAB,∴∠CAB=45°,∴∠E=45°.∴AC=CE.又∵∠D+∠ABC=180°,∠D=∠CBE,∴△CDA≌△CBE,∴AD=BE,∴AD+AB=AE.在Rt△ACE中,∠CAB=45°,∴AE=245ACACcos︒=∴2AD AB AC+=.2.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD的中点,射线BE交AD 的延长线于点F,连接CF.(1)求证:四边形BCFD是菱形;(2)若AD=1,BC=2,求BF的长.【答案】(1)证明见解析(2)3【解析】(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,∵点E为CD的中点,∴DE=EC,在△BCE与△FDE中,FBC BFDDCB CDFDE EC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FDE,∴DF=BC,又∵DF∥BC,∴四边形BCDF为平行四边形,∵BD=BC,∴四边形BCFD是菱形;(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,在Rt△BAD中,AB223BD AD-,∵AF=AD+DF=1+2=3,在Rt△BAF中,BF22AB AF+3.3.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).【答案】(1)作图参见解析;(2)作图参见解析.【解析】试题分析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN即可;(2)根据勾股定理画出图形即可.试题解析:(1)过点O向线段OM作垂线,此直线与格点的交点为N,连接MN,如图1所示;(2)等腰直角三角形MON面积是5,因此正方形面积是20,如图2所示;于是根据勾股定理画出图3:考点:1.作图﹣应用与设计作图;2.勾股定理.4.(问题情境)在△ABC中,AB=AC,点P为BC所在直线上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.当P在BC边上时(如图1),求证:PD+PE=CF.证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.(不要证明)(变式探究)(1)当点P在CB延长线上时,其余条件不变(如图3),试探索PD、PE、CF之间的数量关系并说明理由;请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)(2)如图4,将长方形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD =16,CF=6,求PG+PH的值.(迁移拓展)(3)在直角坐标系中,直线l1:y=-43x+8与直线l2:y=﹣2x+8相交于点A,直线l1、l2与x轴分别交于点B、点C.点P是直线l2上一个动点,若点P到直线l1的距离为2.求点P的坐标.【答案】【变式探究】证明见解析【结论运用】8【迁移拓展】(﹣1,6),(1,10)【解析】【变式探究】连接AP,同理利用△ABP与△ACP面积之差等于△ABC的面积可以证得;【结论运用】过点E作EQ⊥BC,垂足为Q,根据勾股定理和矩形的性质解答即可;【迁移拓展】分两种情况,利用结论,求得点P到x轴的距离,再利用待定系数法可求出P的坐标.【详解】变式探究:连接AP,如图3:∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴12AB•CF=12AC•PE﹣12AB•PD.∵AB=AC,∴CF=PD﹣PE;结论运用:过点E作EQ⊥BC,垂足为Q,如图④,∵四边形ABCD是长方形,∴AD=BC,∠C=∠ADC=90°.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折叠可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90°,∴DC2222106DF CF-=-8.∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC.∴四边形EQCD是长方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由问题情境中的结论可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值为8;迁移拓展:如图,由题意得:A(0,8),B(6,0),C(﹣4,0)∴AB2268+10,BC=10.∴AB=BC,(1)由结论得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即点P1的纵坐标为6又点P1在直线l2上,∴y=2x+8=6,∴x=﹣1,即点P1的坐标为(﹣1,6);(2)由结论得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即点P1的纵坐标为10又点P1在直线l2上,∴y=2x+8=10,∴x=1,即点P1的坐标为(1,10)【点睛】本题考查了矩形的性质与判定、等腰三角形的性质与判定及勾股定理等知识点,利用面积法列出等式是解决问题的关键.5.(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在∠的度数为______.点C'处,若42ADB=∠,则DBE(2)小明手中有一张矩形纸片ABCD ,4AB =,9AD =.(画一画)如图2,点E 在这张矩形纸片的边AD 上,将纸片折叠,使AB 落在CE 所在直线上,折痕设为MN (点M ,N 分别在边AD ,BC 上),利用直尺和圆规画出折痕MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);(算一算)如图3,点F 在这张矩形纸片的边BC 上,将纸片折叠,使FB 落在射线FD 上,折痕为GF ,点,A B 分别落在点A ',B '处,若73AG =,求B D '的长.【答案】(1)21;(2)画一画;见解析;算一算:3B D '=【解析】【分析】(1)利用平行线的性质以及翻折不变性即可解决问题;(2)【画一画】,如图2中,延长BA 交CE 的延长线由G ,作∠BGC 的角平分线交AD 于M ,交BC 于N ,直线MN 即为所求;【算一算】首先求出GD=9-72033=,由矩形的性质得出AD ∥BC ,BC=AD=9,由平行线的性质得出∠DGF=∠BFG ,由翻折不变性可知,∠BFG=∠DFG ,证出∠DFG=∠DGF ,由等腰三角形的判定定理证出DF=DG=203,再由勾股定理求出CF ,可得BF ,再利用翻折不变性,可知FB′=FB ,由此即可解决问题.【详解】 (1)如图1所示:∵四边形ABCD 是矩形,∴AD∥BC,∴∠ADB=∠DBC=42°,由翻折的性质可知,∠DBE=∠EBC=12∠DBC=21°,故答案为21.(2)【画一画】如图所示:【算一算】如3所示:∵AG=73,AD=9,∴GD=9-72033=,∵四边形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不变性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=203,∵CD=AB=4,∠C=90°,∴在Rt△CDF中,由勾股定理得:22222016433 DF CD⎛⎫-=-=⎪⎝⎭,∴BF=BC-CF=9161133-=,由翻折不变性可知,FB=FB′=11 3,∴B′D=DF-FB′=2011333-=.【点睛】四边形综合题,考查了矩形的性质、翻折变换的性质、勾股定理、等腰三角形的判定、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用翻折不变性解决问题.6.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.7.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.8.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.【答案】(1)见解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.试题解析:(1)连接AH,如图1,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等边三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如图2,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如图3,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC 是等腰三角形, ∴AB=kBC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2﹣BH 2=(kBC )2﹣(BC )2=(k 2-)BC 2,∴AH=BH=BC ,∵OA=AE ,OH=HF , ∴AH 是△OEF 的中位线, ∴AH=EF ,AH ∥EF , ∴EF ⊥BC ,BC=EF ,∴EF=BC .考点:四边形综合题.9.已知ABC ,以AC 为边在ABC 外作等腰ACD ,其中AC AD =. (1)如图①,若AB AE =,60DAC EAB ∠=∠=︒,求BFC ∠的度数. (2)如图②,ABC α∠=,ACD β∠=,4BC =,6BD =.①若30α=︒,60β=︒,AB 的长为______.②若改变,αβ的大小,但90αβ+=︒,ABC 的面积是否变化?若不变,求出其值;若变化,说明变化的规律.【答案】(1)120°;(2)55【解析】试题分析:(1)根据SAS ,可首先证明△AEC ≌△ABD ,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC 的度数;(2)①如图2,在△ABC 外作等边△BAE ,连接CE ,利用旋转法证明△EAC ≌△BAD ,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt △BCE 中,由勾股定理求BE 即可;②过点B 作BE ∥AH ,并在BE 上取BE=2AH ,连接EA ,EC .并取BE 的中点K ,连接AK ,仿照(2)利用旋转法证明△EAC ≌△BAD ,求得EC=DB ,利用勾股定理即可得出结论. 试题解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60°,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中{AE ABEAC BAD AC AD=∠=∠=∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120°,故答案为120°;(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60°,∠ABC=30°,∴∠EBC=90°.在RT△EBC中,EC=6,BC=4,∴22EC BC-2264-∴5②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.∵AH⊥BC于H,∴∠AHC=90°.∵BE∥AH,∴∠EBC=90°.∵∠EBC=90°,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K为BE的中点,BE=2AH,∴BK=AH.∵BK∥AH,∴四边形AKBH为平行四边形.又∵∠EBC=90°,∴四边形AKBH为矩形.∠ABE=∠ACD,∴∠AKB=90°.∴AK是BE的垂直平分线.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC与△BAD中{AB AEEAC BAD AC AD=∠=∠=∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE=22EC BC-=25,∴AH=12BE=5,∴S△ABC=12BC•AH=25考点:全等三角形的判定与性质;等腰三角形的性质10.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。
第18章平行四边形解答题典型必练(二)2020—2021学年人教版八年级数学下册

2020—2021学年人教版八年级数学下册第18章平行四边形解答题典型必练(二)1.已知:在平行四边形ABCD中,对角线AC与BD相交于点O,点E、F分别为OB、OD 的中点,连接AE并延长至点G,使EG=AE,连接CF、CG.(1)如图1,求证:EG=FC;(2)如图2,连接BG、OG,在不添加任何辅助线的情况下,请直接写出图中的四个平行四边形,使写出每个平行四边形的面积都等于平行四边形ABCD面积的一半.2.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,AC=2AB,BE∥AC,OE∥AB.(1)求证:四边形ABEO是菱形;(2)若AC=2,BD=4,则四边形ABEO的面积是.3.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明:四边形ADCF是菱形;(2)若AC=3,AB=4,求菱形ADCF的面积.4.如图,在平行四边形ABCD中,BE⊥AD,BF⊥CD,垂足分别为E,F,且AE=CF.(1)求证:平行四边形ABCD是菱形;(2)若DB=10,AB=13,求平行四边形ABCD的面积.5.在▱ABCD中,AE平分∠BAD,O为AE的中点,连接BO并延长,交AD于点F,连接EF,OC.(1)求证:四边形ABEF是菱形;(2)若点E为BC的中点,且BC=8,∠ABC=60°,求OC的长.6.如图,在▱ABCD中,BC=2CD,E,F分别是AD,BC的中点,连接EF.(1)求证:四边形EFCD是菱形;(2)连接AF,若AF=2,∠DEF=60°,则EF的长为;菱形EFCD的面积为.7.如图,在四边形ABCD中,AB=AD,∠DAB=90°,AC平分∠DAB,作DE∥BC交AC 于E,连BE.(1)求证:四边形DEBC是菱形;(2)若∠CDE=2∠EDA,CE=2,求AD的长.8.如图,在平行四边形ABCD中,BC=2AB,AB⊥AC,分别在边BC,AD上的点E与点F关于AC对称,连接EF,AE,CF,DE.(1)求证:四边形AECF为菱形;(2)求证:AE⊥DE.9.在四边形ABCD中,对角线AC、BD相交于点O,且AC垂直平分BD,BD平分∠ADC.(1)如图1,求证:四边形ABCD是菱形;(2)如图2,过点B作BE∥AC,交DC延长线于点E,在不添加任何辅助线的情况下,请直接写出图中所有与△CBE面积相等的三角形(△CBE除外).10.如图,在Rt△ABC中,∠BAC=90°,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC,AE分别交于点O,E,连接EC.(1)求证:四边形ADCE是菱形;(2)若AB=AO,OD=1,则菱形ADCE的周长为.11.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)如果∠A=80°,∠C=30°,求∠BDE的度数.12.如图,在四边ABCD中,AB∥DC,AB=AD,对角AC、BD交于O,AC平分∠BAD.(1)求证:四边形ABCD是菱形;(2)过点C作CE⊥AB交AB的延长线于点E,连接OE,若AB=2,BD=4,求OE 的长.13.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.14.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面积.15.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)证明四边形ADCF是菱形;(2)若AC=4,AB=5,求菱形ADCF的面积.参考答案1.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,OB =OD ,∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点,∴BE =OB ,DF =OD ,∴BE =DF ,在△ABE 和△CDF 中,,∴△ABE ≌△CDF (SAS ),∴AE =FC ,∵EG =AE ,∴EG =FC ;(2)解:∵四边形ABCD 是平行四边形,∴OA =OC ,AB ∥CD ,AB =CD ,S 四边形ABCD =4S △ABO ,∵EG =AE ,点E 为OB 的中点,∴AG 、OB 互相平分,∴四边形ABGO 是平行四边形,∴S △ABO =S △BGO ,∴S 四边形ABGO =2S △ABO =S 四边形ABCD ,∵OA =OC ,EG =AE ,∴OE 是△ACG 的中位线,∴OE ∥CG ,∵四边形ABGO 是平行四边形,∴BG ∥AC ,∴四边形BOCG 是平行四边形,∴S 四边形BGCO =2S △BGO =2S △ABO =S 四边形ABCD ,∵四边形ABGO 是平行四边形,∴GO ∥AB ,GO =AB ,∵AB ∥CD ,∴GO ∥CD ,GO =CD ,∴四边形CDOG 是平行四边形,∴S 四边形CDOG =2S △CDO =2S △ABO =S 四边形ABCD ,∵点E ,F 分别为OB ,OD 的中点,∴EF =BD =OD ,∵四边形CDOG 是平行四边形,∴CG ∥EF ,CG =OD ,∴EF =CG ,∴四边形EFCG 是平行四边形,∴S 四边形EFCG =S 四边形CDOG =S 四边形ABCD ,∴图中的平行四边形ABGO 、平行四边形BOCG 、平行四边形CDOG 、平行四边形EFCG 四个平行四边形,每个平行四边形的面积都等于平行四边形ABCD 面积的一半. 2.(1)证明:∵BE ∥AC ,OE ∥AB ,∴四边形ABEO 是平行四边形,∵四边形ABCD 是平行四边形,∴AC =2AO ,∵AC =2AB ,∴AO =AB ,∴四边形ABEO 是菱形;(2)解:∵四边形ABCD 是平行四边形,∴AO =AC =,OB =BD =2,连接AE 交BO 于M ,由(1)知,四边形ABEO 是菱形,∴AE 、OB 互相垂直平分,∴OM =BO =1,∴AM ===,∴四边形ABEO的面积=AE•OB==2,故答案为:2.3.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,,∴△AEF≌△DEB(AAS);∴AF=DB,又∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴平行四边形ADCF是菱形;(2)解:∵D是BC的中点,∴△ACD的面积=△ABD的面积=△ABC的面积,∵四边形ADCF是菱形,∴菱形ADCF的面积=2△ACD的面积=△ABC的面积=AC×AB=×3×4=6.4.(1)证明:∵四边形ABCD是平行四边形,∵BE⊥AD,BF⊥CD,∴∠AEB=∠CFB=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(ASA),∴AB=CB,∴平行四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AD=AB=13,设AE=x,则DE=13﹣x,在Rt△ABE和Rt△BDE中,由勾股定理得:BE2=AB2﹣AE2=DB2﹣DE2,即132﹣x2=102﹣(13﹣x)2,解得:x=,∴BE==,∴平行四边形ABCD的面积=AD×BE=13×=120.5.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴AF∥BE,∴∠FAO=∠BEO,∵O为AE的中点,∴OA=OE,在△AOF和△EOB中,,∴△AOF≌△EOB(ASA),∴AF=BE,∴四边形ABEF是平行四边形;∵AE平分∠BAD,∴∠FAE=∠BAE,∵∠FAE=∠AEB,∴∠BAE=∠AEB,∴BA=BE,∴四边形ABEF是菱形;(2)解:过O作OH⊥BC于H,如图所示:∵E为BC的中点,且BC=8,∴BE=CE=4,∵四边形ABEF是菱形,∠ABC=60°,∴∠OBH=30°,∠BOE=90°,∴OE=BE=2,∠EOH=∠OBH=90°﹣∠OEH=30°,∴EH=OE=1,∴OH===,CH=EH+CE=5,∴OC===2.6.证明:(1)在▱ABCD中,BC=2CD,∴AD∥BC,AD=BC=2CD,∵E,F分别是AD,BC的中点,∴DE=CF=CD,又AD∥BC,∴四边形EFCD是平行四边形,又∵CD=DE,∴四边形EFCD是菱形;(2)如图,过点F作FH⊥AD于H,∵四边形EFCD是菱形,∴DE=EF=AE,∵∠DEF=60°,∴∠EFH=30°,∴EH=EF,FH=EH,∴AH=AE+EH=3EH,∵AF2=AH2+HF2,∴12=9EH2+3EH2,∴EH=1,∴EF=2=DE,HF=,∴菱形EFCD的面积=2×=2,故答案为:2,.7.(1)证明:如图,连接BD交AC于点F,∵AB=AD,∠DAB=90°,∴△ABD是等腰直角三角形,∵AC平分∠DAB,∴∠BAC=∠DAC=45°,∴F是BD的中点,∴BF=DF,在△AED和△AEB中,,∴△AED≌△AEB(SAS),∴DE=BE,∵DE∥BC,∴∠CBF=∠EDF,在△BCF和△DEF中,,∴△BCF≌△DEF(SAS),∴BC=DE,∵BC∥DE,∴四边形DEBC是平行四边形,∵BE=DE,∴四边形DEBC是菱形;(2)如图,过点E作EH⊥AD于点H,∵四边形DEBC是菱形,∴∠CDB=∠EDB=CDE,∵∠CDE=2∠EDA,∴∠BDE=∠ADE,∵BD⊥CE,EH⊥AD,∴EF=EH=EC=,∴AH=EH=,∴AE==2,∴AF=AE+EF=2+,∴DF=AF=2+,∴AD=AF=(2+)=2+2.8.证明:(1)设AC,EF的交点为O,∵四边形ABCD是平行四边形,∴AD∥BC.∠OAF=∠OCE.∵点E与点F关于AC对称,∴AE=AF,CE=CF,OE=OF.在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AE=AF=CE=CF,∴四边形AECF是菱形;(2)∵AE=CE,∴∠EAC=∠ECA,∵AB⊥AC,∴∠B=∠BAE,∴AE=BE=CE,∵BC=2AB,∴AB=AE=BE,∴△ABE是等边三角形.∴∠AEB=60°,∴∠AEC=120°,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCE=180°﹣∠B=120°,∵CE=BE=BC=AB=CD,∴∠CED=∠CDE=30°,∴∠AED=120°﹣30°=90°,∴AE⊥DE.9.(1)证明:∵AC垂直平分BD,∴AB=AD,BC=CD,∵BD平分∠ADC,∴∠ADO=∠CDO,又OD=OD,∠AOD=∠COD,∴△AOD≌△COD(ASA),∴AD=CD,∴AB=AD=CD=BC,∴四边形ABCD是菱形.(2)解:∵四边形ABCD是菱形,∴AB∥CD,∵BE∥CE,∴四边形ACEB是平行四边形,∴DC=AB=CE,∴图中所有与△CBE面积相等的三角形有△BCD,△ABD,△ACD,△ABC.10.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=CD,∴AE=CD,∴四边形ADCE是平行四边形,又∵∠BAC=90°,AD是边BC上的中线,∴AD=BC=CD,∴平行四边形ADCE是菱形;(2)解:∵四边形ADCE是菱形,∴AD=AE=CE=CD,AC⊥DE,OA=OC,∵BD=CD,∴OD是△ABC的中位线,∴AB=2OD=2,∴AO=AB=2,∴AD===,∴菱形ADCE的周长=4AD=4,故答案为:4.11.(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=80°,∠C=30°,∴∠ABC=180°﹣80°﹣30°=70°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=70°,∴∠BDE=∠EDF=35°.12.解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=4,∴OB=BD=2,在Rt△AOB中,AB=2,OB=2,∴OA===4,∴OE=OA=4.13.(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=4.14.证明:(1)∵DE∥BC,DF∥AB,∴四边形BFDE是平行四边形,∵BD是△ABC的角平分线,∴∠EBD=∠DBF,∵DE∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB,∴BE=ED,∴平行四边形BFDE是菱形;(2)连接EF,交BD于O,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD平分∠ABC,∴∠DBC=30°,∴BD=DC=12,∴∠FDC=∠A=90°,∴DF=,在Rt△DOF中,OF=,∴菱形BFDE的面积=.15.(1)证明:如图,∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(2)解:连接DF,∵AF∥BC,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S=AC•DF=10.。
(初中)数学《菱形的性质与判定》中考专项复习训练典型试题梳理汇总

(初中)数学《菱形的性质与判定》中考专项复习训练典型试题梳理汇总菱形的性质与判定基础同步过关知识点一:菱形的性质定理1.如图,四边形ABCD的对角线互相平分,则添加下列条件之一,不能使它成为菱形的是()A.AB=ADB.AC=BDC.BD平分∠ABCD.AC∠BD2.如图,顺次连接四边形ABCD各边的中点得到四边形EFGH,要使四边形EFGH为菱形,应添加的条件是。
3.如图,下列对菱形ABCD表述正确的有。
∠AC=BD;∠∠OAB=∠OBA;∠AC∠BD;∠有4条对称轴;∠AD=BD;∠∠OAB=∠OAD。
4.如图,四边形ABCD是菱形,AC BD相交于点O,AC=8,BD=6,DH∠AB于点H,则DH的长为。
第1题图第2题图第3题图第4题图5.如图,在菱形ABCD中,AB=2,∠ABC=120°,则菱形ABCD的面积是。
6.如图,在菱形ABCD中,对角线AC与BD交于点O,OE∠AB,垂足为E,若∠ADC=128°,则∠AOE的度数为()A.62°B.52°C.68°D.64°7.如图,在菱形ABCD中,∠B=60°,AB=3,点E是BC边上的一个动点(点E与点C不重合),点F,G分别是AE,CE的中点,则线段FG的长度为()B.3第5第6题图第7题图知识点二:菱形的判定定理8.已知四边形ABCD中,AC∠BD,再补充一个条件使得四边形ABCD为菱形,这个条件可以是()A.AC=BDB.AB=BCC.AC与BD互相平分D.∠ABC=90°9.如图,将∠ABC沿BC方向平移得到∠DCE,连接AD.下列条件中,能够判定四边形ACED为菱形的是()A .AB=BC B. AC=BC C.∠ABC=60° D.∠ACB=60°10.AC,BD相交于点O,点E,F,G,H分别是OA,OB,OC,OD的中点,若要使四边形EFGH成为菱形,(写出一种即可)11.折纸游戏一直很受大家的欢迎,小丽同学要用一张矩形纸片折出一个菱形,她用沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB的方法得到四边形AECF(如图)。
人教版初二下册数学第18章《平行四边形》讲义第12讲平行四边形-复习训练(有答案)

人教版初二下册数学第18章《平行四边形》讲义第12讲平行四边形-复习训练(有答案)对称 中心对称 中心对称轴对称图形 中心对称 轴对称图形 中心对称 轴对称图形第二局部 考点精讲精练考点一、平行四边形的性质及判定【知识要点】〔1〕、平行四边形的边、角、对角线性质, 对称性〔2〕、平行四边形判定方法〔3〕、三角形中位线【典型例题】例1、以下图形中是中心对称图形,但不是轴对称图形的是〔 〕A 、菱形B 、矩形C 、正方形D 、平行四边形例2、如图,□ABCD 与□DCFE 的周长相等,且∠BAD=60°,∠F=110°,那么∠DAE 的度数为 例3、如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延伸线交于点E,与DC 交于点F,且点F 为边DC 的中点,DG ⊥AE,垂足为G,假定DG=1,那么AE 的长为〔 〕 A 、2 B 、4 C 、4 D 、8例4、平面直角坐标系中,□ABCD 的顶点,A ,B ,D 的坐标区分是〔0,0〕〔5,0〕,〔2,3〕,那么顶点C 的坐标是〔 〕A 、〔3,7〕B 、(5,3)C 、(7,3)D 、 (8,2)〔例2〕 〔例3〕 〔例4〕例5、如图,E 是平行四边形内任一点, 假定S平行四边形ABCD =8,那么图中阴影局部的面积是〔 〕A 、3B 、4C 、5D 、6 例6、如图,将平行四边形ABCD 纸片沿EF 折叠,使点C 与点A 重合,点D 落在点G A yB CD处。
〔1〕求证:AE =AF〔2〕求证:△ABE ≌△AGF例7、如下图:四边形ABCD 是平行四边形,DE 平分BF ADC ,∠平分ABC ∠.试证明四边形BFDE 是平行四边形.例8、如图,在△ABC 中,AB =4,AC =3,BC =5,以三边为边,在BC 的同侧区分作三个等边三角形即△ABD 、△BCE 、△ACF 。
〔1〕求证:四边形EFAD 是平行四边形;〔2〕求四边形EFAD 的面积。
菱形练习题及答案

菱形练习题及答案一.菱形的定义:有一组邻边相等的平行四边形叫做菱形.二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质:1.菱形的四条边相等。
.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。
三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; .四条边都相等的四边形是菱形;3.对角线垂直的平行四边形是菱形;.对角线互相垂直平分的四边形是菱形。
四.菱形的面积:等于两条对角线乘积的一半.,周长=边长的4倍复习:1.如图,在△ABC中,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF?DC,连接CF.求证:D是BC的中点;若AB?AC,试猜测四边形ADCF 的形状,并证明.解答:证明:AF∥BC,??AFE??DBE.∵E是AD的中点,?AE?DE.又?AEF??DEB,?△AEF≌△DEB.?AF?DB.∵AF?DC,?DB?DC.解:四边形ADCF是矩形,证明:∵AF∥DC,AF?DC,?四边形ADCF是平行四边形.∵AB?AC,D是BC的中点,?AD?BC.即?ADC?90.?四边形ADCF是矩形.菱形例题讲解:1.已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.解答:四边形AEDF是菱形,∵DE∥AC,∠ADE=∠DAF,同理∠DAE=∠FDA,∵AD=DA,∴△ADE≌△DAF,∴AE=DF;∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.2.已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=DE,∴∠EDB=∠EBD, ∵CB=CD,∴∠CDB=∠CBD,∵AB∥CD,∴∠EBD=∠CDB,∴∠EDB=∠EBD=∠CDB=∠CBD,∵BD=BD,∴△EBD≌△CBD ,∴BE=BC,∴CB=CD=BE=DE,∴菱形BCDE.3.如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB,求证:四边形EFCD是菱形;设CD=4,求D、F两点间的距离.解答:证明:∵△ABC与△CDE都是等边三角形,∴ED=CD=CE.∵EF∥AB∴∠EFC=∠ACB=∠FEC=60°,∴EF=FC=EC ∴四边形EFCD是菱形.解:连接DF,与CE相交于点G,由CD=4,可知CG=2,∴ ∴.4.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.证明:∵AE∥FC.∴∠EAC=∠FCA.又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF.∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线.∵EF是AC的垂直平分线.∴四边形AFCE为菱形5.在中,E,F分别为边AB,CD的中点,连接DE,BF,BD.求证:△ADE≌△CBF.若AD?BD,则四边形BFDE是什么特殊四边形?请证明你的结论.解:在平行四边形ABCD中,∠A=∠C,AD=CB,AB=CD.∵E,F分别为AB,CD的中点∴AE=CF , ?△AED≌△CF若AD⊥BD,则四边形BFDE是菱形.证明:AD?BD,?△ABD是Rt△,且AB是斜边,E是AB的中点,?DE?1AB?BE.由题意可EB∥DF且EB?DF,?四边形BFDE是平行四边形,?四边形BFDE是菱形.实战演练1.一菱形周长是20cm,两条对角线的比是4∶3,则这菱形的面积是 A.12cm2B.24cm C.48cm2D.96cm2 2.如图,已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD的垂直平分线EF,分别交AD、BC于点E、F,则AE的长为_____7cm__________.分析:连EB,∵EF垂直平分BD,∴ED=EB,设AE=x,则DE=EB=,AE2+AB2=BE2,即:x2+32=2,解得:x=/83.如图,在菱形ABCD中,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=4.如图,菱形ABCD的连长是2㎝,E是AB中点,且DE⊥AB,则菱形ABCD的面积为___㎝2.5.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,若∠ADC=130°,则∠AOE的大小为6.如图,已知四边形1+第4题7.在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD 的面积为8.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是.9.已知菱形ABCD的两条对角线相交于点O,若AB =,∠BDC =0?,则菱形的面积为10.在四边形ABCD中,给出四个条件:①AB=CD,②AD∥BC,③AC⊥BD,④AC平分∠BAD,由其中三个条件推出四边形ABCD是菱形,你认为这三个条件是①③④或②③④ .11.如图,已知在□ABCD中,AD=2AB,E、F在直线AB 上,CE与AD交与点M, DF与CB交与点N,且AE=AB=BF,求证:CE⊥DF.证明:连接MN,∵□ABCD, ?AB=DC, 又∵AB=AE, ?AE=DC??AEM??CDM,?M为AD的中点. 又∵AD=2AB, ?CD=DM?CDMN是棱形,所以CE⊥DF.12.如图所示,△ABC中,∠ACB=90°,∠ABC的平分线BD?交AC于点D,CH⊥AB于H,且交BD于点F,DE⊥AB 于E,四边形CDEF是菱形吗?请说明理由.D解:解法一:四边形CDEF是菱形.理由:如图所示,BD平分∠ABC,?CD=DE,BHEA因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,??∠3=∠4.?CF=CD.?CF=DE.因为CF//DE.?所以四边形CDEF是平行四边形.所以□CDEF是菱形.13.如图所示,已知△ABC中,AB=AC,D是BC的中点,过点D?作DE⊥AB,DF⊥AC,垂足分别为E,F,再过E,F作EG⊥AC,FH⊥AB,垂足分别为G,H,且EG,?FH相交于点K,试说明EF和DK之间的关系. A解:EF与DK 互相垂直平分.理由:因为DE⊥AB,FH⊥AB,?DE∥FH.? ∵DF⊥AC,EG⊥AC,所以DF∥EG.?四边形DEKF是平行四边形.∵AB=AC,?∠B=∠C.又因为BD=CD,∠BED=∠CFD=90°,HG?△BDE≌△CDF,?DE=DF.?DEKF是菱形,?EF与DK互相垂直平分.点拨:要说明EF与DK互相垂直平分,只要说明四边形DEKF是菱形,?要说明四边形DEKF是E菱形,可先说明四边形DEKF是平行四边形,再说明一组邻边相等即可. BDC菱形性质练习题一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A.M,N B.M,N C.M,ND.M,N2.菱形的周长为4,一个内角为60°,则较短的对角线长为A.B. C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为A.1B. C.7.D.二.填空题25.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB 的距离OH= _________ .27.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为 cm.6题图题图题图题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为 _________ .9如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=10如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=10题图 12题13题图 14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C ﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在 _________ 点.13如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是. 14已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为cm.16.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是cm.217如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点,且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是 _________ .17题图19题图19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= 度.三.解答题20.如图,四边形ABCD为菱形,已知A,B.求点D的坐标;求经过点C的反比例函数解析式.21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC 交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求∠ABD的度数;求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.求证:BE=BF;当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点,连接DP交对角线AC于E连接BE.证明:∠APD=∠CBE;若∠DAB=60°,试问P点运动到什么位置时,△ADP 的面积等于菱形ABCD面积的,为什么?25.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?分别求出菱形AQCP的周长、面积.菱形性质经典练习题一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A.M,N B.M,N C.M,ND.M,N2.菱形的周长为4,一个内角为60°,则较短的对角线长为A.B. C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为A.1B. C.7.D.二.填空题25.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB 的距离OH= _________ .27.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm.6题图题图题图题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= _________ 度.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=10题图 12题13题图 14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为.12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C ﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在13.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是 _________ cm.14.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为.15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为.216.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是.17.如图,菱形ABCD的对角线的长分别为2和5,P 是对角线AC上任一点,且PE∥BC交AB于E,PF∥CD交AD 于F,则阴影部分的面积是 _________ .17题图 18题图 19题图18.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________ .19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= 度.三.解答题20.如图,四边形ABCD为菱形,已知A,B.求点D的坐标;求经过点C的反比例函数解析式.221.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC 交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求∠ABD的度数;求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.求证:BE=BF;当菱形ABCD的对角线AC=8,BD=6时,求BE的长. 24.如图,在菱形ABCD中,P是AB上的一个动点,连接DP交对角线AC于E连接BE.证明:∠APD=∠CBE;若∠DAB=60°,试问P点运动到什么位置时,△ADP 的面积等于菱形ABCD面积的,为什么?25.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等.连接 _________ ;猜想: _________ = _________ ;证明:26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A.M,N B.M,N C.M,N D.M,N 考点:菱形的性质;坐标与图形性质。
八年级初二数学 平行四边形知识点-+典型题含答案

一、选择题1.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是()A.4≥x>2.4 B.4≥x≥2.4C.4>x>2.4 D.4>x≥2.42.如图,正方形ABCD中,AB=12,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=28.8.其中正确结论的个数是()A.4 B.3 C.2 D.13.如图,在▭ABCD中,AB=4,BC=6,∠ABC=60°,点P为▭ABCD内一点,点Q在BC边上,则PA+PD+PQ的最小值为( )A.3719++B.6+23C.53D.104.如图,在菱形ABCD中,AB=5cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB.CB方向向点B匀速移动(到点B为止),点E的速度为1c m/s,点F的速度为2c m/s,经过t秒△DEF为等边三角形,则t的值为()A.34B.43C.32D.535.如图,在四边形ABCD中,AB∥CD,∠C=90°,AB=8,AD=CD=5,点M为BC上异于B、C的一定点,点N为AB上的一动点,E、F分别为DM、MN的中点,当N从A到B的运动过程中,线段EF扫过图形的面积为 ( )A .4B .4.5C .5D .66.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A .5B .4C .3D .27.如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3, 4AB AD ==,那么( )A .125PE PF += B .121355PE PF <+< C .5PE PF += D .34PE PF <+< 8.如图,一张长方形纸片的长4=AD ,宽1AB =,点E 在边AD 上,点F 在边BC 上,将四边形ABFE 沿着EF 折叠后,点B 落在边AD 的中点G 处,则EG 等于( )A .3B .23C .178D .549.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412 B .201512 C .201612 D .20171210.已知菱形ABCD 的面积为83,对角线AC 的长为43,∠BCD=60°,M 为BC 的中点,若P 为对角线AC 上一动点,则PB+PM 的最小值为( )A .3B .2C .23D .4二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.13.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.14.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.15.如图,在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是__.16.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.17.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(23,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),则EP十BP的最小值为__________.18.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=10.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.19.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=32S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D落在AB边的点F处,得折痕AE,再折叠,使点C落在AE边的点G处,此时折痕恰好经过点B,如果AD=a,那么AB长是多少?”常明说;“简单,我会. AB应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别为OB 、OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:AOE COF ∆≅∆;(2)四边形EGCF 是平行四边形吗?请说明理由;(3)若四边形EGCF 是矩形,则线段AB 、AC 的数量关系是______.23.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF .(1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;②当折痕经过点A 时,BE 与AE 的数量关系为 .(2)深入探究:在矩形ABCD 中,AB =3,BC =23.①当△BEF 是等边三角形时,求出BF 的长;②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.24.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.25.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.26.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DC AE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O . (1)求证:EF DA ⊥.(2)若4,23BC AD ==,求EF 的长.27.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.28.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.29.(问题情境)在△ABC 中,AB=AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE=CF .图① 图② 图③证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE=CF .(不要证明)(变式探究)当点P 在CB 延长线上时,其余条件不变(如图3).试探索PD 、PE 、CF 之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l 1:y=443x -+与直线l 2:y=2x+4相交于点A ,直线l 1、l 2与x 轴分别交于点B 、点C .点P 是直线l 2上一个动点,若点P 到直线l 1的距离为1.求点P 的坐标.30.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据勾股定理的逆定理求出△ABC 是直角三角形,得出四边形AEPF 是矩形,求出AM=12EF=12AP ,求出AP≥4.8,即可得出答案. 【详解】解:连接AP.∵AB=6,AC=8,BC=10,∴AB2+AC2=36+64=100,BC2=100,∴AB2+AC2=BC2,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠AEP=∠AFP=∠BAC=90°,∴四边形AEPF是矩形,∴AP=EF,∵∠BAC=90°,M为EF中点,∴AM=12EF=12AP,当AP⊥BC时,AP值最小,此时S△BAC=12×6×8=12×10×AP,AP=4.8,即AP的范围是AP≥4.8,∴2AM≥4.8,∴AM的范围是AM≥2.4(即x≥2.4).∵P为边BC上一动点,当P和C重合时,AM=4,∵P和B、C不重合,∴x<4,综上所述,x的取值范围是:2.4≤x<4.故选:D.【点睛】本题考查了垂线段最短,三角形面积,勾股定理的逆定理,矩形的判定的应用,直角三角形的性质,关键是求出AP的范围和得出AM=12 AP.2.B解析:B【分析】由正方形的性质和折叠的性质得出AB=AF,∠AFG=90°,由HL证明Rt△ABG≌Rt△AFG,得出①正确;设BG=FG=x,则CG=12﹣x.由勾股定理得出方程,解方程求出BG,得出GC,即可得出②正确;由全等三角形的性质和三角形内角和定理得出∠AGB=∠GCF,得出AG∥CF,即可得出③正确;通过计算三角形的面积得出④错误;即可得出结果.【详解】①正确.理由如下:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质得:AF=AD,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF.在Rt△ABG和Rt△AFG中,AG AGAB AF=⎧⎨=⎩,∴Rt△ABG≌Rt△AFG(HL);②正确.理由如下:由题意得:EF=DE=13CD=4,设BG=FG=x,则CG=12﹣x.在直角△ECG中,根据勾股定理,得(12﹣x)2+82=(x+4)2,解得:x=6,∴BG=6,∴GC=12﹣6=6,∴BG=GC;③正确.理由如下:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GC F=2∠GFC=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF;④错误.理由如下:∵S△GCE=12GC•CE=12×6×8=24.∵GF=6,EF=4,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=35×24=725≠28.8.故④不正确,∴正确的有①②③.故选B.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识;本题综合性强,有一定的难度.3.C解析:C【分析】如下图,将△APD绕点A逆时针旋转60°至△AFE处,通过边长转换,可将PA+PD+PQ转化为PF+EF+PQ的形式,再利根据两点之间线段最短,得出最小值.【详解】如下图,将△APD绕点A逆时针旋转60°至△AFE处,连接FP,过点E作BC的垂线,交BC于点G,AD于点H,过点A作BC的垂线,交BC于点K∵△AFE是△APD绕点A逆时针旋转60°得到∴∠FAP=60°,∠EAD=60°,AF=AP,EF=PD∴△APF是等边三角形,∴AP=PF∴PA+PD+PQ=PF+FE+PQ≥EG∵四边形ABCD是平行四边形,BC=6∴AE=AD=BC=6,AD∥BC∴在Rt△AHE中,AH=3,3∵HG⊥BC,AK⊥BC,AD∥BC∴AK⊥AD,GH⊥AD,∴AK=HG∵∠ABC=60°,AB=4∴在Rt△ABK中,BK=2,3∴3=∴32353故选:C【点睛】本题考查最值问题,解题关键是旋转△APD,将PA+PD+PQ转化为PF+EF+PQ的形式.4.D解析:D【分析】由题意知道AE=t,CF=2t,连接BD,证明△DEB≌△DFC,得到EB=FC=2t,进而AB=AE+EB=3t=5,进而求出t的值.【详解】解:连接DB,如下图所示,∵四边形ABCD 为菱形,且∠ADC=120°, ∴∠CDB=60°∴△CDB 为等边三角形,∴DB=DC又∵△DEF 为等边三角形,∴∠EDF=60°,DE=DF ∴∠CDB=∠EDF∴∠CDB-∠BDF=∠EDF-∠BDF ∴∠CDF=∠BDE 在△EDB 和△FDC 中:=⎧⎪∠=∠⎨⎪=⎩DE DF EDB FDC DB DC ,∴△EDB ≌△FDC(SAS) ∴FC=BE=2t∴AB=AE+EB=t+2t=3t=5 ∴t=53. 故答案为:D. 【点睛】本题考查了三角形全等、菱形的性质等相关知识,关键是能想到连接BD 后证明三角形全等,本题是动点问题,将线段长用t 的代数式表示,化动为静.5.A解析:A 【分析】取MB 的中点P ,连接FP ,EP ,DN ,由中位线的性质,可得当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP ,求出当点N 与点A 重合时,FP 的值,以及FP 上的高,进而即可求解. 【详解】取MB 的中点P ,连接FP ,EP ,DN ,∵FP 是∆MNB 的中位线,EF 是∆DMN 的中位线,∴FP ∥BN ,FP=12BN ,EF ∥DN ,EF=12DN , ∴当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP .∴当点N 与点A 重合时,FP=12BN =12BA =4, 过点D 作DQ ⊥AB 于点Q ,∵AB ∥CD ,∠C =90°,AB =8,AD =CD =5, ∴AQ=8-5=3, ∴DQ=2222534AD AQ -=-=,∴当点N 与点Q 重合时,EF=11222DN DQ ==,EF ∥DQ ,即:EF ⊥AB ,即:EF ⊥FP , ∴∆EFP 中,FP 上的高=2,∴当N 从A 到B 的运动过程中,线段EF 扫过图形的面积=12×4×2=4. 故选A .【点睛】本题主要考查中位线的性质定理,勾股定理以及三角形的面积公式,添加合适的辅助线,构造三角形以及三角形的中位线,是解题的关键.6.B解析:B 【分析】①③利用正方形的性质、翻折不变性即可解决问题; ②构造全等三角形即可解决问题;④如图2,过B 作BQ ⊥PH ,垂足为Q .证明△ABP ≌△QBP (AAS ),以及△BCH ≌△BQH 即可判断;⑤利用特殊位置,判定结论即可; 【详解】解:根据翻折不变性可知:PE =BE ,故①正确; ∴∠EBP =∠EPB . 又∵∠EPH =∠EBC =90°, ∴∠EPH−∠EPB =∠EBC−∠EBP . 即∠PBC =∠BPH .又∵AD∥BC,∴∠APB=∠PBC.,故③正确;∴∠APB=∠BPH,即PB平分APG如图1中,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KF=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP≌△KFE(ASA),∴EF=BP,故②正确,如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,∠APB=∠BPH,∠A=∠BQP,BP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH(HL)∴QH=HC,∴PH=PQ+QH=AP+HC,故④正确;当点P与A重合时,显然MH>MF,故⑤错误,故选:B.【点睛】本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.7.A解析:A【分析】设AC、BD交于点O,连接OP,根据矩形的性质及勾股定理求出OA=OD=2.5,再求出△AOD的面积,根据面积关系即可求出答案.【详解】设AC 、BD 交于点O ,连接OP , ∵3, 4AB AD ==, ∴BD=AC=5, ∴OA=OD=2.5, ∵1134344AODABCD S S ==⨯⨯=矩形, ∴3AOPDOPSS+=,∵PE AC ⊥于E ,PF BD ⊥于F , ∴112.5 2.5322PE PF ⨯+⨯=, 15()322PE PF ⨯+=, ∴125PE PF +=, 故选:A.【点睛】此题考查矩形的性质,勾股定理,根据矩形的性质求出△AOD 的面积是解题的关键.8.D解析:D 【分析】连接BE ,根据折叠的性质证明△ABE ≌△A GE ',得到BE=EG ,根据点G 是AD 的中点,AD=4得到AE=2-EG=2-BE ,再根据勾股定理即可求出BE 得到EG. 【详解】 连接BE ,由折叠得:AE A E '=,A A '∠=∠=90°,AB A G '=, ∴△ABE ≌△A GE ', ∴BE=EG,∵点G 是AD 的中点,AD=4, ∴AG=2,即AE+EG=2, ∴AE=2-EG=2-BE ,在Rt △ABE 中,222BE AE AB =+,∴ 222(2)1BE BE =-+,∴EG=5BE 4=,故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE ,由此利用勾股定理解题.9.A解析:A 【分析】由三角形的中位线定理得:22B C ,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12,所以△222A B C 的周长等于△111A B C 的周长的一半,以此类推可求出结论. 【详解】 解:△111A B C 中,114A B =,115AC =,117B C =,∴△111A B C 的周长是16,2A ,2B ,2C 分别是边11B C ,11A C ,11A B 的中点,22B C ∴,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12, ⋯,以此类推,则△444A B C 的周长是311622⨯=; ∴△n n n A B C 的周长是4122n -, 当2019n =时,第2019个三角形的周长42019120142122-==故选:A . 【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.10.C解析:C 【分析】作点B 关于对角线AC 的对称点,该对称点与D 重合,连接DM ,则PB 与PM 之和的最小值为DM 的长;由菱形的面积可求出BD=4,由题意可证△BCD 是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;∵菱形ABCD的面积为3,对角线AC长为3,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD是等边三角形,∴BD=BC=4,∵M是BC的中点,∴DM⊥BC,CM=BM=2,在Rt△CDM中,CM=2,CD=4,∴2216423-CD CM-=故选:C.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB与PM之和的最小值转化为线段DM的长是解题的关键.二、填空题11.5【详解】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值.连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中,5考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.22【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴22(AC+CP),当AC=2,CP=CD=1时,OC=22×(2+1)=322, 当AC=2,CP=CB=5时,OC=22×(2+5)=722, ∴当P 从点D 出发运动至点B 停止时,点O 的运动路径长=722-322=22. 故答案为22. 点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.13.218cm 【分析】根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的14,根据正方形的面积就可以求出结论. 【详解】解:如图:∵正方形ABCD 的对角线相交于点O ,∴△AEO 与△CFO 关于O 点成中心对称,∴△AEO ≌CFO ,∴S △AEO =S △CFO ,∴S △AOD =S △DEO +S △CFO ,∵对角线长为1cm ,∴S 正方形ABCD =1112⨯⨯=12cm 2, ∴S △AOD =18cm 2, ∴阴影部分的面积为18cm 2. 故答案为:18cm 2. 【点睛】 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO ≌CFO 是关键.14.8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC .∵根据题意,四边形ABED 为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO ,在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=627=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴()()2222=6262CO GO ++, ∵CG=CB+BG ,∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.15.3013≤AM<6【分析】由勾股定理得BC=13从而得到点A到BC的距离, M为EF中点,所以AM=12EF,继而求得AM的范围.【详解】因为∠BAC=90°,AB=5,AC=12,所以由勾股定理得BC=13,则点A到BC的距离为AC512BC13AB⨯⨯==6013,所以AM的最小值为6013÷2=3013,因为M为EF中点,所以AM=12EF,当E越接近A,F越接近C时,EF越大,所以EF<AC,则AM<6,所以3013≤AM<6,故答案为3013≤AM<6.16【分析】如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.证明BE=DT,BD=DW,把问题转化为求DT+DW的最小值.【详解】解:如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.∵△ABC,△DEF都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE∥TC,∵DE=BT=1,∴四边形DEBT是平行四边形,∴BE=DT,∴BD+BE=BD+AD,∵B,W关于直线AC对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW,∴∠WCK=60°,∵WK⊥CK,∴∠K=90°,∠CWK=30°,∴CK=12CW=32,3332,∴TK=1+3+32=112,∴2222113322TK WK⎛⎫⎛⎫+=+ ⎪⎪ ⎪⎝⎭⎝⎭37∴DB+BE=DB+DT=DW+DT≥TW,∴37∴BD+BE37,37.【点睛】本题考查轴对称-最短问题,等边三角形的性质,解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.1719【分析】先根据菱形的性质可得OC垂直平分BD,从而可得=DP BP,再根据两点之间线段最短可得EP BP+的最小值为DE,然后利用等边三角形的判定与性质求出点D的坐标,最后利用两点之间的距离公式即可得.【详解】如图,连接BP 、DP 、EP 、DE 、BD ,过点D 作DA OB ⊥于点A , (23,0)B , 23OB ∴=,四边形ABCD 是菱形,OC ∴垂直平分BD ,23OB OD ==,点P 是对角线OC 上的点,DP BP ∴=,EP BP EP DP ∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,BOD ∴是等边三角形,DA OB ⊥,132OA OB ∴==,2222(23)(3)3AD OD OA =-=-=, (3,3)D ∴,又(0,1)E -,22(30)(31)19DE ∴=-++=,即EP BP +的最小值为19,故答案为:19.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP +的最小值为DE 是解题关键.18.5【分析】取DE 的中点N ,连结ON 、NG 、OM .根据勾股定理可得55NG =M 与G 之间总有MG ≤MO+ON+NG (如图1),M 、O 、N 、G 四点共线,此时等号成立(如图2).可得线段MG 的最大值.【详解】如图1,取DE 的中点N ,连结ON 、NG 、OM .∵∠AOB=90°,∴OM=12AB=5.同理ON=5.∵正方形DGFE,N为DE中点,DE=10,∴222210555NG DN DG++===.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=12∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值5故答案为:5【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.19.①②④.【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=12∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到43DE AFDF AB==,而623ABAG==,所以AB DEAG DF≠,所以△DEF与△ABG不相似,于是可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=12∠CBF+12∠ABF=12∠ABC=45°,所以①正确;在Rt△ABF中,AF=8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴ABDF=AFDE,∴DEDF=AFAB=86=43,而ABAG=63=2,∴ABAG≠DEDF,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=12×6×3=9,S△GHF=12×3×4=6,∴S△ABG=32S△FGH,所以②正确.故答案是:①②④.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.202a 321a - 【分析】(1)根据折叠的性质可得出,四边形AFED 为正方形,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=,得出AB=AE ,继而可得解;(2)结合(1)可知,AE AM 2a ==,因为EC=3BM ,所以有1BM 2FM =,求出BM ,继而可得解.【详解】解:(1)由折叠的性质可得,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=, ∴AB=AE , ∵2AE 22a a == ∴AB 2a =.(2)结合(1)可知,AE AM 2a ==, ∴FM 2a a =-,∵EC=3BM , ∴1BM 2FM = ∴2BM 2a a -= ∴2321AB 2a a a --=+=. 2a ;3212a . 【点睛】本题是一道关于折叠的综合题目,主要考查折叠的性质,弄清题意,结合图形找出线段间的数量关系是解题的关键.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。
八年级数学《菱形》知识总结及经典例题

八年级数学《菱形》知识总结及经典例题学习目标1.掌握菱形的概念.2.理解菱形的性质及识别方法.3.能利用菱形的性质及识别方法,解决一些问题.学法指导把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点.基础知识讲解1.菱形的定义四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形.由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可.2.菱形的性质(1)它具有平行四边形的一切性质(2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形.3.菱形的识别方法菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法.其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形.4.菱形的面积计算由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △. 设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=21ab ,即菱形的面积等于对角线乘积的一半.5.菱形的性质及识别方法的作用利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算.重点难点重点:菱形的性质,识别方法及其在生活、生产中的应用.难点:运用菱形的性质及识别方法,灵活地解答一些问题.易错误区分析运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件. 例1.判断下列说法对不对(1)邻边相等的四边形为菱形.( )(2)两边相等的平行四边形为菱形.( )错误分析:(1)中应为邻边相等的平行四边形.(2)中是指邻边相等而不是两边相等. 错解:(1)(√) (2)(×)正解:(2)(×) (2)(×)运用菱形的识别方法“对角线”互相垂直且平分的平行四边形中有时忽略垂直或者平分,有时忽略平行四边形这些条件.由于本节的性质判别方法较多,利用本节解题时易犯推理不严密的错误.例2.如图在菱形ABCD 中,E ,F 分别是BC ,CD 的中点连结AE ,AF.求证:AE =AF错误分析:本题证明错在BE =DF ,因为并未证明BC =CD ,推理不严格错证:∵菱形ABCD ,∴AB =CD ,∠B =∠D又∵E ,F 分别为BC ,CD 的中点,∴BE =DF∴△ABE ≌△ADF ∴AE =AF正证:∵菱形ABCD ∵AB =AD ,∠B =∠D , ∴21BC=21CD 又∵EF 分别为BC ,CD 的中点 ∴BE =DF ,∴△ABE ≌△ADF ∴AE =AF典型例题例l .已知,如图所示,菱形ABCD 中,E ,F 分别是BC 、CD 上的一点,∠D=∠EAF=∠AEF =60°.∠BAE =18°,求∠CEF 的度数.分析:要求∠CEF 的度数,可先求∠AEB 的度数,而要求∠AEB 的度数则必须求∠B 的度数,这一点则可由菱形是特殊的平行四边形可得到.另外,由∠D =60°.如连结AC 得等边△ABC 与△ACD ,从而△ABE ≌△ACF ,有AE =AF ,则△AEF 为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF解法一:因为菱形是特殊的平行四边形.所∠B =∠D =60°.因为∠BAE =18°,∠AEB+∠B+∠BAE =180°所以∠AEB+60°+18°=180°.即∠AEB=180°-60°-18°=102°.又∠AEF =60°,∠AEB+∠AEF+∠CEF =180°所以∠CEF =180°-60°-102°=18°解法二:连结AC ∴四边形ABCD 为菱形,∴∠B =∠D =60°,AB =BC =CD =AD .∴△ABC 和△CDA 为等边三角形 ∴AB =AC ,∠B =∠ACD =∠BAC =60°∵∠EAF =60° ∴△BAE=∠CAF ∴△ABE ≌△ACF ∴AE =AF又∵∠EAF =60° ∴△EAF 为等边三角形 ∴∠AEF =60°∵∠AEC=∠B+∠BAE=∠AEF+∠CEF∴60°+18°=60°+∠CEF ∴∠CEF =18°解法三:利用辅助线把菱形转化为三角形来解答,这是一种常用的作辅助线的方法.例2.已知:如图,△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N.求证:四边形AMNE 是菱形.分析:要证AMNE 是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN 是∠DAC 的平分线,只要证AM =AE ,则AN 垂直平分ME ,若证AN ⊥ME ,则再由BE 平分∠ABN 易知BE 也垂直平分AN ,即AN 与ME 互相垂直平分,故有AM =MN =NE =AE ,即AMNE 是菱形,此为证法一.显然,在上述证法中,证得BE 垂直平分AN 后,可得AM =MN ,所以∠MNA =∠MAN =∠NAE ,所以MN AE ,则AMNE 是平行四边形,又AM =MN 所以AMNE 是菱形.证法一:因为∠BAC =90°,AD ⊥BC ,所以∠BAD =∠C因为BE 平分∠ABC ,所以∠ABE =∠EBC .因为∠AME =∠BAD+∠ABE =∠C+∠EBC =∠AEM ,所以AM =AE ,又因为AN 平分∠DAC ,所以AM =MN ,所以AM =MN =NE =AE .所以AMNE 是菱形.证法二:同上,若证AN 垂直平分ME ,再证BE 垂直平分AN ,则AM =MN ,所以∠MNA=∠MNA=∠NAE.所以MN AE .所以AMNE 是平行四边形,由AM =MN 得AMNE 是菱形.例3.已知:如图菱形ABCD 中,DE ⊥AB 于点E ,且OA =DE ,边长AD =8,求菱形ABCD 的面积.分析:由菱形的对角线互相垂直知OA 是△ABD 的边BD 上的高,又由DE ⊥AB ,OA =DE ,易知△AOD ≌△DEA 从而知△ABD 是等边三角形,从而菱形ABCD 面积可求.解:在菱形ABCD 中,因为AC ⊥BD ,所以△AOD 是直角三角形,因为DE ⊥AB ,所以△AED 是直角三角形.在Rt △AOD 和Rt △AED 中,因为AD =AD ,DE =OA ,所以Rt △AOD ≌Rt △DEA .所以∠ADO =∠DAE ,因为ABCD 为菱形,所以∠ADO =∠ABO ,所以△ABD 是等边三角形.因为AD =8,DE ⊥AB ,所以AE =21AD =4,在Rt △AED 中,DE =22AE AD =43.从而S 菱形ABCD =AB ·DE =8×43=323注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC ,BD 的长,按S 菱形ABCD =21AC ·BD 来计算,但后者较繁复. 例4.已知:如图,□ABCD 中,AD =2AB ,将CD 向两边分别延长到E ,F 使CD =CE =DF. 求证:AE ⊥BF分析:注意□ABCD 中,AD =2AB 这一特殊条件,因此□ABCD 能分成两个菱形.从而可以通过菱形的对角线互相垂直来证明.证明:设AE 交BC 于点G ,BF 交AD 于点H ,连结GH.因为AB ∥DF ,所以∠F=∠ABH , ∠FDH=∠BAH.又因为AB =CD =DF ,所以△ABH ≌△DFH.所以AH =HD=21AD=AB.所以BC AH ,BG=AB .则四边形ABGH 是菱形,所以AE ⊥BF.例5.如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.分析:由已知判断△AOF 和△DOF 是关于直线EF 成轴对称图形,再由轴对称的特征,得到∠OAF =∠ODF ,再结合已知得到∠ODF =∠OAE ,从而判断DF ∥AE ,得到AEDF 是平行四边形,进一步推出对角线互相垂直平分,得到AEDF 是菱形。
北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)

北师大版九年级上册第一章特殊平行四边形知识点讲解(含例题及答案)【学习目标】1. 掌握平行四边形、矩形、菱形、正方形的概念, 了解它们之间的关系.2. 探索并掌握平行四边形、矩形、菱形、正方形的有关性质和常用判别方法, 并能运用这些知识进行有关的证明和计算. 【知识关系】【知识点梳理】知识点一、平行四边形1.定义:两组对边分别平行的四边形叫做平行四边形. 2.性质:(1)对边平行且相等; (2)对角相等;邻角互补; (3)对角线互相平分; (4)中心对称图形. 3.面积:4.判定:边:(1)两组对边分别平行的四边形是平行四边形; (2)两组对边分别相等的四边形是平行四边形; (3)一组对边平行且相等的四边形是平行四边形. 角:(4)两组对角分别相等的四边形是平行四边形; (5)任意两组邻角分别互补的四边形是平行四边形. 边与角:(6)一组对边平行,一组对角相等的四边形是平行四边形; 对角线:(7)对角线互相平分的四边形是平行四边形. 知识点诠释:平行线的性质: (1)平行线间的距离都相等;(2)等底等高的平行四边形面积相等. 知识点二、菱形高底平行四边形⨯=S1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形. 3.面积:4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.知识点三、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 知识点诠释:由矩形得直角三角形的性质: (1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 知识点四、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】类型一、平行四边形2对角线对角线高==底菱形⨯⨯S 宽=长矩形⨯S1、如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中点,DE∥BC 交AC于点E,CF∥AB交DE的延长线于点F.(1)求证:DE=EF;(2)连结CD,过点D作DC的垂线交CF的延长线于点G,求证:∠B=∠A+∠DGC.【思路点拨】(1)首先证明四边形DBCF为平行四边形,可得DF=BC,再证明DE=1 2BC,进而得到EF=12CB,即可证出DE=EF;(2)首先画出图形,首先根据平行线的性质可得∠ADG=∠G,再证明∠B=∠DCB,∠A=∠DCA,然后再推出∠1=∠DCB=∠B,再由∠A+∠ADG=∠1可得∠A+∠G=∠B.【答案与解析】证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=12BC,∴EF=DF-DE=BC-12CB=12CB,∴DE=EF;(2)∵DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.【总结升华】此题主要考查了平行四边形的判定与性质,以及直角三角形的性质,关键是找出∠ADG=∠G,∠1=∠B.掌握在直角三角形中,斜边上的中线等于斜边的一半.类型二、菱形2、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.类型三、矩形3、已知:如图,D是△ABC的边AB上一点,CN∥AB,DN交AC于点M,MA=MC.①求证:CD=AN;②若∠AMD=2∠MCD,求证:四边形ADCN是矩形.【思路点拨】①根据两直线平行,内错角相等求出∠DAC=∠NCA,然后利用“角边角”证明△AMD和△CMN全等,根据全等三角形对应边相等可得AD=CN,然后判定四边形ADCN是平行四边形,再根据平行四边形的对边相等即可得证;②根据三角形的一个外角等于与它不相邻的两个内角的和推出∠MCD=∠MDC,再根据等角对等边可得MD=MC,然后证明AC=DN,再根据对角线相等的平行四边形是矩形即可得证.【答案与解析】证明:①∵CN∥AB,∴∠DAC=∠NCA,在△A MD和△CMN中,∵DAC NCAMA MCAMD CMN∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AMD≌△CMN(ASA),∴AD=CN,又∵AD∥CN,∴四边形ADCN是平行四边形,∴CD=AN;②∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC, ∴MD=MC ,由①知四边形ADCN 是平行四边形, ∴MD=MN =MA =MC , ∴AC=DN ,∴四边形ADCN 是矩形.【总结升华】要判定一个四边形是矩形,通常先判定它是平行四边形,再根据平行四边形构成矩形的条件,判定有一个角是直角或对角线相等.4、如图所示,在矩形ABCD 中,AB =6,BC =8.将矩形ABCD 沿CE 折叠后,使点D 恰好落在对角线AC 上的点F 处,求EF 的长.【思路点拨】要求EF 的长,可以考虑把EF 放入Rt △AEF 中,由折叠可知CD =CF ,DE =EF ,易得AC =10,所以AF =4,AE =8-EF ,然后在Rt △AEF 中利用勾股定理求出EF 的值.【答案与解析】 解:设EF =x ,由折叠可得:DE =EF =x ,CF =CD =6, 又∵ 在Rt △ADC 中,. ∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,,10AC =222(8)4x x -=+222DC FC DF +=解得x =,BF =DE =3.4,则=×3.4×3=5.1. 类型四、正方形5、如图,一个含45°的三角板HBE 的两条直角边与正方形ABCD 的两邻边重合,过E 点作EF ⊥AE 交∠DCE 的角平分线于F 点,试探究线段AE 与EF 的数量关系,并说明理由.【思路点拨】AE =EF .根据正方形的性质推出AB =BC ,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB 是以∠B 为直角的等腰直角三角形,得到BH =BE ,∠H=45°,HA =CE ,根据CF 平分∠DCE 推出∠H=∠FCE,根据ASA 证△HAE≌△CEF 即可得到答案. 【答案与解析】 探究:AE =EF证明:∵△BHE 为等腰直角三角形, ∴∠H =∠HEB =45°,BH =BE.又∵CF 平分∠DCE ,四边形ABCD 为正方形, ∴∠FCE =12∠DCE =45°, ∴∠H =∠FCE.由正方形ABCD 知∠B =90°,∠HAE =90°+∠DAE =90°+∠AEB, 而AE ⊥EF ,∴∠FEC =90°+∠AEB , ∴∠HAE =∠FEC.由正方形ABCD 知AB =BC ,∴BH -AB =BE -BC , ∴HA =CE,∴△AHE ≌△ECF (ASA ), ∴AE =EF. 【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三: 【变式】(2015•黄冈)如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E .若∠CBF=20°,则∠AED 等于 .【答案】 65°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形、菱形
【多边形】
1.多边形的内角和:
2.多边形的外角和:
【平行四边形】
一、知识梳理
1.平行四边形的性质定理
(1)边:
(2)角:
(3)对角线:
(4)对称性:
2.平行四边形的判定定理
(1)两组对边的四边形是平行四边形
(2)两组对边的四边形是平行四边形
(3)一组对边的四边形是平行四边形
(4)对角线的四边形是平行四边形
(5)两组对角的四边形是平行四边形
3.夹在两条平行线间的平行线段。
二、例题讲解
例1已知:如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF.
求证:∠BAE=∠DCF.
例2 已知:如图,□ABCD 中,点E 、F 是对角线AC 上的两点,且AE=CF.
求证:四边形BFDE 是平行四边形.
三、练习巩固
1. 已知平行四边形一组邻边分别为4㎝和6㎝,它们的夹角为30°,则这个平行四边形的面积
为 。
2. 已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.
3. 用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的长边为________,短
边长为__________.
4. 如图所示,在□ABCD 中,∠B=130°,延长AD 到F,延长CD 到E ,则∠E+∠F 等于 。
5. 如图所示,在
平面直角坐标系中,
□
ABCD 的顶点A,B,D 的坐标分别是(0,0)(5,0)(2,3),则顶点C 的坐标是 。
6. 平行四边形的两条对角线和一边长可依次取( )
(A )6、6、6 (B )6、4、3 (C )6、4、6 (D )3、2、3
7. 平行四边形一条边长为10,一条对角线长为6,则另一条对角线的长x 的取值范围是( )
A.4<x<6
B.14<x<26
C.7<x<13
D.8<x<32 8. 在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可能是( )
A. 周长;
B. 一腰的长;
C. 周长的一半;
D. 两腰的和
9. 由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰
三角形的 ( )
A. 1:2:3:4
B. 2:2:3:3
C. 2:3:2:3
D. 2:3:3:
2
B
10. 顺次连结任意四边形各边中点所得到的四边形一定是 ( )
A .平行四边形
B .菱形
C .矩形
D .正方形
11. 如图,在△MNB 中,BM=6,点A,C,D 分别在MB,NB,MN 上,四边形ABCD 是平行四边形, ∠NDC=∠
MDA,那么□ABCD 的周长是( )
A.24
B.18
C.16
D.12
12. 如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E,交BC 于点F 。
若
PE=PF,且AP+AE=CP+CF (1)求证:PA=PC;
(2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD 的面积.
13. 如图,在平行四边形ABCD 中,BC=2CD,∠B=60°,M 、N 分别是边BC 、AD 的中点,连接AC 、
MN 。
求证:MN 与AC 互相垂直平分。
14. 将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .
(1)求证:△ABE ≌△AD ′F ;
(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.
D
M
A
B
C N
A D
F D ′
M
N
D
C
B
A
15.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线
上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?若存在,请求出点Q的坐标,若不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,设点Q的横坐标为n,求平行四边形OPCQ周长(周长用n的代数式表示),并写出其最小值.
第25题图1
第25题图2
【菱形】
一、知识梳理
1.菱形的性质定理
(1)菱形的四条边都______ .
(2)菱形的对角线__________ ,并且每一条对角线平分_________ .
(3)菱形的对称性菱形既是中心对称图形,也是轴对称图形.菱形有____条对称轴,对称轴是__________所在的直线.
2. 菱形的判定定理
(1)有一组邻边_______ 的平行四边形叫菱形.
(2)四条边都______ 的四边形是菱形.
(3)对角线________ 的平行四边形是菱形.
二、例题讲解
例1 下列命题中,假命题是().
(A )矩形的两条对角线互相平分且相等;
(B )菱形的对角线互相平分且垂直;
(C )矩形的两条对角线把矩形分成四个直角三角形;
(D )菱形的两条对角线把菱形分成四个直角三角形.
例2 如图,△ABC中,点D、E分别是边BC、AC的中点,过点A作AF//BC交线段DE的延长线相交于F点,取AF的中点G,如果BC = 2 AB.
求证:(1)四边形ABDF是菱形;
(2)AC = 2DG.
三、练习巩固
1. 已知菱形的一个内角为120°,周长为24,则较短的对角线长为 。
2. 菱形的一个内角为60°,较长的对角线为35㎝,则菱形的面积为 。
3. 在菱形ABCD 中,AE=AH=CF=CG.
(1)求证:四边形EFGH 是矩形;
(2)若菱形的边长为1,∠A=120°,AE=x ,四边形EFGH 的面积为y 。
写出y 与x 之间的函数关系式,及函数的定义域。
4. 已知:如图,在菱形ABCD 中,AB =4,∠B =60°,点P 是射线BC 上的一个动点,∠PAQ =60°,
交射线CD 于点Q ,设点P 到点B 的距离为x ,PQ =y . (1)求证:△APQ 是等边三角形;
(2)求y 关于x 的函数解析式,并写出它的定义域; (3)如果PD ⊥AQ ,求BP 的值.
H
G
F
E
D
C
B
A
D
6. 如图,中,点是边上一个动点,过作直线,设交的平分线于点,交的外角平分线于点.
(1)探究:线段与的数量关系并加以证明;
(2)当点在边上运动时,四边形会是菱形吗?若是,请证明,若不是,则说明理由;
7. 如图,在菱形ABCD 中,∠A = 60°,AB = 4,E 是AB 边上的一动点,过点E 作EF ⊥AB 交AD 的
延长线于点F ,交BD 于点M 、DC 于点N . (1)请判断△DMF 的形状,并说明理由;
(2)设EB = x ,△DMF 的面积为y ,求y 与x 之间的函数关系式,并写出x 的取值范围; (3)当x 取何值时,S △DMF = 3
ABC △O AC O MN BC ∥MN BCA ∠E BCA ∠F OE OF O AC BCFE
A
F
N
D
B
M
E
O
8.图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
9. 如图1,在ABC 中,AB = BC = 5,AC = 6,△ECD 是△ABC 沿BC 方向平移得到的,连接AE 、AC
和BE 相交于点O .
(1)判断四边形ABCE 是怎样的四边形,说明理由.
(2)如图2,P 是线段BC 上的一动点(图2),(点P 不与B 、C 重合),连PO 并延长交线段AE 于点
Q ,QR ⊥BD ,垂足为R .
① 四边形PQED 的面积是否随点P 的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED 的面积.
② 当P 在线段BC 上运动时,是否有△PQR 与△BOC 全等?若全等,求BP 的长;若不全等,请叙述理由.
图1
备用图
图2。