平行四边形典型例题

合集下载

北师大版五年级数学上册典型例题系列之第四单元:平行四边形面积的实际应用专项练习(解析版)

北师大版五年级数学上册典型例题系列之第四单元:平行四边形面积的实际应用专项练习(解析版)

五年级数学上册典型例题系列之第四单元:平行四边形面积的实际应用专项练习(解析版)1.一个平行四边形停车场,底是63m,对应的高是25m。

如果每个车位占地15m2,这个停车场一共可以停多少辆车?【答案】105辆【分析】根据平行四边形的面积=底×高,求出面积,再除以15平方米即可。

【详解】63×25÷15=1575÷15=105(辆)答:这个停车场一共可以停105辆车。

【点睛】熟练掌握平行四边形的面积公式,是解答此题的关键。

2.一块平行四边形的玫瑰园,底长32米,高长9米,每3平方米栽一棵玫瑰,可以栽多少棵玫瑰?【答案】96棵【分析】根据平行四边形的面积=底×高,求出面积,再除以3即可。

【详解】32×9÷3=288÷3=96(棵)答:可以栽96棵玫瑰。

【点睛】熟练掌握平行四边形的面积公式,是解答此题的关键。

3.一块街头广告牌的形状是平行四边形,底是12.5m,高是6.5m。

如果要给这块广告牌的一面刷上油漆,每平方米用油漆0.6kg,需要多少千克油漆?【分析】先根据平行四边形的面积=底×高,求出这个平行四边形的面积,再乘每平方米需要油漆的重量即可。

【详解】12.5×6.5×0.6=81.25×0.6=48.75(千克)答:需要48.75千克油漆。

【点睛】本题考查平行四边形面积公式的应用,关键是熟记公式。

4.一块广告牌的形状是平行四边形,底是12.5米,高是6.4米。

如果要涂饰这块广告牌(涂一面),每平方米用油漆0.6千克,共需要多少千克油漆?【答案】48千克【分析】先根据平行四边形的面积=底×高,求出这个平行四边形的面积,再乘每平方米需要油漆的质量即可。

【详解】12.5×6.4×0.6=80×0.6=48(千克)答:共需要48千克油漆。

【点睛】熟练掌握平行四边形的面积公式,属于基础知识,需牢牢记住。

平行四边形的面积_《平行四边形的面积》典型例题

平行四边形的面积_《平行四边形的面积》典型例题

《平行四边形的面积》习题精选1.下面图中每个方格代表1平方厘米,请按要求画出平行四边形.(1)分别画出底边5厘米、高3厘米,底边3厘米、高5厘米的平行四边形和长是5厘米、宽是3厘米的长方形.数一数它们的面积是多少?(2)以5厘米长的线段为同一底边,画出高为3厘米的不同形状的平行四边形,你能画出多少个?你发现了什么?(3)以7厘米长的线段为同一底边,分别画出高为2厘米、4厘米、6厘米……的平行四边形,它的面积是怎样变化的?2.计算下面每个平行四边形的面积.3.量一量下面平行四边形的底和高的长度,并计算出它的面积.底是()厘米;高是()厘米.4.底/厘米85 31.6 34.8 13.2高/厘米34 10.9 21.5 8.5面积/平方厘米5.一块平行四边形的钢板,底是3.8米,高是1.5米,求它的面积.这块钢板1平方米重39千克,这块钢板重多少千克?6.一块平行四边形菜地,底是18.4米,高是9.2米.在这块地种茄子,每棵苗占地0.18平方米,这块地可种茄子多少棵?(得数保留整数)7.一块六边形水泥砖(如图),由三个面积相同的平行四边形组成.要铺300平方米地面大约需要多少块这样的水泥砖?参考答案1.(1)15平方厘米 15平方厘米 15平方厘米(2)无数个它们面积都相等(3)14平方厘米 28平方厘米 42平方厘米2.540m2 85.12cm23.略4.2890 344.44 748.2 112.25.5.7平方米 222.3千克6.169.28 ≈940棵7.≈2858块《平行四边形的面积》习题精选一、填空.1.4.5平方米=()平方分米 2400平方厘米=()平方分米2.一个平行四边形的底是9分米,高是底的2倍,它的面积是()平方分米.3.一个平行四边形的底是12厘米,面积是156平方厘米,高是()厘米.4.一块平行四边形钢板,底是1.5米,高是1.2米,如果每平方米钢板重23.5千克,这块钢板重()千克.二、判断题.1.平行四边形的面积等于长方形面积.()2.一个平行四边形的底是5分米,高是20厘米,面积是100平方分米.()3.一个平行四边形面积是42平方米,高是6米,底是7米.()三、选择题.1.下面的长方形和平行四边形面积()a.相等b.不相等2.用木条钉成的长方形拉成一个平行四边形,它的高和面积()a.都比原来大b.都比原来小c.都与原来相等3.平行四边形的底扩大3倍,高缩小3倍,面积()a.扩大3倍b.缩小3倍c.不变d.不好判断四、评议.下面是四个平行四边形,小红认为它们的面积都是6平方厘米,你认为对吗?(单位:厘米)23323232五、已知下图中正方形的周长为36厘米,求平行四边形的面积.参考答案一、填空1.450 24 2.162 3.13 4.42.3二、判断题.1.(×) 2.(×) 3.(√)三、选择题.1.a 2.b 3.c四、评议.2332(√)(×)3232(√)(×)五、已知下图中正方形的周长为36厘米,求平行四边形的面积.36÷4=9(厘米) 9×9=81(平方厘米)《平行四边形的面积》典型例题例.求下面平行四边形的面积.分析:图中给出的两个已知条件并不是一组相对应的底和高,要根据平行四边形“对边相等”的特性可以得出和高(6厘米)相对应的底也是4厘米,利用平行四边形的面积公式可以求出它的面积.解:2464=⨯(平方厘米)答:这个平行四边形的面积是24平方厘米.《平行四边形的面积》典型例题例.在两条平行线间画出两个平行四边形(如下图),试判断甲和乙谁的面积大?乙甲CB EFDA分析:平行四边形ABCD 和BCEF 是画在两条平行线之间,那么这两个平行四边形的高相等,因为两条平行线间的距离处处相等.这两个平行四边形都是以BC 为底,所以说这两个平行四边形的底也相等的.4厘米6厘米底和高都分别相等,那么底和高的乘积(面积)也相等,从两个面积相等的平行四边形中减去同样的一个三角形,剩下的面积也相等,所以甲和乙的面积是一样大的.解答:一样大.《平行四边形的面积》典型例题例.如图,正方形BDEC 周长是24厘米,平行四边形ADEB 面积是多少平方厘米?分析:从图上可以看出,平行四边形的底和高,都与正方形的边长相等.而正方形的边长是 (24÷4)厘米,所以平行四边形ADEB 的面积就是(24÷4)×(24÷4)=6×6=36(平方厘米)答:平行四边形ADEB 面积是36平方厘米.《平行四边形的面积》典型例题例.求下面平行四边形的周长(单位:分米)1267分析:已知平行四边形的一组底和高分别是12分米和7分米,可以求出它的面积是84712=⨯(平方分米),通过“平行四边形面积=底×高”,可以逆推出:底=平行四边形面积÷高,已知面积是84平方分米,高是6分米,可以求出和6分米相对应的底,用14684=÷(分米),平行四边形对边相等,已知平行四边形相邻的两条边分别是12分米和14分米,就可以求出它的周长.解:5221412=⨯+)((分米)答:这个平行四边形的周长是52分米.《平行四边形的面积》典型例题例.一个平行四边形,若底增加2厘米,高不变,则面积增加6平方厘米;若高增加1厘米,底不变,则面积增加4平方厘米,原平行四边形的面积是多少?分析:要求原平行四边形的面积,必须知道原平行四边形的底和高.根据第一组条件,增加部分是一个底是2厘米,面积是6平方厘米的平行四边形,根据平行四边形的面积公式可以求出这个平行四边形的高,即求出原平行四边形的高.根据第二组条件,,增加部分是一个高为1厘米,面积为4平方厘米的平行四边形,由此可以求出增加部分的底,即求出原平行四边形的底.解:12)14()26(=÷⨯÷(平方厘米)答:原平行四边形的面积是12平方厘米.《平行四边形的面积》典型例题例.在一块长80米,宽35米的长方形地上,修了两条宽分别为3米和2米的通道,其余的地方铺上草皮(如图).问:应铺多少平方米的草皮?分析:很显然,铺草皮的面积等于长方形的面积减去两条通道的面积,问题的关键是这两条 通道是什么图形?因为两条通道都是四边形,且两组对边分别平行,所以两条通道都是平行四边形.要求出这两个平行四边形的面积,底边分别是3米和2米,高是多少呢?这恐怕是个难点,你发现了吗?它们的高就是长方形的宽35米,问题得解.解:80×35-(3×35+2×35) =2800-175=2625(平方米)答:应铺2625平方米的草皮.《平行四边形的面积》典型例题例.如图,平行四边形的面积是150平方米,它的阴影部分的面积是多少平方米?分析:平行四边形的面积为已知,底边长已知,所以平行四边形的高可求出,由观察知阴影部分是一个直角梯形,这个直角梯形的上底为15米,下底为15-4=11(米),高就是平行四边形的高,问题得解.解:[15+(15-4)]×(150÷15)÷2=26×10÷2=130(平方米)答:阴影部分的面积是130平方米.。

平行四边形的判定定理培优讲解及练习

平行四边形的判定定理培优讲解及练习

平行四边形的判定定理【要点梳理】要点一、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.一组对边平行且相等的四边形是平行四边形;3.两组对边分别相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.要点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据. 【典型例题】类型一、平行四边形的判定例1、如图所示,E、F分别为四边形ABCD的边AD、BC上的点,且四边形AECF和DEBF都是平行四边形,AF和BE相交于点G,DF和CE相交于点H.求证:四边形EGFH为平行四边形.【思路点拨】欲证四边形EGFH为平行四边形,只需证明它的两组对边分别平行,即EG∥FH,FG ∥HE可用来证明四边形EGFH为平行四边形.【答案与解析】证明:∵四边形AECF为平行四边形,∴ AF∥CE.页1∵四边形DEBF为平行四边形,∴ BE∥DF.∴四边形EGFH为平行四边形.【变式】如图,在四边形ABCD中,AB∥CD,∠BAD的平分线交直线BC于点E,交直线DC于点F,若CE=CF,求证:四边形ABCD是平行四边形.【答案】证明:∵∠BAD的平分线交直线BC于点E,∴∠1=∠2,∵AB∥CD,∴∠1=∠F,∵CE=CF,∴∠F=∠3,∴∠1=∠3,∴∠2=∠3,∴AD∥BC,∵AB∥CD,∴四边形ABCD是平行四边形.例2、如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【思路点拨】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.页2(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF 是平行四边形即可.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴AD∥CB,AD=CB,∴∠DAE=∠BCF,在△ADE和△CBF中,∴△ADE≌△CBF,∴DE=BF.(2)由(1),可得△ADE≌△CBF,∴∠ADE=∠CBF,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.【总结升华】此题主要考查了平行四边形的判定和性质的应用,以及全等三角形的判定和性质的应用,要熟练掌握.例3、已知:如图四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ.求证:四边形PBQD是平行四边形.页3页 4【思路点拨】证明四边形是平行四边形有很多种方法,此题可由对角线互相平分来证明. 【答案与解析】证明:连接BD 交AC 与O 点,∵四边形ABCD 是平行四边形, ∴AO=CO,BO=DO , 又∵AP=CQ, ∴AP+AO=CQ+CO, 即PO=QO ,∴四边形PBQD 是平行四边形.【总结升华】本题主要考查平行四边形的判定,利用“对角线互相平分的四边形是平行四边形”来证明.举一反三:【变式1】如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于F ,且AF=DC ,连接CF .试说明:D 是BC 的中点.【答案】证明:∵AF∥BC ,∴∠AFE=∠DBE , ∵E 是AD 的中点, ∴AE=DE ,页 5在△AEF 和△DEB 中,∵ ∴△AEF ≌△DEB (AAS ), ∴AF=BD , ∵AF=DC , ∴BD=DC , ∴D 是BC 的中点.【变式2】如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 及等边△ABE ,已知:∠BAC=30°,EF ⊥AB ,垂足为F ,连接DF . (1)试说明AC=EF ;(2)求证:四边形ADFE 是平行四边形.【答案】证明:(1)∵Rt △ABC 中,∠BAC=30°, ∴AB=2BC ,又∵△ABE 是等边三角形,EF ⊥AB , ∴AB=2AF ∴AF=BC ,在Rt △AFE 和Rt △BCA 中,,∴Rt △AFE ≌Rt △BCA (HL ),,,,===AFE DBE AEF DEB AE DE ∠∠⎧⎪∠∠⎨⎪⎩页 6∴AC=EF ;(2)∵△ACD 是等边三角形, ∴∠DAC=60°,AC=AD , ∴∠DAB=∠DAC +∠BAC=90° 又∵EF ⊥AB , ∴EF ∥AD , ∵AC=EF ,AC=AD , ∴EF=AD ,∴四边形ADFE 是平行四边形.例4、如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F .求证:四边形AECF 是平行四边形.【思路点拨】平行四边形的判定方法有多种,选择哪一种解答应先分析题目中给的哪一方面的条件多些,本题所给的条件为四边形ABCD 是平行四边形,可证OF=OE ,OA=OC ,根据条件在图形中的位置,可选择利用“对角线相互平分的四边形为平行四边形”来解决. 【答案与解析】证明:∵四边形ABCD是平行四边形,∴OD=OB ,OA=OC , ∵AB ∥CD ,∴∠DFO=∠BEO ,∠FDO=∠EBO , ∴在△FDO 和△EBO 中,,===DFO BEO FDO EBO OD OB ∠∠⎧⎪∠∠⎨⎪⎩∴△FDO≌△EBO(AAS),∴OF=OE,∴四边形AECF是平行四边形.类型二、平行四边形的性质定理与判定定理的综合运用例1、如图,在平行四边形ABCD中,E、F是对角线AC上的点,且AE=CF.(1)猜想探究:BE与DF之间的关系: ________________.(2)请证明你的猜想.【思路点拨】(1)BE平行且等于DF;(2)连接BD交AC于O,根据平行四边形的性质得出OA=OC,OD=OB,推出OE=OF,得出平行四边形BEDF即可.【答案与解析】(1)解:BE和DF的关系是:BE=DF,BE∥DF,故答案为:平行且相等.(2)证明:连接BD交AC于O,∵ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,∴BFDE是平行四边形,∴BE=DF,BE∥DF.【总结升华】本题考查了平行四边形的性质和判定的应用,能否熟练地运用平行四边形的性质和判定进行推理是你解决本题的关键,题型较好,通过此题培养了学生分析问题和解决问题的能力,同时培养了学生的观察能力和猜想能力.举一反三:【变式】如图,在ABCD中,E、F分别在AD、BC边上,且AE=CF.请你猜想BE与DF的关系,并说明理由.页7页 8【答案】解:猜想BE 与DF 的关系是BE=DF ,BE ∥DF ,理由是:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∵AE=CF , ∴AD-AE=BC-CF , 即DE=BF , ∵DE ∥BF ,∴四边形BFDE 是平行四边形, ∴BE=DF ,BE ∥DF .例2、如图,四边形ABCD 的对角线AC 、BD 交于点P ,过点P 作直线交AD 于点E ,交BC 于点F .若PE=PF ,且AP+AE=CP+CF . (1)求证:PA=PC .(2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD 的面积.【思路点拨】(1)首先在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF ,可得PN=PM ,则易证四边形EMFN 是平行四边形,则可得ME=FN ,∠EMA=∠CNF ,即可证得△EAM ≌△FCN ,则可得PA=PC ;(2)由PA=PC ,EP=PF ,可证得四边形AFCE 为平行四边形,易得△PED ≌△PFB ,则可得四边形ABCD 为平行四边形,由AB=15,AD=12,∠DAB=60°,即可求得四边形ABCD 的面积. 【答案与解析】(1)证明:在PA 和PC 的延长线上分别取点M 、N ,使AM=AE ,CN=CF . ∵AP+AE=CP+CF , ∴PN=PM . ∵PE=PF ,∴四边形EMFN 是平行四边形.∴ME=FN ,∠EMA=∠CNF.又∵∠AME=∠AEM,∠CNF=∠CFN,∴△EAM≌△FCN.∴AM=CN.∵PM=PN,∴PA=PC.(2)解:∵PA=PC,EP=PF,∴四边形AFCE为平行四边形.∴AE∥CF.∵∠PED=∠PFB,∠EPD=∠FPB,EP=PF,∴△PED≌△PFB.∴DP=PB.由(1)知PA=PC,∴四边形ABCD为平行四边形.∵AB=15,AD=12,∠DAB=60°,∴四边形ABCD的面积为90.【总结升华】此题考查了平行四边形的判定与性质,以及全等三角形的判定与性质等知识.此题图形比较复杂,难度适中,解题的关键是数形结合思想的应用.例3、如图,△ABC中AB=AC,点D从点B出发沿射线BA移动,同时,点E从点C出发沿线段AC的延长线移动,已点知D、E移动的速度相同,DE与直线BC相交于点F.(1)如图1,当点D在线段AB上时,过点D作AC的平行线交BC于点G,连接CD、GE,判定四边形CDGE的形状,并证明你的结论;(2)过点D作直线BC的垂线垂足为M,当点D、E在移动的过程中,线段BM、MF、CF有何数量关系?请直接写出你的结论.【思路点拨】(1)由题意得出BD=CE,由平行线的性质得出∠DGB=∠ACB,由等腰三角形的性质得出∠B=∠ACB,得出∠B=∠DGB,证出BD=GD=CE,即可得出结论;(2)由(1)得:BD=GD=CE,由等腰三角形的三线合一性质得出BM=GM,由平行线得出GF=CF,即可得出结论.【答案与解析】解:(1)四边形CDGE是平行四边.理由如下:如图1所示:3页9∵D、E移动的速度相同,∴BD=CE,∵DG∥AE,∴∠DGB=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DGB,∴BD=GD=CE,又∵DG∥CE,∴四边形CDGE是平行四边形;(2)BM+CF=MF;理由如下:如图2所示:由(1)得:BD=GD=CE,∵DM⊥BC,∴BM=GM,∵DG∥AE,∴GF=CF,∴BM+CF=GM+GF=MF.【总结升华】本题考查了等腰三角形的判定与性质、平行四边形的判定与性质;熟练掌握等腰三角形的性质,并能进行推理论证是解决问题的关键.举一反三【变式】如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).【答案】页10∴ AB=CD,AB∥CD,∴∠ABD=∠CDB,∵AE⊥BD于E,CF⊥BD于F,∴∠AEB=∠CFD=90°,∴△ABE≌△CDF(AAS),∴BE=DF;(2)四边形MENF是平行四边形.证明:由(1)可知:BE=DF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠MDB=∠NBD,∵DM=BN,∴△DMF≌△BNE,∴NE=MF,∠MFD=∠NEB,∴∠MFE=∠NEF,∴MF∥NE,∴四边形MENF是平行四边形.例4、如图,已知在ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)【思路点拨】(1)先由平行四边形的性质,得AB=CD,AB∥CD,根据两直线平行内错角相等得∠GBE=∠HDF.再由SAS可证△GBE≌△HDF,利用全等的性质,证明∠GEF=∠HFE,从而得GE∥HF,又GE=HF,运用一组对边平行且相等的四边形是平行四边形得证.(2)仍成立.可仿照(1)的证明方法进行证明.【答案与解析】页11页 12∴AB=CD ,AB ∥CD ,∴∠GBE=∠HDF . 又∵AG=CH ,∴BG=DH . 又∵BE=DF ,∴△GBE ≌△HDF .∴GE=HF ,∠GEB=∠HFD ,∴∠GEF=∠HFE , ∴GE ∥HF ,∴四边形GEHF 是平行四边形.(2)解:仍成立.(证法同上)【总结升华】本题考查的知识点为:一组对边平行且相等的四边形是平行四边形. 举一反三 【变式】如图,ABCD 中,对角线AC ,BD 相交于O 点,AE ⊥BD 于E ,CF ⊥BD 于F ,BG ⊥AG 于G ,DH ⊥AC 于H .求证:四边形GEHF 是平行四边形.【答案】证明:∵四边形ABCD 是平行四边形,∴BO=DO ,AO=CO ,AB=CD ,AB ∥CD , ∴∠ABD=∠CDB ,∵AE ⊥BD 于E ,CF ⊥BD 于F ,∴∠AEB=∠CFD=90°, 在△ABE 和△CDF 中,∴△ABE ≌△CDF (AAS ), ∴BE=DF , ∴BO-BE=DO-DF , 即:EO=FO ,同理:△ABG ≌△CDH , ∴AG=CH , ∴AO-AG=CO-CH , ,===AB CD ABE CDF AEB CFD ∠∠∠∠⎧⎪⎨⎪⎩即:GO=OH,∴四边形GEHF是平行四边形.【课堂练习】一.选择题1.点P、Q、R是平面内不在同一条直线上的三个定点,点M是平面内任意一点,若P、Q、R、M四点恰能构成一个平行四边形,则在平面内符合这样条件的点M有()A.1个 B.2个 C.3个 D.4个2. 四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定这个四边形是平行四边形的条件有( ).A.1组 B.2组 C.3组 D.4组3. 下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比, 其中能识别四边形ABCD为平行四边形的是( ).A. 1:2:3:4B. 2:3:2:3C. 2:2:3:3D. 1:2:2:14. 如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,分别连接AB、AD、CD,则四边形ABCD一定是()A.平行四边形 B.矩形 C.菱形 D.梯形5. 已知一个凸四边形ABCD的四条边的长顺次是a、b、c、d,且a2+ab-ac-bc=0,b2+bc-bd-cd=0,那么四边形ABCD是()A.平行四边形 B.矩形 C.菱形 D.梯形页136. 如图,图1、图2、图3分别表示甲、乙、丙三人由A地到B地的路线图(箭头表示行进的方向).其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙 B.乙<丙<甲 C.丙<乙<甲 D.甲=乙=丙二.填空题7. 如图,E、F 是ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.8.如图,平行四边形ABCD的对角线交于点O,直线EF过点O且EF∥AD,直线GH过点O且GH∥AB,则能用图中字母表示的平行四边形共有______________个.9.如图,四边形ABCD中,AB∥CD,AB⊥BC,点E在AB边上从A向B以1cm/s的速度移动,同时点F在CD边上从C向D以2cm/s的速度移动,若AB=7cm,CD=9cm,则秒时四边形ADFE是平行四边形.页1410. 如图,已知等边△ABC的边长为8,P是△ABC内一点,PD∥AC,PE∥AD,PF∥BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF=______________.11.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.12.如图,平行四边形ABCD中,AC、BD相交于点O,E、F、G、H分别是AB、OB、CD、OD 的中点.有下列结论:①AD=BC,②△DHG≌△BFE,③BF=HO,④AO=BO,⑤四边形HFEG是平行四边形,其中正确结论的序号是.三.解答题13.如图,在口ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:(1)△BEG≌△DFH;(2)四边形GEHF是平行四边形.14.在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,点F在边AC的延长线上,∠FEC=∠B,求证:四边形CDEF是平行四边形.页1515.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,CE=4,求四边形ACEB的周长.【答案与解析】一.选择题1.【答案】C;【解析】解:如图,连接PQ、QR、PR,分别过P、Q、R三点作直线l∥QR、m∥PR、n∥PQ,分别交于点D、E、F,∵DP∥QR,DQ∥PR,∴四边形PDQR为平行四边形,同理可知四边形PQRF、四边形PQER也为平行四边形,故D、E、F三点为满足条件的M点,故选C.页162.【答案】C;【解析】①②③能判定平行四边形.3.【答案】B;【解析】平行四边形对角相等.∠A与∠C为对角,∠B与∠D为对角.4.【答案】A;【解析】∵分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,∴AD=BC AB=CD∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形).故选A.5.【答案】A;【解析】由a2+ab-ac-bc=0,可知(a+b)(a-c)=0,则a-c=0,即a=c;由b2+bc-bd-cd=0,可知(b+c)(b-d)=0;则b-d=0,即b=d.(其中a,b,c,d都是正数,a+b、b+c一定不等于0)由a=c;b=d知四边形ABCD的两组对边分别相等,则四边形ABCD是平行四边形.故选A.6.【答案】D;【解析】图1中,甲走的路线长是AC+BC的长度;延长AD和BF交于C,如图2,∵∠DEA=∠B=60°,∴DE∥CF,同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BC=AC+BC的长;延长AG和BK交于C,如图3,与以上证明过程类似GH=CK,CG=HK,即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长;即甲=乙=丙,故选D.页17页 18二.填空题 7.【答案】BE=DF ;【解析】添加的条件是BE=DF ,理由是:连接AC 交BD 于O , ∵平行四边形ABCD , ∴OA=OC ,OB=OD , ∵BE=DF , ∴OE=OF ,∴四边形AECF 是平行四边形. 故答案为:BE=DF .8.【答案】18;【解析】图中平行四边形有:AEOG ,AEFD ,ABHG ,GOFD ,GHCD ,EBHO ,EBCF ,OHCF ,ABCD ,EHFG ,AEHO ,AOFG ,EODG ,BHFO ,HCOE ,OHFD ,OCFG ,BOGE .共18个.故答案为:18. 9.【答案】3;【解析】解:设t 秒时四边形ADFE 是平行四边形;理由:当四边形ADFE是平行四边形,则AE=DF,即t=9﹣2t,解得:t=3,故3秒时四边形ADFE是平行四边形.故答案为:3.10.【答案】8;【解析】过E点作EG∥PD,过D点作DH∥PF,∵PD∥AC,PE∥AD,∴PD∥GE,PE∥DG,∴四边形DGEP为平行四边形,∴EG=DP,PE=GD,又∵△ABC是等边三角形,EG∥AC,△BEG为等边三角形,∴EG=PD=GB,同理可证:DH=PF=AD,∴PD+PE+PF=BG+GD+AD=AB=8..11.【答案】平行四边形;12.【答案】①,②,③,⑤;【解析】解:平行四边形ABCD中,∴AD=BC,故①正确;∵平行四边形ABCD,∴DC∥AB,DC=AB,OD=OB,∴∠CDB=∠DBA,∵E、F、G、H分别是AB、OB、CD、OD的中点,∴DG=BE=AB,DH=BF=OD,∴②△DHG≌△BFE,故②正确;∵HO=DH,DH=BF,∴BF=HO,故③正确;平行四边形ABCD,OA=OC,OB=OD,故④错误;E、F、G、H分别是AB、OB、CD、OD的中点,∴HG∥OC,HG=OC,EF∥OA,EF=OA,∴HG∥EF,HG=EF,HEFG是平行四边形,故⑤正确;故答案为:①,②,③,⑤.三.解答题页1913.【解析】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠ABE=∠CDF,∵AG=CH,∴BG=DH,在△BEG和△DFH中,,∴△BEG≌△DFH(SAS);(2)∵△BEG≌△DFH(SAS),∴∠BEG=∠DFH,EG=FH,∴∠GEF=∠HFB,∴GE∥FH,∴四边形GEHF是平行四边形.14.【解析】证明:∵在Rt△ABC中,∠ACB=90°,D、E分别为边AB、BC的中点,∴DE∥AC,CD=AB=AD=BD,∴∠B=∠DCE,∵∠FEC=∠B,∴∠FEC=∠DCE,∴DC∥EF,∴四边形CDEF是平行四边形.15.【解析】解:∵∠ACB=90°,DE⊥BC,页20∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=2在Rt△CDE中,由勾股定理∵D是BC的中点,∴BC=2CD=在Rt△ABC中,由勾股定理.∵D是BC的中点,DE⊥BC,∴EB=EC=4∴四边形ACEB的周长=AC+CE+BE+BA=10+.【课后作业】一.选择题1.如图,在平面直角坐标系中,以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形第四个顶点坐标的是()A.(3,-1) B.(-1,-1) C.(1,1) D.(-2,-1)2.以不共线的三点A、B、C为顶点的平行四边形共有( )个.A.1B.2C.3D.无数CD==AB==页21页 223.A ,B ,C ,D 在同一平面内,从①AB ∥CD ,②AB=CD ,③BC ∥AD ,④BC=AD 这四个中任选两个作为条件,能使四边形ABCD 为平行四边形的选法有( ) A .6种 B .5种 C .4种 D .3种4. 如图,在▱ABCD 中,EF ∥AD ,HN ∥AB ,则图中的平行四边形(不包括四边形ABCD )的个数共有( )A .9个B .8个C .6个D .4个5. 如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A. AE =CFB.DE =BFC. D.6.如图,在△ABC 中,∠ACB=90°,D 是BC 的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,①四边形ACED 是平行四边形; ②△BCE 是等腰三角形; ③四边形ACEB 的周长是10+2; ④四边形ACEB 的面积是16. 则以上结论正确的是( )CBF ADE ∠=∠CFB AED ∠=∠A.①②③ B.①②④ C.①③④ D.②④二.填空题7.已知四边形ABCD的对角线相交于O,给出下列5个条件①AB∥CD ②AD∥BC③AB=CD ④∠BAD=∠DCB,从以上4个条件中任选2个条件为一组,能推出四边形ABCD为平行四边形的有____________组.8.在▱ABCD中,对角线相交于点O,给出下列条件:①AB=CD,AD=BC,②AD=AB,AD∥BC,③AB∥CD,AD∥BC,④AO=CO,BO=DO其中能够判定ABCD是平行四边形的有____________.9.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出______个平行四边形.10.如图,已知AB=CD,AD=CB,则∠ABC+∠BAD=___________度.11.如图,四边形ABCD的对角线AC与BD相交于点O,AD∥BC,若要使四边形是平行四边形,则需要添加的一个条件是.(只写出一种情况即可)12.如图,在△ABC中,AB=4,AC=3,BC=5,△ABD、△ACE、△BCF都是等边三角形,则四边形AEFD的面积为.页23三.解答题13. 在ABCD中,对角线BD、AC相交于点O,BE=DF,过点O作线段GH交AD于点G,交BC于点H,顺次连接EH、HF、FG、GE,求证:四边形EHFG是平行四边形.14.如图,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,连接BE和CG.求证:四边形BGCE是平行四边形.15. 如图所示,已知△ABC是等边三角形,D、F两点分别在线段BC、AB上,∠EFB=60°,DC=EF.页24(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.【答案与解析】一.选择题1.【答案】D;【解析】A、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(3,-1)时,∴BO=AC1=2,∵A,C1,两点纵坐标相等,∴BO∥AC1,∴四边形OAC1B是平行四边形;故此选项正确;B、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,当第四个点为(-1,-1)时,∴BO=AC2=2,∵A,C2,两点纵坐标相等,∴BO∥AC2,∴四边形OC2AB是平行四边形;故此选项正确;C、∵以O(0,0)、A(1,-1)、B(2,0)为顶点,构造平行四边形,页25页 26当第四个点为(1,1)时, ∴BO=AC 1=2,∵A ,C 1,两点纵坐标相等, ∴C 3O=BC 3=, 同理可得出AO=AB=,进而得出C 3O=BC 3=AO=AB ,∠OAB=90°, ∴四边形OABC 3是正方形;故此选项正确;D 、∵以O (0,0)、A (1,-1)、B (2,0)为顶点,构造平行四边形, 当第四个点为(-1,-1)时,四边形OC 2AB 是平行四边形;∴当第四个点为(-2,-1)时,四边形OC 2AB 不可能是平行四边形; 故此选项错误.故选:D .2.【答案】C ;【解析】分别以AB ,BC ,AC 为对角线作平行四边形. 3.【答案】C ;【解析】根据平行四边形的判定,可以有四种:①与②,③与④,①与③,②与④都能判定四边形是平行四边形,故选C .4.【答案】B ;【解析】设EF 与NH 交于点O ,∵在▱ABCD 中,EF ∥AD ,HN ∥AB ,∴AD ∥EF ∥BC ,AB ∥NH ∥CD ,则图中的四边AEOH 、DHOF 、BEON 、CFON 、AEFD 、BEFC 、AHNB 、DHNC 和ABCD 都是平行四边形,共9个. 故选B .5.【答案】B ; 22页 27【解析】C 选项和D 选项均可证明△ADE ≌△CBF ,从而得到AE =CF ,EO =FO ,BO =DO ,所以可证四边形DEBF 是平行四边形.6.【答案】A ;【解析】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°, ∴AC∥DE, ∵CE∥AD,∴四边形ACED 是平行四边形,故①正确; ②∵D 是BC 的中点,DE⊥BC, ∴EC=EB,∴△BCE 是等腰三角形,故②正确; ③∵AC=2,∠ADC=30°, ∴AD=4,CD=2,∵四边形ACED 是平行四边形, ∴CE=AD=4, ∵CE=EB,∴EB=4,DB=2, ∴CB=4,∴AB==2,∴四边形ACEB 的周长是10+2故③正确; ④四边形ACEB 的面积:×2×4+×4×2=8,故④错误,故选:A .二.填空题 7.【答案】4;【解析】①和②根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和③根据一组对边平行且相等的四边形是平行四边形,能推出四边形ABCD 为平行四边形;①和④,②和④根据两组对边分别平行的四边形是平行四边形,能推出四边形ABCD为平行四边形;所以能推出四边形ABCD为平行四边形的有四组.故答案为:4.8.【答案】①③④;【解析】∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴①正确;∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,∴②正确;∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴③正确;∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴④正确;即其中能判定四边形ABCD是平行四边形的有①②③④,故答案为:①②③④.9.【答案】15;【解析】两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.10.【答案】180°;【解析】依题意得ABCD是平行四边形,∴AD∥BC,∴∠ABC+∠BAD=180°.11.【答案】AD=BC;【解析】∵AD=BC,AD∥BC,∴四边形ABCD是平行四边形,故答案为:AD=BC.12.【答案】6;【解析】解:∵在△ABC中,AB=3,AC=4,BC=5,∴BC2=AB2+AC2,∴∠BAC=90°,页28页 29∵△ABD,△ACE 都是等边三角形, ∴∠DAB=∠EAC=60°, ∴∠DAE=150°.∵△ABD 和△FBC 都是等边三角形, ∴∠DBF+∠FBA=∠ABC+∠ABF=60°, ∴∠DBF=∠ABC. 在△ABC 与△DBF 中,∴△ABC≌△DBF(SAS ), ∴AC=DF=AE=4,同理可证△ABC≌△EFC, ∴AB=EF=AD=3,∴四边形DAEF 是平行四边形(两组对边分别相等的四边形是平行四边形). ∴∠FDA=180°﹣∠DAE=30°,∴S 口AEFD =AD•(DF ×)=3×(4×)=6. 即四边形AEFD 的面积是6. 故答案为:6.二.解答题 13.【解析】 证明:在ABCD 中AD ∥BC ,AO =CO ,BO =DO∴∠GAO =∠HCO 在△AGO 和△CHO 中∴△AGO ≌△CHO∴GO =HO 又∵BO =DO ,BE =DF GAO HCO AO CO GOA HOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴EO=FO∴四边形EHFG为平行四边形.14.【解析】证明:(1)如图1,∵OB=OC,∴∠ACE=∠DBF,在△ACE和△DBF中,,∴△ACE≌△DBF(AAS);(2)如图2,∵∠ACE=∠DBF,∠DBG=∠DBF,∴∠ACE=∠DBG,∴CE∥BG,∵CE=BF,BG=BF,∴CE=BG,∴四边形BGCE是平行四边形.15.【解析】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°.页30又∵∠EFB=60°,∴ EF∥BC,即EF∥DC.又∵ DC=EF,∴四边形EFCD是平行四边形.(2)如图,连接BE.∵ BF=EF,∠EFB=60°,∴△EFB是等边三角形,∴ BE=BF=EF,∠EBF=60°,∴ DC=EF=BE.∵△ABC是等边三角形,∴ AC=AB,∠ACD=60°.在△ABE和△ACD中,∵ AB=AC,∠ABE=∠ACD,BE=CD,∴△ABE≌△ACD,∴ AE=AD.页31。

平行四边形的面积_《平行四边形的面积》典型例题2

平行四边形的面积_《平行四边形的面积》典型例题2

《平行四边形的面积》典型例题
例.在两条平行线间画出两个平行四边形(如下图),试判断甲和乙谁的面积大?
乙甲
C B E
F
D
A
分析:平行四边形ABCD和BCEF是画在两条平行线之间,那么这两个平行四边形的高相等,因为两条平行线间的距离处处相等.
这两个平行四边形都是以BC为底,所以说这两个平行四边形的底也相等的.
底和高都分别相等,那么底和高的乘积(面积)也相等,从两个面积相等的平行四边形中减去同样的一个三角形,剩下的面积也相等,所以甲和乙的面积是一样大的.
解答:一样大.。

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区

初二数学平行四边形7大常见题型+知识点+误区平行四边形是初二数学必考内容,甚至于中考卷里也时常出现它的身影,而且所占分值还不少。

为此,特意给大家整理了初二数学下册必考之【平行四边形】,7大常见题型+知识点+误区!平行四边形定义:有两组对边分别平行的四边形是平行四边形。

表示:平行四边形用符号“□”来表示。

平行四边形性质:平行四边形对边相等;平行四边形对角相等;平行四边形对角线互相平分平行四边形的面积等于底和高的积,即S□ABCD=ah,其中a可以是平行四边形的任何一边,h必须是a边到其对边的距离,即对应的高。

平行四边形的判定:两组对边分别平行的四边形是平行四边形两组对角分别相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形从对角线看:对角钱互相平分的四边形是平行四边形从角看:两组对角分别相等的四边形是平行四边形。

若一条直线过平行四边形对角线的交点,则直线被一组对边截下的线段以对角线的交点为中点,且这条直线二等分平行四边形的面积。

7大常见题型分析(1)利用平行四边形的性质,求角度、线段长、周长等例题1:如图,E、F在ABCD的对角线AC上,AE=EF=CD,∠ADF=90°,∠BCD=54°,求∠ADE的度数分析:直角三角形斜边上的中线等于斜边的一半,由此可以得到DE=AE=EF=CD,多条线段相等,可设最小的角为x,即设∠EAD=∠ADE=x,根据外角等于不相邻的内角和,得到∠DEC=∠DCE=2x,由平行四边形的性质得出∠DCE=∠BCD-∠BCA=54°-x,得出方程,解方程即可。

例题2:如图,已知四边形ABCD和四边形ADEF均为平行四边形,点B,C,F,E在同一直线上,AF交CD于O,若BC=10,AO=FO,求CE的长。

分析:根据平行四边形的性质得出AD=BC=EF,AD∥BE,从而得到∠DAO=∠CFO,再加上对顶角相等,可以得到△AOD≌△FOC,根据全等三角形的性质得到AD=CF,即AD=BC=EF=CF,从而得到线段CE的长度。

第四单元专练篇01:平行四边形”小题狂练“-北师大版五年级数学例题(原卷版)北师大版

第四单元专练篇01:平行四边形”小题狂练“-北师大版五年级数学例题(原卷版)北师大版

2024-2025学年五年级数学上册典型例题系列第四单元专练篇·01:平行四边形”小题狂练“一、填空题。

1.平行四边形面积公式的推导过程。

(如图)把平行四边形沿着( )剪开,将三角形平移后,可以拼成一个( ),它的长与平行四边形的( )相等,它的宽与平行四边形的( )相等,它的面积与平行四边形的面积( )。

因为长方形的面积=长( )宽,所以平行四边形的面积=( ),用字母表示是( )。

2.一个平行四边形的底是8cm,高是6cm,面积是( )cm2。

3.一个平行四边形的面积是450cm2,底是25cm,这条底边上的高是( )cm。

4.一块平行四边形土地,面积是8公顷,高是400米,底是( )米。

5.一个平行四边形,底是8cm,高是2cm,如果底不变,高增加3cm,则面积增加( );如果底和高都扩大到原来的3倍,则面积扩大到原来的( )倍。

6.下图中,长方形的面积是20cm2,平行四边形的面积是( )cm2。

7.如图,把一个长方形框架拉一拉,使它成为一个平行四边形,它的周长( ),它的面积( )。

(填“变大”、“变小”、“不变”、“无法确定”)8.如图,一个平行四边形相邻两条边分别是6cm、9cm,量得一条高8cm。

这个平行四边形面积是( )2cm。

9.如图平行四边形中阴影部分是边长4cm的正方形,这个平行四边形的面积是( )平方厘米。

10.把一个长为8cm,宽为6cm的长方形框架拉成一个高为7cm的平行四边形,这个平行四边形的面积是( )cm2。

11.如图,一个平行四边形框,拉动平行四边形的对角后,它围起来的面积会发生变化。

当拉成( )形后,它围起来的面积最大,面积最大是( )cm2。

12.随着人们生活水平的快速提升,汽车量飞速增长,开车就医成为普遍现象。

某医院打算扩建旧停车场(旧停车场如图所示),如果把旧停车场的底和高都扩大到原来的2倍,那么新停车场的面积是( )。

二、选择题。

13.用木条做一个长18cm、宽15cm的长方形框,如果把它拉成一个平行四边形。

第6章平行四边形 题型解读7 直角坐标系中的平行四边形-2020-2021学年北师大版八年级数学下册

第6章平行四边形 题型解读7 直角坐标系中的平行四边形-2020-2021学年北师大版八年级数学下册

《平行四边形》题型解读7 直角坐标系中的平行四边形【知识梳理】: 1.总体解题分析思路线:2.常见添辅助线方法:①过平行四边形顶点作坐标轴的垂线段,把点的坐标转化成线段长; ②连接对角线,利用中点坐标公式求解点的坐标;【典型例题】例1.已知如图,平行四边形ABCD 的边AB 在轴上,顶点D 在轴上,AD=4,AB=5,点A 的坐标为(-2,0),则 点B 的坐标为____________, 点C 的坐标为____________, 点D 的坐标为____________ 【解题过程】作CE ⊥x 轴,∵点A 的坐标为(-2,0),∴OA=2,∵四边形ABCD 是平行四边形,∴AD=BC=4,AB=CD=5,∴OB=3,∴BE=2,在Rt △OAD 中,由勾股定理可得OD=2√3,∵∠DAO=∠CBE,OA=BE=2,∠AOD=∠CEB=90º,∴△AOD ≌△BEC,∴CE=OB=2√3,∴B(3,0)、D(0,2√3)、C(5,2√3).例2.如图,在平面直角坐标系中,AB//OC ,A (0,12),B (a,12),C (b,0),且满足b =√a −21+√21−a +16. 动点P 从点A 出发,在线段AB 上以每秒2个单位长度的速度向点B 运动;动点Q 从点O 出发在线段OC 上以每秒1个单位长度的速度向点C 运动,点P 、Q 同时出发,当点P 运动到点B 时,点Q 随之停止运动.设运动时间为t (秒). (1)求B ,C 两点的坐标;(2)当t 为何值时,四边形PQCB 是平行四边形?请求出此时P ,Q 两点的坐标; (3)当t 为何值时,△PQC 是以PQ 为腰的等腰三角形?并求出P 、Q 两点的坐标.【解题过程】(1)∵b =√a −21+√21−a +16,∴√a −21≥0,√21−a ≥0,∴a=21,∴b=16,∴B(21,12)、C(16,0); (2)如图1,由题可知:AP=2t,PB=21-2t ,OQ=t,QC=16-t ,∵当四边形PQCB 是平行四边形时,∴PB=QC ,即21-2t=16-t ,解得t=5,此时AP=10,OQ=5,∵AB//OC ,∴点B 、P 的纵坐标相同,∴P(10,12)、Q(5,0)。

平行四边形的判定典型题

平行四边形的判定典型题

平行四边形的判定例题1:BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要添加的一个条件是_________练习:1、如图,已知:E、F是平行四边形ABCD对角线AC 上的两点,并且AE=CF。

求证:四边形BFDE是平行四边形。

2.如图所示,在平行四边形ABCD中,P1、P2是对角线BD的三等分点,求证:•四边形AP1CP2是平行四边形.3、如图所示,在四边形ABCD中,M是BC中点,AM、BD互相平分于点O,那么请说明AM=DC 且AM∥DC例题2:(2013•镇江)如图,AB∥CD,AB=CD,点E、F在BC上,且BE=CF.(1)求证:△ABE≌△DCF;OMAB CD(2)试证明:以A 、F 、D 、E 为顶点的四边形是平行四边形. 练习:1、11、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形2.(2012•惠城区模拟)如图,D 是AB 上的一点,DF 与AC 相交于E ,DE=EF ,CF∥BA.求证:四边形ADCF 是平行四边形.3、已知:如图所示,平行四边形ABCD 的对角线AC 、BD•相交于点O ,EF 经过点O 并且分别和AB 、CD 相交于点E 、F ,又知G 、H 分别为OA 、OC 的中点.求证:四边形EHFG 是平行四边形.例题3:、如图4.4-17,等边三角形ABC 的边长为a ,P 为△ABC 内一点,且PD ∥AB ,PE ∥BC ,PF ∥AC ,那么,PD+PE+PF 的值为一个定值.这个定值是多少?请你说出这个定值的来历.H GFE O A BCDHGFEO A BC DHGFE O ABCD HG FE O ABCD练习1:如图,平行四边形ABCD中,AF=CH,DE=BG。

求证:EG和HF互相平分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形典型例题
【例1】如图,□ABCD的对角线AC、BD相交于点O,则图中全等三角形有() A.2对 B.3对 C.4对 D.5对
【分析】由平行四边形的对边平行、对角线互相平分,可得全等三角形有:△ABD和△CDE,△ADC和△CBA ,△AOD 和△BOC 、△AOB 和△COD .
【答案】C
【例2】如图,□ABCD中,∠B、∠C的平分线交于点O ,BO 和CD 的延长线交于E ,求证:BO=OE .
【分析】证线段相等,可证线段所在三角形全等.可证△COE ≌△COB .已知OC 为公共边,∠OCE=∠OCB,又易证∠E=∠EBC.问题得证.
【证明】在□ABCD中,∵AB//CD,
∴,
又∵(角平分线定义).
∴,
又∵,
∴△≌△
∴.
说明:证线段相等通常有两种方法:(1)在同一三角形中证三角形等腰;(2)不在同一三角形则证两三角形全等.本题也可根据等腰三角形“三线合一”性质证明结论.
【例3】如图,在ABCD中,AE⊥BC于E ,AF⊥DC 于F ,∠ADC=60°,BE=2,CF=1,求△DEC 的面积.
【解】在中,,、.
在Rt △ABE 中,,.
∴,.
∴.
在△中,.
∴.
故.
【例4】已知:如图,D 是等腰△ABC 的底边BC 上一点,DE//AC ,DF//AB .求证:DE+DF=AB.
【分析】由于,,从而可以利用平行四边形的定义和性质,等腰三角形的判定和性质来证.
【解】∵,
∴四边形是平行四边形.
∴.
∵,∴.
∵,∴.
∴.
∴.
说明:证明一条线段等于另外两条线段的和常采用的方法是:把三条线段中较长的线段分为两段,证明这两段分别等于另两条线段.
【例5】如图,已知:中,、相交于点,于,
于,求证:.
【分析】
【解】因为四边形是平行四边形,
所以,.
又因为、交于点,
所以.
又因为,,
所以.
于是△ ≌△ .
从而 .
【例6】已知:如图,AB//DC ,AC 、BD 交于O ,且AC=BD 。

求证:OD=OC.
证明:过B 作 交DC 延长线于E ,则 。

∵ , ,

∵ , ∴
∴ ∴

说明:本题条件中有“夹在两条平行线之间的相等且相交的线段”,由于位置交错而一时用不上,为此通过作平行线,由“夹在两条平行线间的平行线段相等”将线段AC 平移到BE ,得到等腰△BDE,使问题得解.
【例7】如图,□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F ,
求证:四边形AFCE 是菱形.
解:略。

1
O
E
D
C
B
A
O
F
E
D
C
B
A
【例8】如图所示,□ABCD 中,各内角的平分线分别相交于点E 、F 、G 、H ,
证明:四边形EFGH 是矩形。

【例9】如图所示,已知矩形ABCD 的对角线AC 、BD 交于点O ,过顶点C ,作BD 的垂线与∠BAD 的平分线相交于点E ,交BD 于G ,证明:AC=CE 。

H
G
F
E
D
C
B
A
G
O
E
D
C
B
A。

相关文档
最新文档