供配电系统外文翻译

合集下载

电气供配电系统大学毕业论文英文文献翻译及原文

电气供配电系统大学毕业论文英文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:供配电系统文献、资料英文题目:POWER SUPPLY AND DISTRIBUTIONSYSTEM文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14POWER SUPPLY AND DISTRIBUTION SYSTEMABSTRACTThe basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWARDS:power supply and distribution,power distribution reliability,reactive compensation,load distributionTEXTThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and theway has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made to be good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding andadopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kind of grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, butdon't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net.。

英文文献及翻译:供配电系统(1800字)

英文文献及翻译:供配电系统(1800字)

供配电系统摘要:电力系统的基本功能是向用户输送电能。

lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。

对于所有用户都期望以最低的价格买到具有高度可靠性的电能。

然而,经济性与可靠性这两个因素是互相矛盾的。

要提高供电网络的可靠性就必须增加网络建设投资成本。

但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。

通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。

关键词:供配电,供电可靠性,无功补偿,负荷分配1 引言电力体制的改革引发了新一轮大规模的电力建设热潮从而极大地推动了电力技术革命新技术新设备的开发与应用日新月异特别是信息技术与电力技术的结合在很大程度上提高了电能质量和电力供应的可靠性由于技术的发展又降低了电力建设的成本进而推动了电网设备的更新换代本文就是以此为契机以国内外配电自动化中一些前沿问题为内容以配电自动化建设为背景对当前电力系统的热点技术进行一些较深入的探讨和研究主要完成了如下工作.(1)提出了配电自动化建设的两个典型模式即―体化模式和分立化模式侧重分析了分立模式下的配电自动化系统体系结构给出了软硬件配置主站选择管理模式最佳通讯方式等是本文研究的前提和实现平台.(2)针对配电自动化中故障测量定位与隔离以及供电恢复这一关键问题分析了线路故障中电压电流等电量的变化导出了相间短路工况下故障定位的数学描述方程并给出了方程的解以及故障情况下几个重要参数s U& s I& e I& 选择表通过对故障的自动诊断与分析得出了优化的隔离和恢复供电方案自动实现故障快速隔离与网络重构减少了用户停电范围和时间有效提高配网供电可靠性文中还给出了故障分段判断以及网络快速重构的软件流程和使用方法.(3)状态估计是实现配电自动化中关键技术之一本文在阐述状态估计方法基础上给出了不良测量数据的识别和结构性错误的识别方法针对状态估计中数据对基于残差的坏数据检测和异常以及状态量中坏数据对状态估计的影响及存在的问题提出了状态估计中拓扑错误的一种实用化检测和辩识方法针对窃电漏计电费问题独创性提出一种通过电量突变和异常分析防止窃电的新方法并在潍坊城区配电得到验证.(4)针对配电网负荷预测建模困难参数离散度大以及相关因素多等问题本文在分析常规负荷预测模型及方法基础上引入了气象因素日期类型社会环境影响等参数给出了基于神经网络的电力负荷预测方法实例验证了方法的正确性.(5)针对无源滤波在抑制谐波和无功补偿方面的不足以及补偿度的不连续性本文提出了一种PWM 主电路拓朴结构和基于无功功率理论的有源滤波方案建立了基于Saber Designer 仿真平台仿真分析证明了方案的可行性同时结合配电自动化技术对配电网动态无功优化补偿和降低线损的方法进行了设计分析通过实例计算验证了其客观的经济效益.(6)针对中国电力市场未来的发展趋势以及政府监管下的电力市场公平交易设计了一种适合我国电力市场现状按照电价分组电量协调分组竞价的短期电力交易模式给出了基于边际电价的机组组合算法制订交易计划的数学模型以及安全经济约束等在竞争比例逐步提高的情况下能够较好地解决原有中长期合同电价和短期竞争电价的矛盾减少电厂不公平的收益差异同时也可在电力市场全网的负荷曲线上对所有电厂进行限量优化减少总的系统购电费用.2 配电网分析配电网是电力系统中的一个重要环节,配电网接地方式和安全运行直接关系到电力系统的安全和稳定。

外文翻译--浅谈高层建筑供配电系统设计

外文翻译--浅谈高层建筑供配电系统设计

中文4323字外文资料翻译Power supply system of high-rise building design Abstract: with the continuous development of city size, more and more high-rise buildings, therefore high-rise building electrical design to the designers had to face. In this paper, an engineering example, describes the electrical design of high-rise buildings and some of the more typical issues of universal significance, combined with the actual practice of an engineering solution to the problem described.Key words: high-rise building; electrical design; distribution; load calculation1 Project OverviewThe commercial complex project,with a total construction area of 405570m2,on the ground floor area of 272330m2, underground construction area of 133240m2, the main height of 99m. Project components are: two office buildings, construction area is 70800m2, 28 layers, the standard story is 3.2m.2 Load Calculation1) Load characteristics: electric load, much larger than the "national civil engineering technical measures" Large 120W/m2 indicators, especially in the electricity load more food, and different types of food and beverage catering different cultural backgrounds also high.2) the uncertainty of a large load, because the commercial real estate rents are often based on market demand, and constantly adjust the nature of the shops, making the load in the dynamic changes.3) There is no specification and technical measures in the different types of commercial projects refer to the detailed parameters of the shops, engineering design load calculation in the lack of data, in most cases to rely on staff with previous experience in engineering design calculations.Load the selection of parameters: for the above problems, the load calculation, the first developer of sales and good communication, to determine the form of layers of the forms and nature of floor area, which is calculated on the basis of electrical load basis; followed to determine parameter index within the unit area of shops is also very important and complex because there is no clear indicator of the specification can refer to; and different levels of economic development between cities is not balanced, power indices are also different; will be in the same city, different regions have different consumer groups .3) the need to factor in the choice: parameters determined, the need for load calculation. Need to factor commonly used method, the calculation will not repeat them. Need to explore is the need for coefficient selection, which in the current specifications, manuals and the "unified technical measures" is also not clear requirements, based on years of design experience that most end shops in thedistribution or level within the household distribution box with case Kx generally take a while, in the calculation of the loop route to take 0.7 to 0.8, the distribution transformers in the substation calculations take 0.4 to 0.6.3 substations setLoad calculation based on the results of this project the total installed capacity of transformer 43400Kv.A, after repeated consultations with the power company, respectively, in the project in northern, central and southern three sections set the three buildings into three power substations, 1 # set 6 sets 2500Kv.A transformer substation, take the northern section of power supply; 2 # 4 1600Kv.A transformer substations located, plus 6 sets 2000Kv.A transformers, take the middle of the power supply, in addition to 5 Taiwan 10Kv.A high-pressure water chillers (total 4000Kv.A);3 # substation located 2 units plus 2 units 1000Kv.A 2000Kv.A transformers, take the southern section of A, B two office supply. 10Kv power configuration of this project into two points, each at the two 10Kv lines, the power company under the provisions of 10Kv power capacity: maximum load per channel is about to 11000Kv.A, two is the 22000Kv.A, design # 1 , 3 # combination of a substation 10Kv, power line, with a total capacity of 21000Kv.A; 2 # substation transformers and 10Kv, 10Kv chillers sharing a power line, with a total capacity of 22400Kv.A. The design of the substation layout, in addition to meeting regulatory requirements, it also need to consider the high-pressure cabinets, transformers and low voltage power supply cabinet by order of arrangement, especially in low voltage distribution cabinet to feed the cable smooth and easy inspection duty problems are not seriously consider the construction of the cable crossing will cause more long detour, a waste of floor space, and convenient inspections and other issues【8】.4 small fire load power supplyIn the design of large commercial projects often encounter small fire load of electrical equipment and more dispersed distribution, if fed by a substation, a substation will be fed a lot of low-voltage low-current counter circuit breaking capacity circuit breaker and conductor of the dynamic and thermal stability in a certain extent. According to GB50045-1995 "fire protection design of tall buildings," rule "should be used in Fire Equipment dedicated power supply circuit, the power distribution equipment shall be provided with clear signs." Interpretation of the provisions of the power supply circuit means "from the low-voltage main distribution room (including the distribution of electrical room) to last a distribution box, and the general distribution lines should be strictly separated." In this design, the use of methods to increase the level of distribution, that is different from the substation bus segments, respectively, a fire fed a special circuit, set in place two distribution cabinets, distribution cabinets and then the resulting radial allocated to the end of the dual power to vote each box, so that not only meets the specification requirements for dedicated power supply circuit, but also to avoid feeding the substation level of many small current loop.5, the choice of circuit breaker and conductorCommercial real estate projects use the room as the uncertainty in the choice of circuit breakers and conductors must be considered in a certain margin to meet theneeds caused by adjustment of the load changes. According to this characteristic, increased use in the design of the plug bus-powered, not only meet the requirements of large carrying capacity, and also allows the flexibility to increase supply and distribution, are reserved in each shaft in the plug-box backup in order to change, according to changes in upper and lower load, to adjust. For example: a bus is responsible for a shaft 1 to 3 layers of power, when a layer due to the change in capacity increases, while the 3-layer capacity is reduced, you can use a spare plug box layer off the 3-layer 1 layer capacity rationing . This level distribution in the substation, select the circuit breaker to choose the setting value when the circuit breaker to adjust to changes at the end to adjust the load setting value; in the bus and the transformer circuit breaker according to the choice of the general framework of values to select . For example: Route certain equipment capacity 530Kv, Kx take 0.7 to calculate current of 704A, select the frame circuit breaker is 1000A, tuning is 800A; current transformer for the 1000/50; bus carrying capacity for the 1000A, this road can meet the maximum 1000A current load requirements, even if there is adjustment, power distribution switches and circuit can not make big changes.6 layer distribution box setAccording to the division of layers of fire protection district, respectively numbered as A ~ K layers within the set level shaft for the retail lighting power distribution box, with one on one power supply shops in radial power. Should be noted that the forms of the complex layers of layers of fire partition, does not correspond to the lower, making some of shaft power in charge of the fire district at the same time, also responsible for the power supply adjacent to the fire district. At design time, using the principle of proximity, while also taking into account the burden of the whole trunk load conditions, so that each shaft as far as possible a more balanced load. PrerequisitesThe loop that you want to auto-tune must be in automatic mode. The loop output must be controlled by the execution of the PID instruction. Auto-tune will fail if the loop is in manual mode.Before initiating an auto-tune operation your process must be brought to a stable state which means that the PV has reached setpoint (or for a P type loop, a constant difference between PV and setpoint) and the output is not changing erratically.Ideally, the loop output value needs to be near the center of the control range when auto-tuning is started. The auto-tune procedure sets up an oscillation in the process by making small step changes in the loop output. If the loop output is close to either extreme of its control range, the step changes introduced in the auto-tune procedure may cause the output value to attempt to exceed the minimum or the maximum range limit.If this were to happen, it may result in the generation of an auto-tune error condition, and it will certainly result in the determination of less than near optimal suggested values.Auto-Hysteresis and Auto-DeviationThe hysteresis parameter specifies the excursion (plus or minus) from setpoint that thePV (process variable) is allowed to make without causing the relay controller to change the output. This value is used to minimize the effect of noise in the PV signal to more accurately determine the natural oscillation frequency of the process.If you select to automatically determine the hysteresis value, the PID Auto-Tuner will enter a hysteresis determination sequence. This sequence involves sampling the process variable for a period of time and then performing a standard deviation calculation on the sample results.In order to have a statistically meaningful sample, a set of at least 100 samples must be acquired. For a loop with a sample time of 200 msec, acquiring 100 samples takes 20 seconds. For loops with a longer sample time it will take longer. Even though 100 samples can be acquired in less than 20 seconds for loops with sample times less than 200 msec, the hysteresis determination sequence always acquires samples for at least 20 seconds.Once all the samples have been acquired, the standard deviation for the sample set is calculated. The hysteresis value is defined to be two times the standard deviation. The calculated hysteresis value is written into the actual hysteresis field (AHYS) of the loop table.TipWhile the auto-hysteresis sequence is in progress, the normal PID calculation is not performed. Therefore, it is imperative that the process be in a stable state prior to initiating an auto-tune sequence. This will yield a better result for the hysteresis value and it will ensure that the process does not go out of control during the auto-hysteresis determination sequence.The deviation parameter specifies the desired peak-to-peak swing of the PV around the set point. If you select to automatically determine this value, the desired deviation of the PV is computed by multiplying the hysteresis value by 4.5. The output will be driven proportionally to induce this magnitude of oscillation in the process during auto-tuning.Auto-Tune SequenceThe auto-tuning sequence begins after the hysteresis and deviation values have been determined. The tuning process begins when the initial output step is applied to the loop output.This change in output value should cause a corresponding change in the value of the process variable. When the output change drives the PV away from setpoint far enough to exceed the hysteresis boundary a zero-crossing event is detected by the auto-tuner. Upon each zero crossing event the auto-tuner drives the output in the opposite direction.The tuner continues to sample the PV and waits for the next zero crossing event. A total of twelve zero-crossings are required to complete the sequence. The magnitude of the observed peak-to-peak PV values (peak error) and the rate at which zero-crossings occur are directly related to the dynamics of the process.Early in the auto-tuning process, the output step value is proportionally adjusted once to induce subsequent peak-to-peak swings of the PV to more closely match the desired deviation amount. Once the adjustment is made, the new output step amountis written into the Actual Step Size field (ASTEP) of the loop table.The auto-tuning sequence will be terminated with an error, if the time between zero crossings exceeds the zero crossing watchdog interval time. The default value for the zero crossing watchdog interval time is two hours.Figure 1 shows the output and process variable behaviors during an auto-tuning sequence on a direct acting loop. The PID Tuning Control Panel was used to initiate and monitor the tuning sequence.Notice how the auto-tuner switches the output to cause the process (as evidenced by the PV value) to undergo small oscillations. The frequency and the amplitude of the PV oscillations are indicative of the process gain and natural frequency.7 public area distribution box setTaking into account the future needs of the business re-decoration of public areas must be reserved for power. Here the design needs to consider the following points:①question of how much reserve power, lighting and electricity, which according to GB50034-2004 "Architectural Lighting Design Standards" table of Article 6.1.3 and 6.1.8, commercial building lighting power density value, high-end supermarkets, business offices as 20W/m2, under the "decorative lighting included 50% of the total lighting power density calculation" requirements, using the reserved standard 40W/m2.②In order to facilitate the decoration in each partition set fire lighting in public areas and emergency lighting distribution box distribution box, in order to identify the electrical power distribution decoration cut-off point.③the staircase, storage rooms and other parts of the decoration does not need to do, set the power distribution circuit or a separate distribution box, try not to be reserved from the public area of electricity distribution board fed hardcover out.④control of lighting in public areas, the majority in two ways, namely, C-BUS control system or the BA system, the use of C-BUS has the advantage of more flexible control, each road can be fed out of control, adjustable light control; shortcomings is a higher cost. BA system control advantages of using low cost, simple control; disadvantage is that the exchanges and contacts for the three-phase, three-way control may be related both to open, or both, in the decoration of the contacts required to feed the power supply circuit diverge to avoid failure blackouts.Design of distribution box 8In the commercial real estate design, shop design is often only a meter box, and outlet route back to the needs of the user according to their second design, but the shops are difficult to resolve within the power supply fan coil units, air-conditioning system as a whole can not debug. The project approach is to add a circuit breaker in the meter box for the coil power supply, another way for users to use the second design, as shown below.User distribution box design9 distribution cabinet / box number and distribution circuitsLarge-scale projects are often low voltage distribution cabinet / box number, low-voltage circuits to feed the more often there will be cabinet / box number and line number duplication, resulting in the design and the future looks difficult maintenanceand overhaul. The project has three 10Kv substations, 20 transformer, hundreds of low-voltage fed out of the closet, fed the circuit more. Accordance with the International Electrotechnical Commission (IEC) and the Chinese national standard requirements:①All the distribution number to be simple and clear, not too box and line numbers are not repeated.②number to simple and clear, not too long.③distinction between nature and type of load.④law was easy to find, make viewer at a glance. Based on the above requirements and on the ground, fire district and the underground construction industry form the different conditions, using two slightly different ways. Essential for the underground garage, uses a single comparison, also relatively fire district neat, according to fire district number, such as AL-BL-1 / 1, AP and APE, the meaning of the letters and numbers: AL on behalf of lighting distribution (AP on behalf of Power distribution box, APE on behalf of the emergency power distribution box); BI on behalf of the basement; 1 / 1 for partition 1, I fire box. Above ground is more complex, more fire district, and on the fire district does not correspond to the lower, according to shaft number is better, such as AL-1-A1, AP, and APE, letters and numbers mean: 1 represents a layer; A1 on behalf of A, No. 1 shaft fed a distribution box. Fed a low-voltage circuits, such as the number of uses: W3-6-AL-1-A1, W3-6) indicates that the route back to power supply transformer 3, 6, feed the power distribution cabinet, AL-1-A1, said the then the first loop of the distribution box for the AL-1-A1 and so on, and so on.10 ConclusionWith more and more complex commercial design projects, designers need to continually improve the design level, designed to make fine. These are only bits of the design in the business lessons learned, and the majority of designers want to communicate浅谈高层建筑供配电系统设计摘要:随着城市规模的不断发展,高层建筑越来越多,因此,高层建筑电气设计就成为设计者不得不面对的问题。

外文翻译供电技术

外文翻译供电技术

外文原文Power Supplying Technology and Intelligent BuildingThe electric distribution system is a part of an electric power system that supplies electric energy to the individual user or consumer .The distribution substations that supply them, the distribution transformers, and appropriate protective and control devices the three general classes of individual user are industrial, residential, and ruralThe three-phase alternating-current (ac) system is practically universal, although a small amount of direct-current systems are in operation .Three-phase transformer and sub transmission lines require three wires, learned phase conductors. Most of the low-voltage three phase distribution systems consist of three phase conductions and a common or neutral conductor ,making a total of four wires .single-phase branches (consisting of two wires)supplied from the three-phase mains are used for single phase utilization in residences, small stores ,and farms, loads are connected in parallel to common supply circuits.The distribution substation is an assemblage of equipment for purpose of switching, changing and regulating the voltage from sub transmission to primary distribution .More important substations are designed so that the failure of a piece of equipment in the substation or one of the sub transmission lines to the substation will not cause an interruption of power to the loadThe primary system leaving the substation is most frequently in the 6-35kV range. A particular voltage used is Ilk line-to-line and fine to neutral (conventionally written 10/.some utilities use a lower voltage, such as 3/ use of voltage in the 35kV class is increasing for its lower electric loss.Secondary voltages are derived from distribution transformers connected to the primary system and they usually correspond to utilization voltages .Most loads are supplied by 380/220volt single-phase four-wire systems, some high power -rate motors require 3kV or 6kV.Good voltage means that the average voltage level is correct ,that variations do not exceed prescribed lima it ,and that sudden momentary changes in level do notcause objectionable light flicker .Utilization voltage varies with changing load on the system ,but a voltage variation of less than 5% at the consumer's meter is common .to achieve this result, distribution systems are designed for a plus and minus voltage spread from the nominal voltages .This is accomplished by proper wire size for the circuits, application of capacitors ,both permanently connected and switched, and the use of voltage regulationsThe electric power substation is an assembly of equipment man electric power system through which electrical energy is passed for transmission, distribution, interconnection ,transformation ,conversion ,or switching. A substation includes a variety of equipment .the principal items are listed and briefly described below.Transformers involve magnetic core and windings to transfer power from one side to the other side at different voltages .Substation transformers range from small size of 50kV·A to large size of several hundred MV﹒A most of transformers are insulated and cooled by oil, and adequate precautions have to be taken for fire hazard, These precautions include adequate distances from other equipment, firewalls fire extinguishing means, and pits and drains for containing leaked oilCircuit breakers,Circuit breakers are required for circuit interruption with the capability of interrupting the highest fault current, usually 20-50times over the normal current, and withstanding high voltage surges that appear after interruption. Switches with normal load-interruption capability are called load break switches.Disconnect witches. Disconnect witches have isolation and connection capability without interruption capability.Bus-bars Bus -bars arc connecting bars or conductors between equipment. Flexible conductor are stretched from insulator to insulator, where more common solid buses (commonly made of aluminum alloy) are installed on insulators in the air or in gas enclosed cylindrical pipesShunt reactors Shunt reactors are often required for compensation of line capacitance whereLong lines are involvedShunt capacitors Shunt capacitors are often required for compensation of inductive components of load currentCurrent transformers and potential transformers,Current transformers and potential transformers are for measuring currents and voltages and provide proportionately low-level currents and voltages for control and protection Control and protection,Control and protection include a) a variety of protectiverelays which can rapidly detect faults anywhere in the substation equipment and lines, determine which part of the systems is faulty ,and give appropriate commands for opening of circuit breakers ;(b) Control equipment for voltage and Current control and proper selection of the system conf gumption ;( c) fault-recording equipment ;( e) metering equipment; and (f) auxiliary power supplies.Many of the control and protection devices are solid-state electronic types, and there is a trend toward digital techniques using microprocessors. Most of the substations are fully automated locally with a provision for manual override .the minimum manual interface required, alone communications channels to the dispatcher in the central office.Good substation grounding is very important for effective relaying and insulation of equipment; the design of the personnel is of substation grounding .It usually consists the governing criterion in of a bare wire grid, laid in the ground; and all equipment groundings points ,tanks, support structures, fences ,shielding wires and poles ,and so forth ,are securely connected to it,the is reduced to be low enough that a fault from high voltage to ground does not create such high potential gradients on the ground, and from the structures to ground ,to present a safe hazard. Good overhead shielding is also essential for outdoor substations, soaps to eliminate the possibility of lighting directly striking the equipment. Shielding is provided by overhead ground wires stretched across the substation or tall grounded poles.中文译文供电技术供电系统是电力系统的一部分,它提供电能给消费者。

毕业论文外文翻译-高层建筑供配电系统设计

毕业论文外文翻译-高层建筑供配电系统设计

毕业论文外文翻译-高层建筑供配电系统设计Design of Power Supply and Distribution System for High-rise BuildingsAbstractPower supply and distribution system is the lifeline of high-rise buildings. The design of power supply and distribution system is based on the characteristics of high-rise buildings, which requires not only reliable supply of power, but also the safety of electricity utilization and efficient energy consumption. In this paper, the design of power supply and distribution system for high-rise buildings is discussed, focusing on the selection of power supply mode, the design of power distribution system, the design of grounding system, the selection of electrical equipment and the design of lightning protection system. The application of advanced technologies such as distributed power supply, energy management and control system, and intelligent electrical equipment can improve the energy efficiency and utilization of high-rise buildings, reduce energy consumption and carbon emissions, and promote the development of green buildings.Keywords: high-rise buildings; power supply and distribution system; energy efficiency; green buildingsIntroductionHigh-rise buildings are an important symbol of urban development and represent the trend of modern architecture. With the continuous improvement of people’s living standards, the demand for high-rise buildings is increasing. Power supply and distribution system is an essential part of high-rise buildings, which plays a crucial role in the operation and maintenance of buildings. The design of power supply and distribution system for high-rise buildings needs to consider many factors, such as technical performance, safety and reliability, energy efficiency, economic benefits and environmental protection, etc. In recent years, with the rapid development of new energy and advanced technology, the design of power supply and distribution system for high-rise buildings has undergone significant changes, which focus on improving energy efficiency and reducing emissions. This paper analyzes the design of power supply and distribution system for high-rise buildings, summarizes the selection principles and design methods of various systems, and explores the application of new technologies to improve energy efficiency and promote the development of green buildings.1. Selection of Power Supply ModeThe power supply mode is the basic foundation of power supply and distribution system of high-rise buildings. In the selection of power supply mode, it is necessary to consider the characteristics of the building and the surrounding environment, and ensure the reliability and safety of power supply. Currently, the main power supply modes for high-rise buildings are grid-connected power supply and distributed power supply.1.1 Grid-connected Power SupplyGrid-connected power supply is a traditional power supply mode, which is widely used in high-rise buildings. It has the advantages of reliable power supply, convenient operation and maintenance, and stable voltage and frequency. However, grid-connected power supply is vulnerable to natural disasters such as typhoons and earthquakes, and may cause power outages, which will affect the normal life and work of residents. Moreover, the development of distribution network is limited by the capacity of the grid, which may cause overloaded operation and reduce the energy efficiency of high-rise buildings.1.2 Distributed Power SupplyDistributed power supply is a new power supply mode, which can improve the energy efficiency of high-rise buildings and reduce the dependence on the grid. Distributed power supply includes combined heat and power (CHP), solar power, wind power and other renewable energy sources. CHP is a highly efficient power generation technology, which can generate electricity and heat at the same time, and utilize the waste heat for air conditioning and domestic hot water. Solar power and wind power are clean energy sources, which have the advantages of zero emissions and long service life. Distributed power supply can reduce the transmission and distribution losses of power supply, and improve the energy efficiency of high-rise buildings. However, the initial investment of distributed power supply is relatively high, and the technical level of electrical equipment and maintenance management is demanding.2. Design of Power Distribution SystemThe power distribution system is responsible for the power transmission and distribution of high-rise buildings, which should ensure the safety and reliability of the power supply. The design of power distribution system includes the selection of power distribution equipment, the layout of power distribution room, and the calculation of power load.2.1 Selection of Power Distribution EquipmentThe selection of power distribution equipment should meet the requirements of technical performance, safety and reliability, and energy efficiency. The main power distribution equipment includes switchgear, transformer, busbar, distribution panel, etc. The switchgear should have the function of over-current protection, short-circuit protection and earth leakage protection, and should have the advantages of small volume, low noise and high reliability. The transformer should be selected according to the capacity and voltage level, and should have the advantages of low loss, high efficiency and small size. The busbar should have the advantages of high strength, good conductivity and low resistance. The distribution panel should have the functions of metering, control, protection and communication, and should be easy to operate and maintain.2.2 Layout of Power Distribution RoomThe layout of power distribution room should be reasonable and convenient for operation and maintenance. The power distribution room should be located near the power supply entrance, and should have the advantages of good ventilation, dry, clean and spacious. The power distribution room should be equipped with the necessary security measures, such as fire prevention, explosion-proof, and lightning protection.2.3 Calculation of Power LoadThe calculation of power load is the key to the design of power distribution system. The power load includes lighting load, air conditioning load, power load and special load, etc. The calculation of power load should take into account the diversity of load, the possibility of peak load, and the capacity of power supply equipment. The primary consideration is to ensure the safety and reliability of power supply, and then to improve the energy efficiency of power utilization.3. Design of Grounding SystemThe grounding system is an important safety measure for high-rise buildings. The design of grounding system should meet the requirements of electrical safety and electrostatic discharge protection.3.1 Electrical SafetyThe grounding system should have the functions of lightning protection, over-voltage protection, over-current protection and earth leakage protection, etc. The grounding resistance should be less than the specified value, and the grounding wire should have good conductivity and corrosion resistance. The grounding system should be comprehensively tested and maintained regularly.3.2 Electrostatic Discharge ProtectionThe electrostatic discharge protection is to prevent the accumulation of static electricity and the damage of electrical equipment. The design of electrostatic discharge protection includes the selection of anti-static grounding material, the setting of anti-static floor, and the installation of anti-static equipment. The electrostatic discharge protection is especially important for data centers and sensitive electrical equipment.4. Selection of Electrical EquipmentThe selection of electrical equipment is an important part of the design of power supply and distribution system for high-rise buildings. The selection of electrical equipment should meet the requirements of technical performance, safety and reliability, environmental protection and energy efficiency.4.1 Technical PerformanceThe electrical equipment should meet the relevant national and international standards, and have the characteristics of high efficiency, low noise, long service life and easy maintenance. The electrical equipment should have the functions of protection, control, measurement and communication, and should be compatible with the automation system.4.2 Safety and ReliabilityThe electrical equipment should have the functions of over-current protection, short-circuit protection, ground connection protection and lightning protection, etc. The electrical equipment should be installed and maintained by qualified personnel, and should be tested and checked regularly to ensure the safety and reliability of power supply and distribution system.4.3 Environmental Protection and Energy EfficiencyThe electrical equipment should have the advantages of environmental protection and energy efficiency, and should meet the requirements of green building standards. The electrical equipment should have the functions of power monitoring, energy management and control, and should be able to optimize the energy utilization and reduce the energy consumption.5. Design of Lightning Protection SystemThe lightning protection system is an important safety measure for high-rise buildings, which can prevent the damage of lightning to electrical equipment and human life. The design of lightning protection system includes the selection of lightning protection device, the installation of lightning rod, the connection of grounding wire, and the calculation of lightning protection zone.5.1 Selection of Lightning Protection DeviceThe lightning protection device should have the functions of lightning protection, over-voltage protection, surge protection and electromagnetic pulse protection, etc. The lightning protection device should be reliable and durable, and should meet the relevant national and international standards.5.2 Installation of Lightning RodThe lightning rod should be installed on the roof of high-rise buildings, and should be connected with the grounding system. The lightning rod should be placed in a high position, and should be made of light and strong materials, such as aluminum alloy or stainless steel. The lightning rod should be inspected regularly to ensure its effectiveness.5.3 Connection of Grounding WireThe grounding wire should be connected with the lightning rod, the grounding system, and the electrical equipment. The grounding wire should have the advantages of low resistance, good conductivity and corrosion resistance. The grounding wire should be tested and checked regularly to ensure its effectiveness.5.4 Calculation of Lightning Protection ZoneThe calculation of lightning protection zone is the basis for the design of lightning protection system. The lightning protection zone includes the direct lightning strike zone and the induced lightning zone. The direct lightning strike zone is the area covered by the lightning rod, and the induced lightning zone is the area beyond the direct lightning strike zone. The calculation of lightning protection zone should consider the characteristics of lightning, such as the stroke current, the distance from the lightning source, and the soil resistivity.ConclusionThe design of power supply and distribution system for high-rise buildings is a complex and important work. The selection of power supply mode, the design of power distribution system, the design of grounding system, the selection of electrical equipment, and the design of lightning protection system are the main aspects of the design of power supply and distribution system. The application of advanced technologies such as distributed power supply, energy management and control system, and intelligent electrical equipment can improve the energy efficiency and utilization of high-rise buildings, reduce energy consumption and carbon emissions, and promote the development of green buildings. The design of power supply and distribution system for high-rise buildings should adhere to the principles of safety, reliability, energy efficiency, economic benefits and environmental protection, and strive to create a better living and working space for residents.。

(完整版)电力系统外文英语文献资料

(完整版)电力系统外文英语文献资料

Electric Power SystemElectrical power system refers to remove power and electric parts of the part,It includes substation, power station and distribution. The role of the power grid is connected power plants and users and with the minimum transmission and distribution network disturbance through transport power, with the highest efficiency and possibility will voltage and frequency of the power transmission to the user fixed .Grid can be divided into several levels based on the operating voltage transmission system, substructure, transmission system and distribution system, the highest level of voltage transmission system is ZhuWangJia or considered the high power grids. From the two aspects of function and operation, power can be roughly divided into two parts, the transmission system and substation. The farthest from the maximum output power and the power of the highest voltage grade usually through line to load. Secondary transmission usually refers to the transmission and distribution system is that part of the middle. If a plant is located in or near the load, it might have no power. It will be direct access to secondary transmission and distribution system. Secondary transmission system voltage grade transmission and distribution system between voltage level. Some systems only single second transmission voltage, but usually more than one. Distribution system is part of the power system and its retail service to users, commercial users and residents of some small industrial users. It is to maintain and in the correct voltage power to users responsible. In most of the system, Distribution system accounts for 35% of the total investment system President to 45%, and total loss of system of the half .More than 220kv voltage are usually referred to as Ultra high pressure, over 800kv called high pressure, ultra high voltage and high pressure have important advantages, For example, each route high capacity, reduce the power needed for the number of transmission. In as high voltage to transmission in order to save a conductor material seem desirable, however, must be aware that high voltage transmission can lead to transformer, switch equipment and other instruments of spending increases, so, for the voltage transmission to have certain restriction, allows it to specific circumstances in economic use. Although at present, power transmission most is through the exchange of HVDC transmission, and the growing interest in, mercury arc rectifier and brake flow pipe into the ac power generation and distribution that change for the high voltage dc transmission possible.Compared with the high-voltage dc high-voltage ac transmission has the following some advantages: (1) the communication with high energy; (2) substation of simple maintenance and communication cost is low; (3) ac voltage can easily and effectively raise or lower, it makes the power transmission and high pressure With safety voltage distributionHVDC transmission and high-voltage ac transmission has the following advantages: (1) it only need two phase conductors and ac transmission to three-phase conductors; (2) in the dc transmission impedance, no RongKang, phase shift and impact overvoltage; (3) due to the same load impedance, no dc voltage, and transfer of the transmission line voltage drop less communication lines, and for this reason dc transmission line voltage regulator has better properties; (4) in dc system without skin effect. Therefore, the entire section of route conductors are using; (5) for the same work, dc voltage potential stress than insulation. Therefore dc Wire need less insulation; (6) dc transmission line loss, corona to little interference lines of communication; (7) HVDC transmission without loss of dielectric, especially in cable transmission; (8) in dc system without stability and synchronization of trouble.A transmission and the second transmission lines terminated in substation or distribution substations, the substation and distribution substations, the equipment including power and instrument transformer and lightning arrester, with circuit breaker, isolating switch, capacitor set, bus and a substation control equipment, with relays for the control room of the equipment. Some of the equipment may include more transformer substations and some less, depending on their role in the operation. Some of the substation is manual and other is automatic. Power distribution system through the distribution substations. Some of them by many large capacity transformer feeders, large area to other minor power transformer capacity, only a near load control, sometimes only a doubly-fed wire feeders (single single variable substation)Now for economic concerns, three-phase three-wire type communication network is widely used, however, the power distribution, four lines using three-phase ac networks.Coal-fired power means of main power generating drive generators, if coal energy is used to produce is pushing the impeller, then generate steam force is called the fire. Use coal produces steam to promote the rotating impeller machine plant called coal-fired power plants. In the combustion process, the energy stored in the coal to heat released,then the energy can be transformed into the form within vapor. Steam into the impeller machine work transformed into electrical energy.Coal-fired power plants could fuel coal, oil and natural gas is. In coal-fired power plant, coal and coal into small pieces first through the break fast, and then put out. The coal conveyer from coal unloader point to crush, then break from coal, coal room to pile and thence to power. In most installations, according to the needs of coal is, Smash the coal storage place, no coal is through the adjustable coal to supply coal, the broken pieces of coal is according to the load changes to control needs. Through the broken into the chamber, the coal dust was in the second wind need enough air to ensure coal burning.In function, impeller machine is used to high temperature and high pressure steam energy into kinetic energy through the rotation, spin and convert electricity generator. Steam through and through a series of impeller machine parts, each of which consists of a set of stable blade, called the pipe mouth parts, even in the rotor blades of mobile Li called. In the mouth parts (channel by tube nozzle, the steam is accelerating formation) to high speed, and the fight in Li kinetic energy is transformed into the shaft. In fact, most of the steam generator is used for air is, there is spread into depression, steam turbine of low-pressure steam from the coagulation turbine, steam into the condenses into water, and finally the condensate water is to implement and circulation.In order to continuous cycle, these must be uninterrupted supply: (1) fuel; (2) the air (oxygen) to the fuel gas burning in the configuration is a must; (3) and condenser, condensed from the condensed water supply, sea and river to lake. Common cooling tower; (4) since water vapour in some places in circulation, will damage process of plenty Clean the supply.The steam power plant auxiliary system is running. For a thermal power plant, the main auxiliary system including water system, burning gas and exhaust systems, condensation system and fuel system. The main auxiliary system running in the water pump, condensation and booster pump, coal-fired power plants in the mill equipment. Other power plant auxiliary equipment including air compressors, water and cooling water system, lighting and heating systems, coal processing system. Auxiliary equipment operation is driven by motor, use some big output by mechanical drive pump and some of the impeller blades, machine drive out from the main use of water vaporimpeller machine. In coal-fired power plant auxiliary equipment, water supply pump and induced draft fan is the biggest need horsepower.Most of the auxiliary power generating unit volume increased significantly in recent years, the reason is required to reduce environment pollution equipment. Air quality control equipment, such as electrostatic precipitator, dust collection of flue gas desulfurization, often used in dust in the new coal-fired power plants, and in many already built in power plant, the natural drive or mechanical drive, fountain, cooling tower in a lake or cooling canal has been applied in coal-fired power plants and plants, where the heat release need to assist cooling system.In coal-fired power stations, some device is used to increase the thermal energy, they are (1) economizer and air preheater, they can reduce the heat loss; (2) water heater, he can increase the temperature of water into boiling water heaters; (3) they can increase and filter the thermal impeller.Coal-fired power plants usually requires a lot of coal and coal reservoirs, however the fuel system in power plant fuel handling equipment is very simple, and almost no fuel oil plants.The gas turbine power plants use gas turbine, where work is burning gas fluid. Although the gas turbine must burn more expensive oil or gas, but their low cost and time is short, and can quickly start, they are very applicable load power plant. The gas turbine burn gas can achieve 538 degrees Celsius in the condensing turbine, however, the temperature is lower, if gas turbine and condenser machine, can produce high thermal efficiency. In gas turbine turbine a combined cycle power plant. The gas through a gas turbine, steam generator heat recovery in there were used to generate vapor heat consumption. Water vapor and then through a heated turbine. Usually a steam turbine, and one to four gas turbine power plant, it must be rated output power.。

电力系统外文英语文献资料

电力系统外文英语文献资料

Electric Power SystemElectrical power system refers to remove power and electric parts of the part,It includes substation,power station and distribution. The role of the power grid is connected power plants and users and with the minimum transmission and distribution network disturbance through transport power,with the highest efficiency and possibility will voltage and frequency of the power transmission to the user fixed 。

Grid can be divided into several levels based on the operating voltage transmission system,substructure,transmission system and distribution system, the highest level of voltage transmission system is ZhuWangJia or considered the high power grids. From the two aspects of function and operation,power can be roughly divided into two parts,the transmission system and substation。

The farthest from the maximum output power and the power of the highest voltage grade usually through line to load。

电力系统专业英语词汇

电力系统专业英语词汇

电力系统专业英语词汇1➢电力系统power system 发电机generator 电动机motor➢励磁excitation 励磁器excitor➢电压voltage 电流current 母线bus➢变压器transformer 升压变压器step-up transformer➢降压变压器step-down transformer 档位:tap position➢空载损耗:no-load loss 空载电流:no-load current➢有功损耗:active power loss 无功损耗:reactive power loss➢铁损iron loss 铜损copper loss➢输电系统power transmission system 输电线transmission line➢配电系统Power distribution system➢高压: high voltage 低压:low voltage 中压:middle voltage➢高压侧high side电力系统专业英语词汇2➢稳定stability 功角稳定angle stability 电压稳定voltage stability➢暂态稳定transient stability 静态稳定steady stability➢电厂power plant 能量输送power transfer➢交流AC (alternating current) 直流DC (direct current)电网power grid➢落点drop point 开关站switch station 调节regulation➢高压并联电抗器high voltage shunt reactor➢并列的:apposable 裕度margin➢故障fault 三相故障three phase fault 分接头:tap➢切机generator tripping 高顶值high limited value 静态static (state)➢动态dynamic (state) 机端电压控制A VR➢电抗reactance 电阻resistance➢功角power angle 有功(功率)active power电力系统专业英语词汇3➢电容器capacitor 电抗器reactor 断路器breaker➢电动机:motor 功率因数:power-factor 定子:stator➢功角power-angle 转子:rotor➢电压等级voltage grade➢有功负载: active load 无功负载:reactive load➢阻抗impedance电阻:resistor 电抗:reactance 电导:conductance 电纳:susceptance电力系统专业英语词汇4➢上限:upper limit 下限:lower limit➢正序阻抗:positive sequence impedance 负序阻抗:negative sequence impedance零序阻抗:zero sequence impedance➢无功(功率)reactive power 功率因数power factor 无功电流reactive current➢斜率slope 额定rating 变比ratio➢参考值reference value➢电压互感器PT电流互感器CT电力系统专业英语词汇5➢仿真分析simulation analysis➢传递函数transfer function➢框图block diagram➢受电端receive-side 送电端sending-side➢同步synchronization异步asynchronization➢摇摆swing 阻尼damping➢无刷直流电机:Brushless DC motor机端generator terminal➢断路器circuit breaker➢刀闸(隔离开关):Isolator(disconnector)接地刀闸earthing disconnector 电力系统专业英语词汇6➢变电站transformer substation➢永磁同步电机:Permanent-magnet Synchronism Motor➢异步电机:Asynchronous Motor➢三绕组变压器:three-column transformer➢双绕组变压器:double-column transformer➢固定串联电容补偿fixed series capacitor compensation➢双回同杆并架double-circuit lines on the same tower➢单机无穷大系统one machine - infinity bus system电力系统专业英语词汇7➢励磁电流:magnetizing current➢电磁场Electromagnetic fields➢失去同步loss of synchronization➢装机容量installed capacity➢无功补偿reactive power compensation➢并联电容器:shunt capacitor➢线路补偿器line drop compensation➢补偿度degree of compensation➢故障切除时间fault clearing time➢极限切除时间critical clearing time➢强行励磁reinforced excitation➢下降特性droop characteristics 下降率droop rate。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

供配电系统摘要:电力系统的基本功能是向用户输送电能。

lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。

对于所有用户都期望以最低的价格买到具有高度可靠性的电能。

然而,经济性与可靠性这两个因素是互相矛盾的。

要提高供电网络的可靠性就必须增加网络建设投资成本。

但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。

通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。

关键词:供配电,供电可靠性,无功补偿,负荷分配1 引言电力体制的改革引发了新一轮大规模的电力建设热潮从而极大地推动了电力技术革命新技术新设备的开发与应用日新月异特别是信息技术与电力技术的结合在很大程度上提高了电能质量和电力供应的可靠性由于技术的发展又降低了电力建设的成本进而推动了电网设备的更新换代本文就是以此为契机以国内外配电自动化中一些前沿问题为内容以配电自动化建设为背景对当前电力系统的热点技术进行一些较深入的探讨和研究主要完成了如下工作.(1)提出了配电自动化建设的两个典型模式即―体化模式和分立化模式侧重分析了分立模式下的配电自动化系统体系结构给出了软硬件配置主站选择管理模式最佳通讯方式等是本文研究的前提和实现平台.(2)针对配电自动化中故障测量定位与隔离以及供电恢复这一关键问题分析了线路故障中电压电流等电量的变化导出了相间短路工况下故障定位的数学描述方程并给出了方程的解以及故障情况下几个重要参数s U& s I& e I& 选择表通过对故障的自动诊断与分析得出了优化的隔离和恢复供电方案自动实现故障快速隔离与网络重构减少了用户停电范围和时间有效提高配网供电可靠性文中还给出了故障分段判断以及网络快速重构的软件流程和使用方法.(3)状态估计是实现配电自动化中关键技术之一本文在阐述状态估计方法基础上给出了不良测量数据的识别和结构性错误的识别方法针对状态估计中数据对基于残差的坏数据检测和异常以及状态量中坏数据对状态估计的影响及存在的问题提出了状态估计中拓扑错误的一种实用化检测和辩识方法针对窃电漏计电费问题独创性提出一种通过电量突变和异常分析防止窃电的新方法并在潍坊城区配电得到验证.(4)针对配电网负荷预测建模困难参数离散度大以及相关因素多等问题本文在分析常规负荷预测模型及方法基础上引入了气象因素日期类型社会环境影响等参数给出了基于神经网络的电力负荷预测方法实例验证了方法的正确性.(5)针对无源滤波在抑制谐波和无功补偿方面的不足以及补偿度的不连续性本文提出了一种PWM 主电路拓朴结构和基于无功功率理论的有源滤波方案建立了基于Saber Designer 仿真平台仿真分析证明了方案的可行性同时结合配电自动化技术对配电网动态无功优化补偿和降低线损的方法进行了设计分析通过实例计算验证了其客观的经济效益.(6)针对中国电力市场未来的发展趋势以及政府监管下的电力市场公平交易设计了一种适合我国电力市场现状按照电价分组电量协调分组竞价的短期电力交易模式给出了基于边际电价的机组组合算法制订交易计划的数学模型以及安全经济约束等在竞争比例逐步提高的情况下能够较好地解决原有中长期合同电价和短期竞争电价的矛盾减少电厂不公平的收益差异同时也可在电力市场全网的负荷曲线上对所有电厂进行限量优化减少总的系统购电费用.2 配电网分析配电网是电力系统中的一个重要环节,配电网接地方式和安全运行直接关系到电力系统的安全和稳定。

而接地方式的选择,是与本国国情、自然环境、设备制造和运行水平等有关的,例如,雷电的活动情况、绝缘结构的设计、对周边的干扰等因素,都会影响中性点接地方式的选择;反过来,中性点接地方式对电力系统的设计、运行、调试以及发展都有很大影响。

一般在电压等级较高的系统中,绝缘费用在设备总价格中占相当大的比重,降低绝缘水平带来的经济效益很显著,通常就采用中性点直接接地的方式,而采用自动重合闸来保证供电可靠性:相反,在电压等级较低的系统中,通常都采用中性点不接地的方式来提高供电可靠性。

因此,在综合考虑供电可靠性、安全因素、过电压因素、继电保护的选择、投资费用等各方面因素的情况下,来论证正确选择配电网接地方式的重要性,以及如何不断开发,利用新型接地装置来应用在配电网接地系统中是当今配电网接地方式的一个重要课题。

本文主要工作是对lOkV配电网接地方式进行研究和比较选择。

分别论述各类接地方式的优缺点,主要有国内外比较常用的中性点不接地方式、中性点经消弧线圈接地方式(也称谐振接地方式)、中性点电阻接地方式、中性点直接接地方式。

通过技术比较确定最优接地方式,还利用一种近几年研究开发的,应用在谐振接地方式中的自动跟踪补偿装置,再配以灵敏的小电流接地选线保护,能够有效限制电网的故障接地电弧,更有利于电网的安全运行。

本文首先对配电网各类接地方式做深入的研究。

全面介绍国内外几种常用的中性点接地方式的运行特性,通过技术经济比较对不同的接地方式进行综合评价,再结合不同的接地方式的发展前景得出结论,优化了的谐振接地方式表现出很大的发展潜力。

然后,本文对lOkV配电网中性点谐振接地方式的运行特性进行了研究和介绍。

从限制故障接地电弧的危害出发,重点论述如何利用电流谐振原理,有效熄灭故障接地电弧等。

接着,本文结合国内外科技的发展和创新成果,对谐振接地优化方式中的微机接地保护性和自动跟踪补偿装置进行全面的分析与论述,说明谐振接地优化方式在供电可靠性、人身安全、设备安全和通信干扰等方面,具有较好的运行特性,既解决了小电流接地系统接地保护的选择性,又实现了自动调谐,使此种接地方式成为配电网比较理想的中性点接地方式。

本文同时还对谐振接地方式实施技术进行了研究,包括消弧线圈的参数选择、安装、调整、运行与维护等内容。

最后,本文总结了本课题研究的内容。

谐振接地籍助微机技术的支持,近些年来国内外均在进行优化,优化谐振接地技术是提高供电可靠性、保护人身安全、设备安全和电磁环境等的一项合理的重要技术手段,而谐振接地实施技术更充分发挥谐振接地方式的功能,使谐振接地方式具有更好的技术经济指标。

随著电网的不断发展和丰富的实践结果表明,以谐振接地方式为代表的小电流接地方式优于其他接地方式,这是配电网的中性点接地方式发展的总趋势,在今后的配电网接地方式中应推广应用。

本论文提出的思路、方案和结论不仅对于lOkV配电网中性点接地方式选择研究、实际工程应用具有实际的参考作用,对于其他电压等级中性点接地方式选择同样具有借鉴的作用。

电力系统的基本功能是向用户输送电能。

lOkV配电网是连接供电电源与工业、商业及生活用电的枢纽,其网络庞大及复杂。

对于所有用户都期望以最低的价格买到具有高度可靠性的电能。

然而,经济性与可靠性这两个因素是互相矛盾的。

要提高供电网络的可靠性就必须增加网络建设投资成本。

但是,如果提高可靠性使用户停电损失的降低小于用于提高可靠性所增加的投资,那么这种建设投资就没有价值了。

通过计算电网的投资和用户停电的损失,最终可找到一个平衡点,使投资和损失的综合经济性最优。

论文针对配电网各种接线模式的特点,就各种接线模式的经济性和可靠性进行了分析。

3 小结论文首先介绍lOkV配电网各种典型的接线模式和国外几个国家的典型接线模式,然后确定配电网接线模式分析的思路,明确进行分析的必要性和重要性。

再提出最优分段数计算的必要性,阐述最优分段数对经济性和可靠性的影响,然后建立最优分段数计算模型,并简单介绍各种接线模式的供电方案。

而后对配电网各种接线模式的可靠性和经济性进行了计算和分析,通过计算并描绘的各种图表。

并对最优分段数作了分析和讨论。

文章最后对各种接线模式的经济性和可靠性进行总结,分析了各种接线模式各自的优点和缺点,其适用情况。

并结合实际情况针对lOkV配电网的规划和建设提出有益的建议。

为lOkV配电网的规划设计及为建成网架坚实、布局合理、管理科学、能够安全、优质、高效运行的配电网提供理论的依据和有益的指引。

Power Supply and Distribution SystemABSTRACT:The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, allcostumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable.To improve the reliability of the power supply network, we must increase the investment cost of the network construction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less thanthe increasing investment on improving the reliability .Thus we find out a balance point to make the most economic,between the investment and the loss by calculating the investment on power net and the loss brought from power-off.KEYWORDS:power supply and distribution, power distribution reliability,reactive compensation, load distributionThe revolution of electric power system has brought a new big round construction,which is pushing the greater revolution of electric power technique along with the application of new technique and advanced equipment. Especially, the combination of the information technique and electric power technique, to great ex- tent, has improved reliability on electric quality and electric supply. The technical development decreases the cost on electric construction and drives innovation of electric network. On the basis of national and internatio- nal advanced electric knowledge, the dissertation introduces the research hotspot for present electric power sy- etem as following.Firstly, This dissertation introduces the building condition of distribution automation(DA), and brings forward two typical construction modes on DA construction, integrative mode and fission mode .It emphasize the DA structure under the condition of the fission mode and presents the system configuration, the main station scheme, the feeder scheme, the optimized communication scheme etc., which is for DA research reference.Secondly, as for the (DA) trouble measurement, position, isolation and resume, This dissertation analyzes the changes of pressure and current for line problem, gets math equation by educing phase short circuit and problem position under the condition of single-phase and works out equation and several parameter s U& , s I& and e I& table on problem . It brings out optimized isolation and resume plan, realizes auto isolation and network reconstruction, reduces the power off range and time and improves the reliability of electric power supply through problem self- diagnoses and self-analysis. It also introduces software flow and use for problem judgement and sets a model on network reconstruction and computer flow.Thirdly, electricity system state is estimated to be one of the key techniques in DA realization. The dissertation recommends the resolvent of bad measurement data and structure mistake on the ground of describing state estimate way. It also advances a practical test and judging way on topology mistake in state estimate about bad data test and abnormity in state estimate as well as the problem and effect on bad data from state measure to state estimate .As for real time monitor and control problem, the dissertation introduces a new way to solve them by electricity break and exceptional analysis, and the way has been tested in Weifang DA.Fourthly, about the difficulty for building the model of load forecasting, big parameter scatter limit and something concerned, the dissertation introduces some parameters, eg. weather factor, date type and social environment effect based on analysis of routine load forecasting and means. It presents the way for electricity load forecasting founded on neural network(ANN),which has been tested it’s validity by example and made tobe good practical effect.Fifthly, concerning the lack of concordant wave on preve nting concordant wave and non-power compensation and non-continuity on compensation, there is a topology structure of PWM main circuit and nonpower theory on active filter the waves technique and builds flat proof on the ground of Saber Designer and proves to be practical. Meanwhile, it analyzes and designs the way of non-power need of electric network tre- nds and decreasing line loss combined with DA, which have been tested its objective economic benefit throu- gh counting example.Sixthly, not only do the dissertation design a way founded on the magrginal electric price fitted to our present national electric power market with regards to future trends of electric power market in China and fair trade under the government surveillance, that is group competitio n in short-term trade under the way of grouped price and quantity harmony, but also puts forward combination arithmetic, math model of trading plan and safty economical restriction. It can solve the original contradiction between medium and long term contract price and short term competitive price with improvement on competitive percentage and cut down the unfair income difference of electric factory, at the same time, it can optimize the electric limit for all electric factories and reduce the total purchase charge of electric power from burthen curve of whole electric market network.The distribution network is an important link among the power system. Its neutral grounding mode and operation connects security and stability of the power system directly. At the same time, the problem about neutral grounding is associated with national conditions, natural environment, device fabrication and operation. For example, the activity situation of the thunder and lightning, insulating structure and the peripheral interference will influence the choice of neutral grounding mode Conversely, neutral grounding mode affects design, operation, debugs and developing. Generally in the system higher in grade in the voltage, the insulating expenses account for more sizable proportion at the total price of the equipment. It is very remarkable to bring the economic benefits by reducing the insulating level. Usually such system adopt the neutral directly grounding and adopt the autoreclosing to guarantee power supply reliability. On the contrary, the system which is lower in the voltage adopts neutral none grounding to raise power supply reliability. So it is an important subject to make use of new- type earth device to apply to the distribution network under considering the situation in such factors of various fields as power supply reliability, safety factor, over-voltage factor, the choice of relay protection, investment cost, etc.The main work of this paper is to research and choice the neutral grounding mode of the l0kV distribution network. The neutral grounding mode of the l0kV network mainly adopts none grounding, grounding by arc suppressing coil, grounding by reactance grounding and directly grounding. The best grounding mode is confirmed through the technology comparison. It can help the network run in safety and limit the earth electric arc by using auto-tracking compensate device and using the line protection with the detection of the sensitive small ground current. The paper introduces and analyzes the characteristic of all kindof grounding modes about l0kV network at first. With the comparison with technological and economy, the conclusion is drawn that the improved arc suppressing coil grounding mode shows a very big development potential.Then, this paper researches and introduces some operation characteristics of the arc suppressing coil grounding mode of the l0kV distribution network. And then the paper put emphasis on how to extinguish the earth electric arc effectively by utilizing the resonance principle. This paper combines the development of domestic and international technology and innovative achievement, and introduces the computer earth protection and autotracking compensate device. It proves that the improved arc suppressing coil grounding mode have better operation characteristics in power supply reliability, personal security, security of equipment and interference of communication. The application of the arc suppressing coil grounding mode is also researched in this paper.Finally, the paper summarizes this topic research. As a result of the domination of the arc suppressing coil grounding mode, it should be more popularized and applied in the distribution network in the future.The way of thinking, project and conclusions in this thesis have effect on the research to choose the neutral grounding mode not only in I0kV distribution network but also in other power system..The basic function of the electric power system is to transport the electric power towards customers. The l0kV electric distribution net is a key point that connects the power supply with the electricity using on the industry, business and daily-life. For the electric power, all costumers expect to pay the lowest price for the highest reliability, but don't consider that it's self-contradictory in the co-existence of economy and reliable. To improve the reliability of the power supply network, we must increase the investment cost of the network con- struction But, if the cost that improve the reliability of the network construction, but the investment on this kind of construction would be worthless if the reducing loss is on the power-off is less than the increasing investment on improving the reliability .Thus we find out a balance point to make the most economic, between the investment and the loss by calculating the investment on power net and the loss brought from power-off. The thesis analyses on the economic and the reliable of the various line modes, according to the characteristics various line modes existed in the electric distribution net in foshan..First, the thesis introduces as the different line modes in the l0kV electric distribution net and in some foreign countries. Making it clear tow to conduct analyzing on the line mode of the electric distribution net, and telling us how important and necessary that analyses are.Second, it turns to the necessity of calculating the number of optimization subsection, elaborating how it influences on the economy and reliability. Then by building up the calculation mode of the number of optimization subsection it introduces different power supply projects on the different line modes in brief. Third, it carries on the calculation and analyses towards the reliability and economy of the different line modes of electric distribution net, describing drafts according by the calculation. Then it makes analysis and discussion on the number of optimization subsection.At last, the article make conclusion on the economy and reliability of different line modes, as well as, its application situation. Accordion to the actual circumstance, the thesis puts forward the beneficial suggestion on the programming and construction of the l0kV electric distribution net in all areas in foshan. Providing the basic theories and beneficial guideline for the programming design of the lOkV electric distribution net and building up a solid net, reasonable layout, qualified safe and efficiently-worked electric distribution net. References。

相关文档
最新文档