苏教版数学高一数学必修一练习指数函数(一)

合集下载

高一数学-指数函数第1课时

高一数学-指数函数第1课时

y 2 与 y ( )
x
1 2
x
y 2
x
x
y 3 与 y ( )
x
1 3
y 3
x
观察右边图象,回答下列问题: 问题一: 图象分别在哪几个象限?
Ⅰ、Ⅱ 答四个图象都在第____象限。
1 x y( ) 1 x 3 y( ) 2
y=3X
Y
y = 2x
Y=1
问题二: 图象的上升、下降与底数a有联系吗?
2^x
第一次
第二次 第三次 第x次
表达式
y=2 …………
……
x
细胞个数y关于分裂次数x的表达式为
引例2:某种商品的价格从今年起每年降低15%,设 原来的价格为1,x年后的价格为y,则y与x的函数 关系式? 列表: x y 1 0.85 2
2
3
4
5
6
0.85
6
0.85 0.85 3 0.85 4 0.85 5
整理得:x 2 x 3 0
2
解得:
3 x 1
原不等式的解集为:{ x | 3 x 1}
练习: 一、判断大小
二、解下列不等式
4
0 .3


4
0 .4
① 2
x x
2
( )
1 4
x2
0.1
0 .3
0 .1 3 3
0 .4
0.3
( 3 x 1)( 2 x 1)
2. 搭桥比较法: 用特殊的数1或0.
应用示例: 例1、求下列函数的定义域:

y 2
x 1
3 x
2
1 ② y 3
解: ① ②

2022-2022学年[苏教版]高一数学必修一312《指数函数》同步练习(含答案)

2022-2022学年[苏教版]高一数学必修一312《指数函数》同步练习(含答案)

2022-2022学年[苏教版]高一数学必修一312《指数函数》同步练习(含答案)2.2.2指数函数1.下列以某为自变量的函数中,是指数函数的序号是__________.+①y=(-4)某②y=π某③y=-4某④y=a某2(a>0且a≠1)⑤y=(a+1)某(a>-1且a≠0)1-2.方程3某1=的解是__________.93.指数函数y=f(某)的图象经过点(2,4),那么f(-1)·f(3)=__________.4.指数函数y=(2m-1)某是单调减函数,则m的取值范围是__________.5.设f(某)=3某+2,则函数f(某)的值域为__________.6.函数y=1-3某的定义域是__________.7.右图是指数函数①y=a某;②y=b某;③y=c某;④y=d某的图象,则a、b、c、d与1的大小关系是__________.-8.(1)已知函数f(某)=4+a某2(a>0,a≠1)的图象恒过定点P,则点P的坐标是__________.(2)函数f(某)=a某2+2某-3+m(a>1)恒过点(1,10),则m=__________.1-9.设y1=40.9,y2=80.48,y3=()1.5,则y1、y2、y3的大小关系为__________.21110.为了得到函数y=3某()某的图象,可以把函数y=()某的图象向__________平移33__________个单位长度.-11.函数y=2某1+1的图象是由函数y=2某的图象经过怎样的平移得到的?12.已知函数f(某)的定义域为[,4],求函数f(2某)的定义域.213.已知镭经过100年剩余的质量是原来质量的0.9576,设质量为1的镭经过某年后,剩留量是y,求y关于某的函数关系式.14.函数y=()3某-1的值域是__________.15.下列说法中,正确的序号是__________.函数y=-e某的图象:①与y=e某的图象关于y轴对称;②与y=e某的图象关于坐标原--点对称;③与y=e某的图象关于某轴对称;④与y=e某的图象关于y轴对称;⑤与y=e某-的图象关于坐标原点对称;⑥与y=e某的图象关于某轴对称.16.(1)已知指数函数f(某)=a某(a>0且a≠1)的图象经过点(3,π),则f(-3)的值为__________;(2)函数y=a某(a>0,且a≠1)在[1,2]上的最大值与最小值的和为6,则a的值为__________.17.一种单细胞生物以一分为二的方式进行繁殖,每三分钟分裂一次,假设将一个这种细胞放在一个盛有营养液的容器中,恰好一小时这种细胞充满容器,假设开始将两个细胞放入容器,同样充满容器的时间是__________分钟.a,某>1,18.(易错题)若函数f(某)=是R上的单调增函数,则实数a的取值a4-某+2,某≤12范围是__________.某19.下列四个图形中,是函数y=a|某|(a>1)的大致图象的序号是__________.1120.已知实数a,b满足等式()a=()b,下列五个关系式:23①0其中不可能成立的关系式有__________个.21.设函数f(某)定义在实数集上,它的图象关于直线某=1对称,且当某≥1时,f(某)=1233某-1,则f(),f(),f()的大小关系是__________.33222.已知函数f(某)=-m(m为常数)是奇函数,则m=__________.2+1某23.(1)已知02-1,某≤0,24.(1)设函数f(某)=1若f(某0)>1,则某0的取值范围是__________.某,某>0.211(2)若某1、某2为方程2某=()-+1的两个实数解,则某1+某2=.2某1125.(易错题)(1)函数f(某)=()某-()某+1,某∈[-3,2]的值域是__________;42(2)已知函数y=a2某+2a某-1(a>0,且a≠1)在区间[-1,1]上有最大值14,则a的值为__________.11326.已知函数f(某)=(某+)·某.2-12(1)求f(某)的定义域;(2)讨论f(某)的奇偶性;(3)证明f(某)>0.-某27.讨论函数f(某)=()某2-2某的单调性,并求其值域.528.分别比较函数f(某)=2某2-2某-1,g(某)=(2)某2-2某-1与函数y=某2-2某-1的单调性之间的关系.答案与解析基础巩固1.②⑤由指数函数的定义知①③④不是指数函数;②是;⑤∵a>-1且a≠0,∴a+1>0且a+1≠1.∴y=(a+1)某(a>-1且a≠0)是指数函数.1---2.-1由=32,知3某1=32,9∴某-1=-2,即某=-1.3.4设f(某)=a某,由题意f(2)=4,即a2=4.又a>0且a≠1,∴a=2.∴f(某)=2某.-∴f(-1)·f(3)=21·23=22=4.114.<m<1由指数函数的性质知0<2m-1<1,∴<m<1.225.(2,+∞)∵3某>0,∴3某+2>2,即f(某)>2,∴f(某)的值域为(2,+∞).6.(-∞,0]要使函数有意义,必须1-3某≥0,即3某≤1,3某≤30,∴某≤0.∴函数的定义域为(-∞,0].7.b<a<1<d<c直线某=1与四个指数函数图象交点的坐标分别为(1,a),(1,b),(1,c),(1,d).由图象可知纵坐标的大小关系,即得答案.8.(1)(2,5)(2)9(1)函数图象随变量a的变化而变化,但恒有当某=2时,f(2)=4+a0=5,∴P(2,5).(2)∵f(某)恒过点(1,10),∴把(1,10)点代入解析式得a12+2某1-3+m=10,即m+a0=10,∴m=9.某9.y2<y3<y1y1=(22)0.9=21.8,y2=(23)0.48=230.48=21.44,y3=21.5,∵y=2某为R上的单调增函数,且1.44<1.5<1.8,∴21.44<21.5<21.8,即y2<y3<y1.11-110.右1∵y=3某()某=()某1,∴把函数y=()某的图象向右平移1个单位长度便得3331-1到y=()某1的图象,即y=3某()某的图象.3311.解:∵指数函数y=2某的图象向右平移一个单位长度,就得到函数y=2某1的图象.再-向上平移一个单位长度,就得到函数y=2某1+1的图象.-∴函数y=2某1+1的图象是由函数y=2某的图象向右平移一个单位长度再向上平移一个单位长度而得到的.-12.解:∵f(某)的定义域为[,4],21-∴≤2某≤4,即21≤2某≤22.2又函数y=2某是R上的增函数,∴-1≤某≤2.故函数f(2某)的定义域为[-1,2].13.解:由题意知,一百年后质量为1的镭剩留量y1=1某0.9576=0.95761,二百年后质量为1的镭剩留量y2=y1某0.9576=0.9576某0.9576=0.95762,…,某百年后质量为1的镭剩留量y=(0.9576)某,某∴某年后,y=0.9576.100能力提升14.(0,1]方法一(单调性法):∵函数的定义域为[1,+∞),且u=某-1为增函数,y=()u为减函数,3∴由复合函数的单调性知,原函数为减函数.∴当某=1时yma某=1.又指数函数值域为y>0,。

数学苏教版必修1指数函数(教案)

数学苏教版必修1指数函数(教案)

指数函数(一)教学目标:使学生理解指数函数的概念,并能正确作出其图象,掌握指数函数的性质;培养学生观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;培养学生发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。

教学重点:指数函数的概念、图象、性质教学难点:指数函数的图象、性质教学过程:教学目标(一)教学知识点1.指数函数.2.指数函数的图象、性质.(二)能力训练要求1.理解指数函数的概念.2.掌握指数函数的图象、性质.3.培养学生实际应用函数的能力.(三)德育渗透目标1.认识事物之间的普遍联系与相互转化.2.用联系的观点看问题.3.了解数学知识在生产生活实际中的应用.●教学重点指数函数的图象、性质.●教学难点指数函数的图象性质与底数a的关系.●教学方法学导式引导学生结合指数的有关概念来理解指数函数的概念,并向学生指出指数函数的形式特点,在研究指数函数的图象时,遵循由特殊到一般的研究规律,要求学生自己作出特殊的较为简单的指数函数的图象,然后推广到一般情况,类比地得到指数函数的图象,并通过观察图象,总结出指数函数的性质,而且是分a>1与0<a<1两种情形.●教具准备幻灯片三张第一张:指数函数的图象与性质(记作§2.6.1 A)第二张:例1 (记作§2.6.1 B)第三张:例2 (记作§2.6.1 C)●教学过程Ⅰ.复习回顾[师]前面几节课,我们一起学习了指数的有关概念和幂的运算性质.这些知识都是为我们学习指数函数打基础.现在大家来看下面的问题:某种细胞分裂时,由1个分裂成2个,2个分裂成4个……1个这样的细胞分裂x次后,得到的细胞个数y 与x 的函数关系式是y =2x这个函数便是我们将要研究的指数函数,其中自变量x 作为指数,而底数2是一个大于0且不等于1的常量.下面,我们给出指数函数的定义. Ⅱ.讲授新课 1.指数函数定义一般地,函数y =a x (a >0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R .[师]现在研究指数函数y =a x (a >0且a ≠1)的图象和性质,先来研究a >1的情形.例如,我们来画y =2x 的图象列出x ,y 的对应值表,用描点法画出图象:例如,我们来画y =2-x 的图象.可得x ,y 的对应值,用描点法画出图象.也可根据y =2-x 的图象与y =2x 的图象关于y 轴对称,由y =2x 的图象对称得到y =2-x 即y =(21)x的图象. 我们观察y =2x 以及y =2-x 的图象特征,就可以得到y =a x (a >1)以及y =a x (0<a <1)的图象和性质.3.例题讲解[例1]某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩留量是原来的一半(结果保留1个有效数字).分析:通过恰当假设,将剩留量y 表示成经过年数x 的函数,并可列表、描点、作图,进而求得所求.解:设这种物质最初的质量是1,经过x 年,剩留量是y . 经过1年,剩留量y =1×84%=0.841; 经过2年,剩留量y =0.84×84%=0.842; ……一般地,经过x 年,剩留量y =0.84x 根据这个函数关系式可以列表如下: 0.500.420.35用描点法画出指数函数y =0.84的图象.从图上看出y =0.5只需x ≈4.答:约经过4年,剩留量是原来的一半. 评述:(1)指数函数图象的应用. (2)数形结合思想的体现.[例2]说明函数y =2x +1与y =2x 的图象的关系,并画出它们的示意图.分析:做此题之前,可与学生一起回顾初中接触的二次函数平移问题. 解:比较函数y =2x +1与y =2x 的关系: y =2-3+1与y =2-2相等, y =2-2+1与y =2-1相等, y =22+1与y =23相等, ……由此可以知道,将指数函数y =2x 的图象向左平行移动一个单位长度,就得到函数y =2x +1的图象.评述:此题目的在于让学生了解图象的平移变换,并能逐步掌握平移规律.Ⅲ.课堂练习 1.课本P 74练习1在同一坐标系中,画出下列函数的图象: (1)y =3x ;(2)y =(31)x . 2.课本P 73例2(2).说明函数y =2x -2与指数函数y =2x 的图象的关系,并画出它们的示意图.解:比较y =2x -2与y =2x 的关系y =2-1-2与y =2-3相等, y =20-2与y =2-2相等,y =23-2与y =21相等, ……由此可以知道,将指数函数y =2x 的图象向右平移2个单位长度,就得到函数y =2x -2的图象.Ⅳ.课时小结[师]通过本节学习,大家要能在理解指数函数概念的基础上,掌握指数函数的图象和性质,并会简单的应用.Ⅴ.课后作业(一)1.在同一坐标系里画出下列函数图象: (1)y =10x ; (2)y =(101)x. 2.作出函数y =2x -1和y =2x +1的图象,并说明这两个函数图象与y =2x 的图象关系.答:如图所示,函数y =2x -1的图象可以看作是函数y =2x 的图象向右平移两个单位得到.函数y =2x +1的图象可以看作是函数y =2x 的图象向上平移1个单位得到(二)1.预习内容: 课本P 73例3 2.预习提纲:(1)同底数幂如何比较大小?(2)不同底数幂能否直接比较大小? ●板书设计Ⅰ.复习引入引例1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系是什么?分裂次数:1,2,3,4,…,x 细胞个数:2,4,8,16,…,y由上面的对应关系可知,函数关系是 y =2x .引例2:某种商品的价格从今年起每年降低15%,设原来的价格为1,x 年后的价格为y ,则y 与x 的函数关系式为 y =0.85x .在y =2x , y =0.85x 中指数x 是自变量,底数是一个大于0且不等于1的常量.我们把这种自变量在指数位置上而底数是一个大于0且不等于1的常量的函数叫做指数函数.Ⅱ.讲授新课1.指数函数的定义函数y =a x (a >0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R探究1:为什么要规定a >0,且a ≠1呢?①若a =0,则当x >0时,a x =0;当x ≤0时,a x 无意义.②若a <0,则对于x 的某些数值,可使a x 无意义. 如y =(-2)x ,这时对于x =14 ,x =12 ,…等等,在实数范围内函数值不存在.③若a =1,则对于任何x ∈R ,a x =1,是一个常量,没有研究的必要性.为了避免上述各种情况,所以规定a >0且a ≠1。

苏教版高中学案数学必修第一册 第6章 幂函数、指数函数和对数函数 幂函数、指数函数与对数函数的综合

苏教版高中学案数学必修第一册 第6章 幂函数、指数函数和对数函数 幂函数、指数函数与对数函数的综合

函数,且 = ( − )在(, +∞)上是增函数,所以()在(, +∞)上是增函数.
∣ + ∣> ,
由( + ) < ()得(| + |) < (||),所以ቐ∣ ∣> ,
所以
∣ + ∣<∣ ∣,
( + ) > ,
第6章 幂函数、指数函数和对数函数
午练23 幂函数、指数函数与对数函数的综合
1
1.当0 < ≤ 时,4 < log ,则实数的取值范围是() B
2
A.(0,
2
2
)B.( , 1)C.(1,
2
2
2)D.( 2, 2)
[解析]易知 < < ,则函数 = 与 = 的图象大致如图所示,只需满足
C.()在定义域内是偶函数D.()的图象关于直线 = 1对称
[解析]由| − | > ,得函数 = | − |的定义域为{| ≠ }.设
− , > ,
() =∣ − ∣= ቊ
则()在(−∞, )上单调递减,在(, +∞)上单调递
或 = .当 = 时,得 = ,解得 = .当 = 时,得 = ,即 = .
所以函数的定义域为[, ]( ≤ ),
所以当 = , = 时, + 最大为3.
9.已知()是定义在[−2,2]上的奇函数,当 ∈ (0,2]时,() = 2 − 1,函数
1
2
1
4
因为() = log 2 (2 − 4 ) = log 2 [−(2 )2 + 2 ] = log 2 [−(2 − )2 + ],所以当

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析

高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。

高一数学上册 指数函数知识点及练习题含答案

高一数学上册 指数函数知识点及练习题含答案

课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。

高一数学必修 指数函数试题及答案

高一数学必修 指数函数试题及答案

高一数学必修1指数函数试题及答案1.已知集合M={-1,1},N=x12<2x+1<4,x∈Z,则M∩N等于( ) A.{-1,1} B.{-1}C.{0} D.{-1,0}【解析】因为N={x|2-1<2x+1<22,x∈Z},又函数y=2x在R上为增函数,∴N={x|-1<x+1<2,x∈Z}={x|-2<x<1,x∈Z}={-1,0}.∴M∩N={-1,1}∩{-1,0}={-1}.故选B.【答案】 B2.设14<14b<14a<1,那么( )A.aa<ab<ba B.aa<ba<abC.ab<aa<ba D.ab<ba<aa【解析】由已知及函数y=14x是R上的减函数,得0<a<b<1.由y=ax(0<a<1)的单调性及a<b,得ab<aa.由0<a<b<1知0<ab<1.∵aba<ab0=1.∴aa<ba.故选C.也可采用特殊值法,如取a=13,b=12.【答案】 C3.已知函数f(x)=a-12x+1,若f(x)为奇函数,则a=________. 【解析】解法1:∵f(x)的定义域为R,又∵f(x)为奇函数,∴f(0)=0,即a-120+1=0.∴a=12.解法2:∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=12x+1-a,解得a=12.【答案】124.函数y=2-x2+ax-1在区间(-∞,3)内递增,求a的取值范围.【解析】对u=-x2+ax-1=-x-a22+a24-1,增区间为-∞,a2,∴y的增区间为-∞,a2,由题意知3≤a2,∴a≥6.∴a的取值范围是a≥6.一、选择题(每小题5分,共20分)1.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A.y3>y1>y2 B.y2>y1>y3C.y1>y2>y3 D.y1>y3>y2【解析】y1=40.9=21.8,y2=80.48=21.44,y3=(12)-1.5=21.5,∵y=2x在定义域内为增函数,且1.8>1.5>1.44,∴y1>y3>y2.【答案】 D2.若142a+1<143-2a,则实数a的取值范围是( )A.12,+∞B.1,+∞C.(-∞,1) D.-∞,12【解析】函数y=14x在R上为减函数,∴2a+1>3-2a,∴a>12.故选A.【答案】 A3.设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则有( )A.f(13)<f(32)<f(23)B.f(23)<f(32)<f(13)C.f(23)<f(13)<f(32)D.f(32)<f(23)<f(13)【解析】因为f(x)的图象关于直线x=1对称,所以f(13)=f(53),f(23)=f(43),因为函数f(x)=3x-1在[1,+∞)上是增函数,所以f(53)>f(32)>f(43),即f(23)<f(32)<f(13).故选B.【答案】 B4.如果函数f(x)=(1-2a)x在实数集R上是减函数,那么实数a的取值范围是( ) A.(0,12) B.(12,+∞)C.(-∞,12) D.(-12,12)【解析】根据指数函数的概念及性质求解.由已知得,实数a应满足1-2a>01-2a<1,解得a<12a>0,即a∈(0,12).故选A.【答案】 A二、填空题(每小题5分,共10分)5.设a>0,f(x)=exa+aex(e>1),是R上的偶函数,则a=________.【解析】依题意,对一切x∈R,都有f(x)=f(-x),∴exa+aex=1aex+aex,∴(a-1a)(ex-1ex)=0.∴a-1a=0,即a2=1.又a>0,∴a=1.【答案】 16.下列空格中填“>、<或=”.(1)1.52.5________1.53.2,(2)0.5-1.2________0.5-1.5.【解析】(1)考察指数函数y=1.5x.因为1.5>1,所以y=1.5x在R上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2.(2)考察指数函数y=0.5x.因为0<0.5<1,所以y=0.5x在R上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.【答案】<,<三、解答题(每小题10分,共20分)7.根据下列条件确定实数x的取值范围:a<1a1-2x(a>0且a≠1).【解析】原不等式可以化为a2x-1>a12,因为函数y=ax(a>0且a≠1)当底数a大于1时在R上是增函数;当底数a大于0小于1时在R上是减函数,所以当a>1时,由2x-1>12,解得x>34;当0<a<1时,由2x-1<12,解得x<34.综上可知:当a>1时,x>34;当0<a<1时,x<34.8.已知a>0且a≠1,讨论f(x)=a-x2+3x+2的单调性.【解析】设u=-x2+3x+2=-x-322+174,则当x≥32时,u是减函数,当x≤32时,u是增函数.又当a>1时,y=au是增函数,当0<a<1时,y=au是减函数,所以当a>1时,原函数f(x)=a-x2+3x+2在32,+∞上是减函数,在-∞,32上是增函数.当0<a<1时,原函数f(x)=a-x2+3x+2在32,+∞上是增函数,在-∞,32上是减函数.9.(10分)已知函数f(x)=3x+3-x.(1)判断函数的奇偶性;(2)求函数的单调增区间,并证明.【解析】(1)f(-x)=3-x+3-(-x)=3-x+3x=f(x)且x∈R,∴函数f(x)=3x+3-x是偶函数.(2)由(1)知,函数的单调区间为(-∞,0]及[0,+∞),且[0,+∞)是单调增区间.现证明如下:设0≤x1<x2,则f(x1)-f(x2)=3x1+3-x1-3x2-2-x2=3x1-3x2+13x1-13x2=3x1-3x2+3x2-3x13x13x2=(3x2-3x1)?1-3x1+x23x1+x2.∵0≤x1<x2,∴3x2>3x1,3x1+x2>1,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数在[0,+∞)上单调递增,即函数的单调增区间为[0,+∞).。

凤凰新学案 高中数学 苏教版 必修第一册 练习本第1章

凤凰新学案 高中数学 苏教版 必修第一册 练习本第1章

! 001 " #!$%第1课时 集合的概念与表示(1) /123第2课时 集合的概念与表示(2) /123第3课时 子集、全集、补集 /123第4课时 交集、并集 /123章末复习 考点聚焦&素养提升 /123" #!&'()'*第1课时 命题、定理、定义 /123第2课时 充分条件、必要条件、充要条件(1) /123第3课时 充分条件、必要条件、充要条件(2) /123第4课时 全称量词命题与存在量词命题 /123第5课时 全称量词命题与存在量词命题的否定 /123章末复习 考点聚焦&素养提升 /123综合测试 第1,2章集合与常用逻辑用语(见测试卷)" #!+,-第1课时 不等式的基本性质 /123第2课时 基本不等式的证明(1) /123第3课时 基本不等式的证明(2) /123第4课时 基本不等式的应用(1) /123第5课时 基本不等式的应用(2) /123第6课时 基本不等式的应用(3) /123第7课时 从函数观点看一元二次方程 /123第8课时 从函数观点看一元二次不等式(1) /123第9课时 从函数观点看一元二次不等式(2) /123第10课时 从函数观点看一元二次不等式(3) /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第3章不等式(见测试卷)" #!./01/第1课时 指数(1) /123第2课时 指数(2) /123第3课时 对数(1) /123第4课时 对数(2) /123第5课时 对数(3) /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第4章指数与对数(见测试卷)" #!2/34056第1课时 函数的概念和图象(1) /123第2课时 函数的概念和图象(2) /123第3课时 函数的概念和图象(3) /123第4课时 函数的表示方法(1) /123第5课时 函数的表示方法(2) /123综合小练 函数的概念、图象及表示方法 /123第6课时 函数的单调性(1) /123第7课时 函数的单调性(2) /123第8课时 函数的奇偶性(1) /123第9课时 函数的奇偶性(2) /123综合小练 函数的单调性、奇偶性 /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第5章函数概念与性质(见测试卷)阶段测试 第1~5章(见测试卷)" #!72/8./2/81/2/第1课时 幂函数(1) /123第2课时 幂函数(2) /123第3课时 指数函数(1) /123第4课时 指数函数(2) /123第5课时 指数函数(3) /123第6课时 指数函数(4) /123综合小练 指数函数 /123第7课时 对数函数(1) /123第8课时 对数函数(2) /123第9课时 对数函数(3) /123综合小练 对数函数 /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第6章幂函数、指数函数、对数函数(见测试卷)" #!9:2/第1课时 任意角 /123第2课时 弧度制 /123第3课时 任意角的三角函数(1) /123第4课时 任意角的三角函数(2) /123第5课时 同角三角函数关系(1) /123第6课时 同角三角函数关系(2) /123第7课时 三角函数的诱导公式(1) /123第8课时 三角函数的诱导公式(2) /123综合小练 三角函数概念 /123第9课时 三角函数的周期性 /123第10课时 三角函数的图象与性质(1) /123第11课时 三角函数的图象与性质(2) /123第12课时 三角函数的图象与性质(3) /123第13课时 三角函数的图象与性质(4) /123第14课时 函数狔=犃sin(ω狓+φ)(1) /123第15课时 函数狔=犃sin(ω狓+φ)(2) /123综合小练 三角函数的图象和性质 /123第16课时 三角函数的应用 /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第7章三角函数(见测试卷)" #!2/;'第1课时 函数的零点(1) /123第2课时 函数的零点(2) /123第3课时 用二分法求方程的近似解 /123第4课时 几个函数模型的比较 /123第5课时 函数的实际应用(1) /123第6课时 函数的实际应用(2) /123章末复习 考点聚焦&素养提升(1) /123章末复习 考点聚焦&素养提升(2) /123综合测试 第8章函数应用(见测试卷)阶段测试 第6~8章(见测试卷)阶段测试 第1~8章(见测试卷)002 !! 001 " <=!$%>?@ABCDE F1.下面给出的四类对象中构成集合的是( ) A.某班个子较高的同学B.中国长寿的人C.圆周率π的近似值D.倒数等于它本身的数2.(多选)下列判断中不正确的是( )A.π∈犙B.-5∈犣C.13∈犙D.-槡3 犚3.(多选)下列结论中错误的是( )A.{1,2,3,1}是由4个元素组成的集合B.集合{1}表示仅由一个“1”组成的集合C.犖中最小的数是1D.若-犪 犖,则犪∈犖4.由实数-狓,|狓|,狓槡2,狓组成的集合中含有元素的个数最多的是( )A.1B.2C.3D.45.已知集合犃中含有2,4,6这三个元素,若犪∈犃,且6-犪∈犃,则犪的值为( )A.2B.4C.6D.2或46.若1∈{狓|狓2+犪狓+犫+1=0},2∈{狓|狓2+犪狓-犫=0},则犪= ,犫= .7.集合犃中的元素由犪+犫槡2(犪∈犣,犫∈犣)组成,判断下列元素与集合犃的关系:(1)0; (2)1槡2-1; (3)1槡3-槡28.已知狓,狔都是非零实数,狕=狓|狓|+狔|狔|+狓狔|狓狔|可能的取值组成集合犃,则下列判断中正确的是( )A.3∈犃,-1 犃B.3∈犃,-1∈犃C.3 犃,-1∈犃D.3 犃,-1 犃9.集合{狓-1,狓2-1,2}中的狓不能取的值构成的集合是( )A.{1,3,槡3}B.{0,1,槡3,-槡3}C.{0,1,3,槡3}D.{0,1,3,槡3,-槡3}10.集合犃={狓|犪狓+1=0}中元素的个数为 .11.若-3∈{2狓-5,狓2-4狓,12},则狓的值为 .12.把可以表示成两个整数的平方之和的全体整数记作集合犕,试证明集合犕中的任意两个元素的乘积仍属于犕.13.设犛是满足下列两个条件的实数所构成的集合:①1∈犛;②若犪∈犛,则11-犪∈犛.请解答下列问题:(1)若2∈犛,则犛中必有另外两个数,求出这两个数;(2)自己设计一个数属于犛,然后求出犛中另外两个数;(3)从上面的解答过程中,你能得到什么结论?并大胆证明你发现的结论. 注:标 的题目供选做,下同.002 " <=!$%>?@ABCDE F1.下列集合的表示方法正确的是( )A.第二、四象限内的点集可表示为{(狓,狔)|狓狔≤0,狓∈犚,狔∈犚}B.不等式狓-1<4的解集为{狓<5}C.{全体整数}D.实数集可表示为犚2.(多选)下列说法中正确的是( )A.{1,2}{2,1}是两个不同的集合B.集合{(0,2)}有两个元素{}是有限集D.{狓∈犙|狓2+狓+2=0}是空集C.狓∈犣6狓∈犣3.下列集合中不同于另外三个集合的是( )A.{1}B.{狔∈犚|(狔-1)2=0}C.{狓=1}D.{狓|狓-1=0}4.(多选)下面各组集合中表示同一个集合的是( )A.犘={2,5},犙={5,2}B.犘={(2,5)},犙={(5,2)}C.犘={狓|狓=2犿+1,犿∈犣},犙={狓|狓=2犿-1,犿∈犣}D.犘={狓|狓=6犿,犿∈犣},犙={狓|狓=2犿且狓=3狀,犿∈犣,狀∈犣}5.(1)所有偶数组成的集合用描述法表示为 ;(2)平面直角坐标系内属于第三象限的点的集合用描述法表示为 ;(3)与3的倍数相差2的所有整数组成的集合用描述法表示为 .6.用列举法表示下列集合:(1){(狓,狔)|狓∈{0,1},狔∈{1,2}}= ;(2){狓|狓是数字和为5的两位数}= ;(3){(狓,狔)|2狓+5狔=20,狓∈犖,狔∈犖}= .7.已知集合犃={-1,3},犅={狓|狓2+犪狓+犫=0},且犃=犅,则犪犫= .8.已知集合犃={(狓,狔)|狓2+狔2≤3,狓∈犣,狔∈犣},则集合犃中元素的个数为( )A.9B.8C.5D.49.定义集合运算:犃 犅={狕|狕=狓狔(狓+狔),狓∈犃,狔∈犅}.若集合犃={0,1},犅={2,3},则集合犃 犅中所有元素之和为( )A.6B.12C.18D.36{},则集合犃= .(用列举法表示)10.已知集合犃=犪63-犪∈犖,犪∈犣 003 !。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.2指数函数(一)
一、基础过关
1.函数f(x)=(a2-3a+3)a x是指数函数,则a=________.
2.函数y=x
1
2的值域是__________________.
3.若函数y=(a2-1)x在(-∞,+∞)上为减函数,则实数a的取值范围是__________.4.如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x年可以增长到原来的y 倍,则函数y=f(x)的图象大致为________.(填序号)
5.函数y=⎝⎛⎭⎫
1
2x2-2x+2(0≤x≤3)的值域为______.
6.函数y=8-23-x(x≥0)的值域是________.
7.判断下列函数在(-∞,+∞)内是增函数,还是减函数?
(1)y=4x;(2)y=⎝⎛⎭⎫
1
8
x;(3)y=3
2
x
.
8.比较下列各组数中两个值的大小:
(1)0.2-1.5和0.2-1.7;
(2)
3
1
)
4
1
(和3
2
)
4
1
(;
(3)2-1.5和30.2.
二、能力提升
9.设函数f(x)=
⎩⎪

⎪⎧2x,x<0,
g(x),x>0.
若f(x)是奇函数,则g(2)=________.
10.函数y=a|x|(a>1)的图象是________.(填序号)
11.若f (x )=⎩⎪⎨⎪⎧
a x (x >1),⎝⎛⎭⎫4-a 2x +2 (x ≤1).是R 上的单调递增函数,则实数a 的取值范围为________.
12.求下列函数的定义域与值域:
(1)y =21x -4
;(2)y =⎝⎛⎭⎫23-|x |;(3)y =4x +2x +1+1. 三、探究与拓展
13.当a >1时,证明函数f (x )=a x +1a x -1是奇函数.
答案
1.2
2.(0,1)∪(1,+∞)
3.(-2,-1)∪(1,2)
4.④
5.⎣⎡⎦⎤132,12
6.[0,8)
7.解 (1)因为4>1,所以函数y =4x 在(-∞,+∞)内是增函数;
(2)因为0<18
<1,所以函数y =⎝⎛⎭⎫18x 在(-∞,+∞)内是减函数; (3)由于3x 2=(32)x ,并且32>1,
所以函数y =3x 2在(-∞,+∞)内是增函数.
8.解 (1)考虑函数y =0.2x .
因为0<0.2<1,
所以函数y =0.2x 在实数集R 上是单调减函数.
又因为-1.5>-1.7,
所以0.2-1.5<0.2-1.7.
(2)考虑函数y =(14)x .因为0<14
<1, 所以函数y =(14
)x 在实数集R 上是单调减函数. 又因为13<23,所以31)41(>32)4
1(. (3)2-1.5<20,即2-1.5<1;30<30.2,
即1<30.2,
所以2-1.5<30.2.
9.-14
10.②
11.[4,8)
12.解 (1)令x -4≠0,得x ≠4.
∴定义域为{x |x ∈R ,且x ≠4}.
∵1x -4
≠0, ∴21x -4≠1,∴y =21x -4
的值域为{y |y >0,且y ≠1}. (2)定义域为x ∈R .∵|x |≥0,∴y =⎝⎛⎭⎫23-|x |=⎝⎛⎭⎫32|x |≥⎝⎛⎭⎫320=1,故y =⎝⎛⎭
⎫23-|x |的值域为{y |y ≥1}. (3)定义域为x ∈R .因为y =4x +2x +1+1=(2x )2+2·2x +1=(2x +1)2,且2x >0, ∴y >1.故y =4x +2x +1+1的值域为{y |y >1}.
13.证明 由a x -1≠0,得x ≠0,故函数定义域为{x |x ≠0},易判断其定义域关于原点对称.
又f (-x )=a -x +1a -x -1=(a -x +1)a x
(a -x -1)a x
=1+a x
1-a x
=-f (x ), ∴f (-x )=-f (x ).
∴函数f (x )=a x +1a x -1
是奇函数.。

相关文档
最新文档