高分子材料化学重点知识点总结
高分子知识点资料整理总结

一名词解释体型缩聚:参加反应的单体只要有一种单体具有两个以上的官能团(即f>2),缩聚反应将向三个方向发展,生成支化或交联结构的三维体型大分子缩聚物的缩聚反应,这种聚合反应称为体型缩聚引发剂效率:引发剂分解后,往往只有一部分用来引发单体聚合,这部分引发剂占引发剂分解或消耗总量的分数称作引发剂效率自动加速现象:又称凝胶效应,是聚合反应进行到一定程度时,聚合速率显著上升的一种现象。
降解:达到生命周期的终结。
塑料降解是使聚合物分子量下降、聚合物材料(塑料)物性下降链柔性:指高分子链在绕单键内旋转自由度,内旋转可导致高分子链构象的变化,因为伴随着状态熵增大,自发地趋向于蜷曲状态的特性。
单体:是能起聚合反应或缩聚反应等合成高分子化合物的简单化合物逐步聚合:聚合反应缓慢逐步进行,每步反应的速率和活化能大致相同,链长逐步增长的聚合反应歧化终止:以某自由基夺取另一自由基的氢原子或其他原子而终止聚合反应的方式笼敝效应:虽然A、B相遇几率变低,当一旦相遇即具有很高的碰撞频率,总体看来其碰撞频率并不低于气相反应中的碰撞频率,因而发生反应的机会也较多。
交联:两个或者更多的分子相互键合交联成网络结构的体型分子的反应构型:共价键化合物分子中各原子在空间的相对排列关系。
结构单元:构成高分子链并决定高分子结构以一定方式连接起来的原子组合称为结构单元。
缩合聚合:指的是具有两个或两个以上反应官能团的单体之间反复发生缩合反应生成聚合物同时放出小分子的过程。
偶合终止:是指两个链自由基相互结合的终止。
诱导效应:由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,使分子发生极化的效应,叫诱导效应扩链:指使聚合物主链增长的过程构象:在有机化合物分子中,由C—C单键旋转而产生的原子或基团在空间排列的无数特定的形象称为构象。
二简答1,写出聚己二酰己二胺的聚合反应式以及单体的名称尼龙662.写出由对苯二甲酸+乙二醇得到的链状高分子的重复单元的化学结构式3.写出常用引发剂过硫酸钾亚硫酸盐体系的分子式和分解反应式。
高中化学有机合成材料总结知识点归纳

CH 2=CHC 6H 5合成材料一、合成高分子材料分类(结构)1、塑料【主要成分: 合成树脂及加工助剂】(1) 线型塑料(2) 体型塑料——酚醛塑料(网状)【单体:甲醛、苯酚】高压聚乙烯——低密度聚乙烯 相对分子质量低,有支链,熔点密度较低聚乙烯(PE)【单体: CH2=CH2】 低压聚乙烯——高密度聚乙烯相对分子质量高,支链极少甚至没有,熔点密度较高 △单键可旋转,聚乙烯具有一定弹性交联剂:二烯化合物(使高聚分子间发生交联,形成网状结构)酚醛树脂:用酚类(苯酚)与醛类(甲醛)在酸或碱的催化下相互缩合而成的高分子化合物。
①反应原理:酸性条件下,甲醛去氧,酚去邻对位的氢,生成线性酚醛树脂和水②酚醛树脂溶解性:线性酚醛树脂常温下为固体,缓慢溶于乙醇;加热时快速溶于乙醇 线性高分子容易软化,网状高分子受热后不能软化或熔融,也不溶于任何溶剂。
③在碱催化下,等物质的量的苯酚与甲醛(或过量的甲醛与苯酚)反应,生成羟甲基苯酚、二羟甲基苯酚、三羟甲基苯酚等,然后加热继续反应,就可以生成网状结构的酚醛树脂。
2、合成纤维3、合成橡胶+HCHOH +H +n(加成反应)聚乙烯醇,连有羟基,吸水性好①天然橡胶——聚异戊二烯 单体: 分类:特点:性能全面,易老化【注意】天然橡胶含有C=C ,易加成反应和易被氧化(老化)。
强氧化剂、卤素、有机物溶剂都易腐蚀橡胶(不用橡胶瓶塞)。
如:KMnO4溶液、浓HNO3、液溴、汽油、苯、四氯化碳等。
②合成橡胶 ○顺丁橡胶 A.顺式B.反式(顺)聚异戊二烯 三叶橡胶 (反)聚异戊二烯杜仲胶○丁苯橡胶SBR丁二烯和苯乙烯共聚而成的弹性体,合成丁苯橡胶1,3-丁二烯苯乙烯 ○硫化橡胶线性结构 网状结构加入硫化剂(硫磺)混炼硫化剂:打开化聚合物的碳碳双键,以—S —S —(硫硫键)将线性结构连接为网状结构二、功能高分子材料(引入特定官能团)1、高吸水性树脂①对天然吸水材料改性,在它们的高分子链上再接上强亲水性基团,提高其吸水能力 亲水性集团:-COOH 、-COONa 、-CHO 、-OH (极性化合物亲水) ②以带有强亲水性原子团的化合物作为单体,聚合得到亲水性高聚物C H 2C H C O O N a 一定条件C H 2C H O O N ann 聚丙烯酸钠 CH 2=CH-CH=CH 2 CH 2= CH肥皂【H3C—(CH2)n—COONa】皂化反应2、聚丙烯酸钠(尿不湿)3、高分子分离膜:(1)组成:高分子分离膜是用具有特殊分离功能的高分子材料制成的薄膜。
高分子材料化学重点知识点总结只是分享

第一章水溶性高分子水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。
造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。
日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。
壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。
1996年Donlar公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。
第二章、离子交换树脂离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。
(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。
离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。
(2)根据所交换离子的类型:阳离子交换树脂(-SO3H);阴离子交换树脂(-N+R3Cl-);两性离子交换树脂离子交换树脂的制备:(1)聚苯乙烯型:(方程式)离子交换树脂的选择性:高价离子,大半径离子优先离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10%NaCl溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。
药用高分子材料学复习重点

第一章绪论1、高分子分别在传统制剂、现代制剂中的作用答:在传统剂型中的应用的高分子材料:如作为片剂的赋形剂、黏合剂、润滑剂等。
在现代制剂中高分子作为应用在控释、缓释制剂和靶向制剂中,如做微丸的赋形剂、缓释包衣的衣膜以及特殊装置的器件。
包装用材料。
药用辅料的定义答:辅料是经过安全评价的、有助于剂型的制备以及保护、支持,提高药物或制剂有效成分稳定性和生物利用度的材料。
第二章高分子的结构、合成和化学反应聚合物的结构式答:聚乙烯(PE)聚丙烯(PP)聚苯乙烯(PS)聚氯乙烯(PVC)聚甲基丙烯酸甲脂(PMMA)聚乙酸乙烯酯(PV Ac)聚乙烯醇(PV A)纤维素尼龙-66按照性能和用途进行的高分子材料分类答:五大类,塑料、橡胶、纤维,涂料以及黏合剂。
热塑性塑料和热固性塑料的区别答:热塑性塑料——受热后软化,冷却后又变硬,这种软化和变硬可重复、循环,因此可以反复成型。
大吨位的品种有聚氯乙烯、聚乙烯、聚丙烯。
热固性塑料——是由单体直接形成网状聚合物或通过交联线型预聚体而形成,一旦形成交联聚合物,受热后不能再回复到可塑状态。
聚合过程(最后的固化阶段)和成型过程是同时进行的,所得制品不溶不熔。
热固性塑料的主要品种有酚醛树脂、氨基树脂、环氧树脂等。
柔性概念、影响因素答:(1)主链结构当主链中含C-O,C-N,Si-O键时,柔顺性好。
因为O、N原子周围的原子比C原子少,内旋转的位阻小;而Si-O-Si的键角也大于C-C-C键,因而其内旋转位阻更小,即使在低温下也具有良好的柔顺性。
当主链中含非共轭双键时,虽然双键本身不会内旋转,但却使相邻单键的非键合原子间距增大使内旋转较容易,柔顺性好。
当主链中由共轭双键组成时,由于共轭双键因p电子云重叠不能内旋转,因而柔顺性差,是刚性链。
(2)侧基侧基的极性越大,极性基团数目越多,相互作用越强,单键内旋转越困难,分子链柔顺性越差。
非极性侧基的体积越大,内旋转位阻越大,柔顺性越差;对称性侧基,可使分子链间的距离增大,相互作用减弱,柔顺性大。
药用高分子材料各章知识点总结

药用高分子材料各章知识点总结第一章一、 高分子材料的基本概念1、什么是高分子:高分子是指由多种原子以相同的、多次重复的结构单元并主要由共价键连接起来的、通常是相对分子量为104~106的化合物;2、单 体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子;即合成聚合物的起始原料;3、结构单元:在大分子链中出现的以单体结构为基础的原子团;即构成大分子链的基本结构单元;4、单体单元:聚合物中具有与单体相同化学组成而不同电子结构的单元;5、重复单元 Repeating unit ,又称链节:聚合物中化学组成和结构均可重复出现的最小基本单元;重复单元连接成的线型大分子,类似一条长链,因此重复单元又称为链节;高分子的三种组成情况1.由一种结构单元组成的高分子此时:结构单元=单体单元=重复单元说明:n 表示重复单元数,也称为链节数, 在此等于聚合度;由聚合度可计算出高分子的分子量:M=n. M0 式中:M 是高分子的分子量 M0 是重复单元的分子量2.另一种情况:结构单元=重复单元 单体单元结构单元比其单体少了些原子氢原子和氧原子,因为聚合时有小分子生成,所以此时的结构单元不等于单体单元;注意:对于聚烯烃类采用加成聚合的高分子结构单元与单体的结构是一致的,仅电子排布不同对于缩聚,开环聚合或者在聚合中存在异构化反应的高分子结构单元与单体的结构不一致3.由两种结构单元组成的高分子合成尼龙-66的特征:其重复单元由两种结构单元组成,且结构单元与单体的组成不尽相同,所以,不能称为单体单元;注意:1对于均聚物,即使用一种单体聚合所得的高分子,其结构单元与重复单元是相同的; 聚CH 2 CH CH 2-CH n CH 2 CH n单体体 n H 2N-(--CH 2-)-COOH --NH-(--CH 2-)-CO--n n H 2O +552对于共聚物,即使用两种或者两种以上的单体共同聚合所得的高分子,其结构单元与重复单元是不同的;二、高 分 子 的 命 名1、 习 惯 命 名 法天然高分子:一般有与其来源、化学性能与作用、主要用途相关的专用名称;如纤维素来源、核酸来源与化学性能、酶化学作用;合成高分子:1由一种单体合成的高分子:“聚”+ 单体名称;如乙烯:聚乙烯; 丙烯:聚丙烯; 氯乙烯:聚氯乙烯2以高分子结构特征来命名. 如聚酰胺、聚酯、聚醚、聚砜、聚氨酯、聚碳酸酯等;尼龙-66:聚己二酰己二胺;尼龙-610:聚癸二酰己二胺;尼龙-6:聚己内酰胺或聚ω-氨基己酸2.商品名称:1树脂类未加工成型的原料都称为树脂2橡胶类 3纤维如丁苯橡胶---丁二烯、苯乙烯聚合物 氯纶 PVC 聚氯乙烯乙丙橡胶---乙烯、丙烯共聚物 丙纶 PP 聚丙烯腈纶 PANC 聚丙烯腈3. IUPAC 系统命名法1 确定重复结构单元;2给重复结构单元命名:按小分子有机化合物的IUPAC 命名规则给重复结构单元命名;3给重复结构单元的命名加括弧括弧必不可少,并冠以前缀“聚”;例: COOCH 3CH 3n C CH 2 重复结构单元为: 聚1-甲氧基羰基-1-甲基乙烯 聚1-氯乙烯三、高 分 子 链 结 构1.聚合物的结构:一级结构近程结构:结构单元的化学组成、连接顺序、立体构型,以及支化、交联等;是反映高分子各种特性的最主要结构层次;二级结构远程结构:通常包括高分子链的形态构象以及高分子的大小分子量;与高分子链的柔性和刚性有直接关系;三级结构聚集态结构:聚集态结构也称三级结构,或超分子结构,它是指单位体积内许多大分子链之间的的排列与堆砌方式;包括晶态、非晶态、取向态、液晶态及织态等;2.高分子链的近程结构:高分子链的构型 :构型:是对分子中的最近邻原子间的相对位置的表征,也可以说,是指分子中由化学键所固定的原子在空间的几何排列;1.旋光异构:若高分子中含有手性C 原子,则其立体构型可有D 型和L 型,据其连接方式可分为如下三种:以聚丙烯为例:1 全同立构高分子:主链上的C 的立体构型全部为D 型或L 型, 即DDDDDDDDDD 或C H H C Cl H C H H C Cl H C H H C Cl H C H H CC l HLLLLLLLLLLL;2 间同立构高分子:主链上的C的立体构型各不相同, 即D型与L型相间连接,LDLDLDLDLDLD;立构规整性高分子tactic polymer: C的立体构型有规则连接,简称等规高分子;3 无规立构高分子:主链上的C的立体构型紊乱无规则连接;3、高分子链的远程结构:包括分子量及分子量分布和高分子形态构象;书P8分子量:1.数均分子量:按聚合物中含有的分子数目统计平均的分子量;根据聚合物溶液的依数性测得的,通过依数性方法和端基滴定法测定;2重均分子量:是按照聚合物的重量进行统计平均的分子量;根据聚合物溶液对光的散射性质、扩散性质测得的;通过光散射法测定;分子量分布:分子量分布越窄,聚合物排布越好;4.高分子聚集态结构的特点.1.聚合物晶态总是包含一定量的非晶相,100%结晶的情况是很罕见的;2.聚合物聚集态结构不但与大分子链本身的结构有关,而且强烈地依赖于外界条件;四、聚合与高分子化学反应1.自由基聚合特点:1可概括为慢引发、快增长、速终止;2聚合体系中只有单体和聚合物组成;3单体转化率随聚合时间的延长而逐渐增大;4小量阻聚剂足以使自由基聚合终止;2.本体聚合:只有单体本身在引发剂或热、光、辐射的作用下进行的聚合;3.溶液聚合:单体和引发剂溶于适当溶剂中进行的聚合方法;4.悬浮聚合:单体以小液滴状悬浮在水中的聚合;5.乳液聚合:单体在水介质中由乳化剂分散成乳液状进行的聚合;6.缩聚反应由含有两个或两个以上官能团的单体分子间逐步缩合聚合形成聚合物,同时析出低分子副产物的化学反应,是合成聚合物的重要反应之一;特点:1.每一高分子链增长速率较慢,增长的高分子链中的官能团和单体中的官能团活性相同,所以每一个单体可以与任何一个单体或高分子链反应,每一步反应的结果,都形成稳定的化合物,因此链逐步增长,反应时间长;2.由于分子链中官能团和单体中官能团反应能力相同,所以,在聚合反应初期,单体很快消失,生成了许多两个或两个以上的单体分子组成的二聚体、三聚体和四聚体等,即反应体系中存在分子量大小不等的缩聚物;四、药用高分子材料通论药用高分子材料:指的是药品生产与制造加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料;第二章一、高分子的分子运动1.高分子运动特点:一运动单元的多重性:1.整链的运动:以高分子链为一个整体作质量中心的移动,即分子链间的相对位移;2.链段的运动:由于主链σ键的内旋转,使分子中一部分链段相对于另一部分链段而运动,但可以保持分子质量中心不变宏观上不发生塑性形变;高弹性:链段运动的结果拉伸—回复;流动性:链段协同运动,引起分子质心位移;3.链节的运动:指高分子主链上几个化学键相当于链节的协同运动,或杂链高分子的杂链节运动4.侧基、支链的运动:侧基、支链相对于主链的摆动、转动、自身的内旋转;二、分子运动的时间依赖性:物质从一种平衡状态在外场作用下,通过分子运动低分子是瞬变过程,高分子是速度过程需要时间达到与外界相适应的另一种平衡状态;三、分子运动的温度依赖性1.活化运动单元:温度升高,增加了分子热运动的能量,当达到某一运动单元运动所需的能量时,就激发这一运动单元的运动;2.增加分子间的自由空间:温度升高,高聚物发生体积膨胀,自由空间加大;当自由空间增加到某种运动单元所需的大小时,这一运动单元便可自由运动;2、高分子的玻璃化转变玻璃态、高弹态和粘流态称为聚合物的力学三态;温度低,聚合物在外力作用下的形变小,具有虎克弹性行为,形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻璃态;随着温度的升高,形变逐渐增大,当温度升高到某一程度时,形变发生突变,进入区域II,这时即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复;这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态;由玻璃态向高弹态发生突变的区域叫玻璃化转变区,玻璃态开始向高弹态转变的温度称为玻璃化转变温度,以Tg表示;当温度升到足够高时,聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态;高弹态开始向粘流态转变的温度称为粘流温度,以T f表示,其间的形变突变区域称为粘弹态转变区;二、溶解与高分子溶液一、高聚物的溶解1.非晶态高聚物的溶解条件:足够量的溶剂、一定量的非晶态高聚物溶解过程:溶胀到无限溶胀;溶解过程的关键步骤是溶胀;其中无限溶胀就是溶解,而有限溶胀是不溶解;2.结晶晶态高聚物的溶解非极性结晶高聚物的溶解条件:足够量的溶剂,一定量的非极性结晶高聚物,并且加热到熔点附近;溶解过程:加热使结晶熔化,再溶胀、溶解;极性溶解高聚物的溶解条件:足够量的强极性溶剂,一定量的极性结晶高聚物,不用加热;溶解过程:通过溶剂化作用溶解;二、溶剂的选择1.极性相似原则2.溶剂化原则3.溶解度参数相近原则三、高聚物的力学性能1.应力:单位面积上的内力为应力,其值与外加的应力相等;2.应变:当材料受到外力作用而又不产生惯性移动时,其几何形状和尺寸会发生变化,这种变化称为应变或形变;3.弹性模量:是单位应变所需应力的大小,是材料刚度的表征;4.硬度:是衡量材料抵抗机械压力能力的一种指标;5.强度:是材料抵抗外力破坏的能力;6.高聚物力学性能的最大特点是高弹性和粘弹性:1.高弹性:处于高弹态的高聚物表现出的独特的力学性能;是由于高聚物极大的分子量使得高分子链有许多不同的构象,而构象的改变导致高分子链有其特有的柔顺性;链柔性在性能上的表现就是高聚物的高弹性;橡胶就是具有高弹性的材料;弹性形变的本质也就是高弹性变的本质;2).粘弹性:指高聚物材料不但具有弹性材料的一般特性,同时还具有粘性流体的一些特性; 力学松弛:高聚物的力学性能随时间的变化统称力学松弛;最基本的有:蠕变、应力松弛、滞后、力学损耗;蠕变:在一定的温度和恒定的外力作用下拉力,压力,扭力等,材料的形变随时间的增加而逐渐增大的现象;应力松弛:对于一个线性粘弹体来说,在应变保持不变的情况下,应力随时间的增加而逐渐衰减,这一现象叫应力松弛;滞后现象:高聚物在交变力作用下,形变落后于应力变化的现象;力学损耗:由于力学滞后而使机械功转换成热的现象;第三章一、凝胶与功能水凝胶1.凝胶是指溶胀的三维网状结构高分子,即聚合物分子间相互连接,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质;影响胶凝作用的因素:浓度、温度、电解质;2.凝胶的性质1触变性 2溶胀性 3脱水收缩性 4透过性3.凝胶的分类1物理凝胶:由非共价键氢键或范德华力相互连接,形成网状结构;由于聚合物分子间的物理交联使其具有可逆性,只要温度等外界条件改变,物理链就会破坏,凝胶可重新形成链状分子溶解在溶剂中成为溶液,也称为可逆凝胶;2化学凝胶:是高分子链之间以化学键形成的交联结构的溶胀体,加热不能溶解也不能熔融,结构非常稳定,也称为不可逆凝胶;3冻胶:指液体含量很多的凝胶,通常在90%以上;多数由柔性大分子构成,具有一定的柔顺性,网络中充满的溶剂不能自由流动,所以表现出弹性的半固体状态,通常指的凝胶均为冻胶;4干凝胶:液体含量少的凝胶,其中大部分是固体成分;在吸收适宜液体膨胀后即可转变为冻胶;4.功能水凝胶:对温度或pH等环境因素的变化所给予的刺激有非常明确或显着的应答; 根据环境变化的类型不同,环境敏感水凝胶可分为:温敏水凝胶、pH敏水凝胶、盐敏水凝胶、光敏水凝胶、电场响应水凝胶、形状记忆水凝胶;二、粒子分散结构:有以下四种类型:1.药物粒子分散在高聚物基材中的复合结构,高聚物为连续相,如速释型固体分散制剂;2.药物粒子和高聚物粒子分散于同一或另一高聚物基材中的复合结构,如传统的淀粉基可崩解固体片剂3.药物粒子包裹在聚合物囊膜中,再分散在聚合物基材中4.药物粒子分散在高聚物凝胶网络中的复合结构,这类药物通常是疏水性的,如聚氧乙烯-聚氧丙烯共聚物的水凝胶制成的皮鲁卡品滴眼剂等缓释给药系统;三、缓控释性材料1.缓释制剂:指用药后能在较长时间内持续缓慢释放药物以达到延长药效目的的制剂;系指口服药物在规定释放介质中,按要求缓慢地非恒速释放;2.控释制剂:药物从制剂中按一定规律缓慢、恒速释放,使机体内药物浓度保持相对恒定,体内释药不受pH影响;系指口服药物在规定释放介质中,按要求缓慢地恒速或接近恒速释放;四、分散传质过程药物的扩散过程:1.药物溶出并进入周围的聚合物或孔隙;2.由于浓度梯度,药物分子扩散通过聚合物屏障;3.药物由聚合物解吸附;4.药物扩散进入体液或介质;第四章药用天然高分子材料一、淀粉1.来源淀粉starch广泛存在于绿色植物的须根和种子中,根据植物种类、部位、含量不同,各以特有形状的淀粉粒而存在;药用淀粉多以玉米淀粉为主;2.化学结构和组成淀粉是由许多葡萄糖分子脱水缩聚而成的高分子化合物;结构单元:D-吡喃环型葡萄糖淀粉组成可以分为两类,直链淀粉与支链淀粉;自然淀粉中直链,支链淀粉之比一般约为15-28%比72-85%,视植物种类、品种、生长时期的不同而异;1直链淀粉是以α-1,4苷键连接而成的线型聚合物;直链淀粉由于分子内氢键作用,链卷曲成螺旋形,每个螺旋圈大约有6个葡萄糖单元;2支链淀粉是由D-葡萄糖聚合而成的分支状淀粉,其直链部分也为α-1,4苷键,而分支处则为α-1,6苷键;在各种淀粉中,直链淀粉约占20%-25%,支链淀粉约占75%-85%3.性质1形态与物理常数玉米淀粉为白色结晶粉末,流动性不良,淀粉在干燥处且不受热时,性质稳定;2淀粉的溶解性、含水量与氢键作用力溶解性:呈微弱的亲水性并能分散与水,淀粉不溶于水、乙醇和乙醚等,但有一定的吸湿性; 含水量:在常温、常压下,淀粉有一定的平衡水分,但淀粉含有很高的水分却不显示潮湿而呈干燥的粉末状,这主要是淀粉中的葡萄糖单元存在的众多醇羟基与水分子相互作用形成氢键的缘故;不同淀粉的含水量存在差异,这是由于淀粉分子中羟基自行缔合及与水分子缔合程度不同所致;3淀粉的吸湿与解吸吸湿:淀粉中含水量受空气湿度和温度的影响,在一定的相对湿度和温度条件下,淀粉吸收水分与释放水分达到平衡,此时淀粉所含的水分称为平衡水分;用做稀释剂的淀粉和崩解剂的淀粉,宜用平衡水分下的玉米淀粉;解吸:淀粉中存在的水,分为自由水和结合水两种状态,自由水仍具有普通水的性质,随环境的变化而变化,它具有生理活性,可被微生物利用,而结合水则不能;4淀粉的水化、膨胀、糊化水化:淀粉颗粒中的淀粉分子有的处于有序态晶态,有的处于无序态非晶态它们构成淀粉颗粒的结晶相和无定性相,无定性相是亲水的,进入水中就吸水,先是有限的可以膨胀,而后是整个颗粒膨胀的现象;膨胀:淀粉在60-80℃热水中,能发生膨胀,直链淀粉分子从淀粉粒中向水中扩散,形成胶体溶液,而支链淀粉则仍以淀粉粒残余的形式保留在水中;糊化:若不实施直链淀粉与支链淀粉的分离,在过量水中,淀粉加热至60~80℃时,则颗粒可逆地吸水膨胀,至某一温度时,整个颗粒突然大量膨化、破裂,晶体结构消失,最终变成粘稠的糊,虽停止搅拌,也都下沉的现象;糊化的本质:水分子加入淀粉粒中,结晶相和无定性相的淀粉分子之间的氢键断裂,破坏了缔合状态,分散在水中成为亲水胶体;5淀粉的回升老化、凝沉回生或老化:淀粉糊或淀粉稀溶液再低温静置一段时间,会变成不透明的凝胶或析出沉淀的现象;形成的淀粉称为回生淀粉;4、反应1水解反应存在于淀粉分子中糖基之间的连接键——苷键,可以在酸或酶的催化下裂解,形成相应的水解产物,呈现多糖具备的水解性质;2显色反应淀粉与碘试液作用时形成有色包结物,螺旋结构长颜色深,所以直链淀粉与碘化钾、碘溶液作用呈蓝色,支链淀粉呈紫红色;5.应用淀粉在药物制剂中主要用作片剂的稀释剂、崩解剂、粘合剂、助流剂,崩解剂;淀粉应用安全无毒,同时药典品不得检出大肠杆菌、活蛹,1g淀粉含霉菌应在100个以下,杂菌不得多于1000个;可灭菌玉米淀粉是玉米淀粉经化学及物理改性后的淀粉,遇水或蒸汽灭菌不糊化,是供某些医疗用途的改性淀粉;二、糊精1.来源与制法淀粉水解是大分子逐步降解为小分子的过程,这个过程的中间产物总称为糊精;糊精的制法是在干燥状态下将淀粉水解,其过程有四步:酸化、预干燥、糊精化及冷却;2.分类在药剂学中应用的糊精有白糊精和黄糊精;3.性质糊精为白色、淡黄色粉末;不溶于乙醇95℃、乙醚,缓缓溶于水,易溶于热水三、麦芽糖糊精1.来源与制法麦芽糖糊精是由食用淀粉在有水存在的条件下,将淀粉加热,经合适的酸或者酶部分水解而制得;制法:部分地将淀粉水解可得不同链长的葡萄糖单元的聚合物溶液,然后过滤、浓缩、干燥即得麦芽糖糊精;2.性质为无甜味、无臭的白色粉末或颗粒;易溶于水,微溶于乙醇;若其葡萄糖当量提高,则吸湿性、可压性、溶解度、甜度也随之提高,黏度下降;四、羧甲基淀粉钠1.结构为聚α-葡萄糖的羧甲基醚2.性质为白色至类白色自由流动的粉末,能分散于水,形成凝胶,醇中溶解度约2%,不溶于其它有机溶剂,有较大的吸湿性3.应用羧甲淀粉钠作为胶囊剂和片剂的崩解剂广泛应用于口服药物制剂中,在湿法制粒时,将羧甲淀粉钠加入颗粒内部,其润湿时起黏合剂的作用,而在颗粒干燥后又能起崩解剂的作用;是某些口崩片的理想辅料;也可用作助悬剂;五、纤维素1.来源纤维素存在于一切植物中,是构成植物细胞壁的基础物质;2.结构结构单元是D-吡喃葡萄糖基,相互间以-1,4-苷键连接,分子式为C6H10O5n;3.性质1化学反应性纤维素的氧化、酯化、醚化、分子间形成氢键、吸水、溶胀以及接枝共聚等都与纤维素分子中存在大量羟基有关;2氢键的作用纤维素结晶区和无定形区的羟基,基本上是以氢键形式存在3吸湿性纤维素吸水后,再干燥的失水量,与环境的相对湿度有关,纤维素在经历不同湿度的环境后,其平衡含水量的变化,存在滞后现象,即吸附时的吸着量低于解吸时的吸着量; 4溶胀性纤维素的有限溶胀可分为结晶区间溶胀和结晶区内溶胀;纤维素溶胀能力的大小取决于碱金属离子水化度,纤维素的溶胀是放热反应,温度降低,溶胀作用增加;对同一种碱液并在同一温度下,纤维素的溶胀随其浓度而增加,至某一浓度,溶胀程度达最高值;5机械降解特性机械降解后的纤维素比氧化、水解或热降解的纤维素具有更大的反应能力;6可水解性纤维素大分子的背键对酸的稳定性很低,在酸碱度、温度适合的条件下,能产生水解降解,酸是催化剂,可降低贰键破裂的活化能,增加水解速度;纤维素对碱在一般情况下是比较稳定的,但在高温下,纤维素也产生碱性水解;六、粉状纤维素1.制法将植物纤维材料纤维浆,用%NaOH溶液在20℃处理,不溶解的部分中包括纤维浆中的纤维素和抗碱的半纤维素,用转鼓式干燥器制成片状,再经机械粉碎即得粉状纤维素;2.性质呈白色,无臭,无味,具有纤维素的通性,不同细度的粉末的流动性和堆密度不一,具有一定的可压性,流动性较差;3.应用可用于片剂的稀释剂,硬胶囊或散剂的填充剂;在软胶囊中可用于降低油性悬浮性内容物的稳定剂,以减轻其沉降作用,也可作口服混悬剂的助悬剂;用作片剂干性粘合剂的浓度为5%;-20%,崩解剂浓度为5%-15%,助流剂浓度为1%-2%,不得用作注射剂或吸入剂辅料;在食品工业中可作为无热量食品的添加剂;七、微晶纤维素1.制法将结晶度高的纤维经强酸水解除去其中的无定形部分,所得聚合度约为220,相对分子质量约为36000的结晶性纤维即为微晶纤维素;胶态微晶纤维素:纤维素+亲水性分散剂2.性质白色、无臭、无味,多孔、易流动粉末,不溶于水、稀酸、氢氧化钠液和一般有机溶剂;可压性:具有高度变形性,极具可压性;吸附性:为多孔性微细粉末,可以吸附其他物质如水、油和药物等;分散性:微晶纤维素在水中经匀质器作用,易于分散生成妈油般的凝胶体;反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能;3.应用微晶纤维素PH型广泛用作口服片剂及胶囊剂的稀释剂、吸附剂、崩解剂、抗粘附剂;此外也可作为倍散的稀释剂和丸剂的赋形剂;微晶纤维素RC型作为胶体分散系主要用于干糖浆、混悬剂,有时也作为水包油乳剂和乳膏的稳定剂;微晶纤维素球形颗粒,为具有高圆度和机械强度的球形细粒剂,可作为包衣型缓释制剂、苦味掩盖制剂的核芯,微晶纤维素AvicelPH-300系列具有快速崩解性、较好的流动性、可减小片重差异等优点;Avice KG-801可以提高片剂硬度、降低磨损性、少量添加适于在低压力下压片等优点;纤维素衍生物具有以下性质:具有玻璃化转变温度、溶度参数和表面能、物理配伍相容性、溶胀性、吸湿性、黏度、生物黏附性、热凝胶化和昙点、液晶的形成;八、醋酸纤维素。
高分子材料化学重点知识点总结

水溶性高分子的性能:水溶性;2.增黏性;3.成膜性;4.表面活性剂功能;5.絮凝功能;6.粘接作用。
造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100万:主要用于纸浆分散剂;2)分子量在100万和500万之间:主要用于纸张增强剂;3)分子量大于500万:造纸废水絮凝剂(超高分子量);(2)聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。
日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。
壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。
1996年公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。
第二章、离子交换树脂离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。
(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。
离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。
(2)根据所交换离子的类型:阳离子交换树脂(3H);阴离子交换树脂(3);两性离子交换树脂离子交换树脂的制备:(1)聚苯乙烯型:(方程式)离子交换树脂的选择性:高价离子,大半径离子优先离子交换树脂的再生:a. 钠型强酸型阳离子交换树脂可用10溶液再生;b. 型强碱型阴离子交换树脂则用4溶液再生。
高分子化学知识点总结

高分子化学知识点总结
高分子化学是研究高分子物质的结构、性质、合成、加工及应用的学科。
以下是高分子化学的主要知识点总结:
1. 高分子物质的基本概念:高分子物质是由大量重复单元构成的超分子结构。
2. 高分子物质的分类:按照来源可以分为天然高分子和合成高分子;按照结构可以分为线性高分子、支化高分子、交联高分子、共聚高分子等。
3. 高分子物质的性质:高分子物质具有物理性质和化学性质两个方面。
物理性质包括流变学、热学、力学、光学、电学等。
化学性质包括氧化、还原、加成、置换、水解等。
4. 高分子物质的合成方法:包括聚合反应、缩合反应、聚合缩合反应、重排反应、羟化反应、酯交换反应、酯化反应等。
5. 结构表征方法:高分子物质的结构表征方法包括分子量测定、组成分析、形态表征、晶体学、核磁共振、红外光谱、拉曼光谱等。
6. 高分子物质的加工:高分子物质的加工包括塑化加工、固化加工、成型加工、加热处理、冷却处理、表面处理等。
7. 高分子物质的应用:高分子物质广泛应用于塑料、纤维、胶粘剂、涂料、电子材料、医药材料、环保材料等领域。
需要注意的是,以上知识点只是高分子化学的基础,实际上高分子化学是一个非常广泛和深入的领域,需要多读书、多实践,才能掌握其核心和精髓。
高分子化学知识点总结

高分子化学知识点总结高分子化学是研究高分子化合物的合成、结构、性能和应用的一门学科。
它是化学领域中的一个重要分支,对于材料科学、生物医学、环境保护等众多领域都有着深远的影响。
以下是对高分子化学一些重要知识点的总结。
一、高分子的基本概念高分子化合物是指相对分子质量很大的化合物,其相对分子质量通常在 10^4 到 10^7 之间。
高分子化合物由许多结构单元通过共价键重复连接而成,这些结构单元被称为单体。
例如,聚乙烯是由乙烯单体聚合而成,其结构单元就是乙烯。
高分子的相对分子质量具有多分散性,即同一种高分子化合物中,不同分子的相对分子质量大小不同。
通常用平均相对分子质量来表示高分子的相对分子质量,常见的平均相对分子质量有数均相对分子质量、重均相对分子质量和粘均相对分子质量。
二、高分子的分类根据来源,高分子可以分为天然高分子和合成高分子。
天然高分子如纤维素、蛋白质、淀粉等,是自然界中存在的;合成高分子则是通过人工合成得到的,如聚乙烯、聚丙烯、聚苯乙烯等。
按照高分子的主链结构,可分为碳链高分子、杂链高分子和元素有机高分子。
碳链高分子的主链完全由碳原子组成,如聚乙烯、聚丙烯;杂链高分子的主链除了碳原子外,还含有氧、氮、硫等原子,如聚酯、聚酰胺;元素有机高分子的主链中不含碳原子,而是由硅、磷、钛等元素组成,侧链则为有机基团。
三、高分子的合成方法(一)加聚反应加聚反应是指由不饱和单体通过加成聚合反应生成高分子化合物的过程。
在加聚反应中,单体分子中的双键或三键打开,相互连接形成高分子链。
常见的加聚反应有自由基聚合、离子聚合和配位聚合。
自由基聚合是应用最广泛的一种加聚反应,其反应条件相对简单,通常在加热或引发剂的作用下进行。
引发剂分解产生自由基,引发单体聚合。
离子聚合包括阳离子聚合和阴离子聚合,它们对反应条件要求较高,需要在无水、无氧的环境中进行。
配位聚合可以制备具有规整结构的高分子,如等规聚丙烯。
(二)缩聚反应缩聚反应是指由具有两个或两个以上官能团的单体通过缩合反应生成高分子化合物,并伴随有小分子副产物(如水、醇、氨等)生成的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章水溶性高分子水溶性高分子的性能:水溶性; 2. 增黏性; 3.成膜性; 4.表面活性剂功能; 5.絮凝功能; 6.粘接作用。
造纸行业中的水溶性高分子:(1)聚丙烯酰胺:1)分子量小于100 万:主要用于纸浆分散剂;2)分子量在100 万和500 万之间:主要用于纸张增强剂;3)分子量大于500 万:造纸废水絮凝剂(超高分子量);(2 )聚氧化乙烯:用作纸浆长纤维分散剂,用作餐巾纸、手帕纸、茶叶袋滤纸,湿强度很高;(3)聚乙烯醇:强粘结力和成膜性;用作涂布纸的颜料粘合剂;纸张施胶剂;纸张再湿性粘合剂。
日用品、化妆品行业中的水溶性高分子:对乳化或悬浮状态的分散体系起稳定作用,另外具有增稠、成膜、粘合、保湿功能等。
壳聚糖:优良的生物相容性和成膜性;显著的美白效果;修饰皮肤及刺激细胞再生的功能水处理行业中的水溶性高分子:(1)聚天冬氨酸(掌握其一):1)以天冬氨酸为原料:(方程式);2)以马来酸酐为原料:(方程式);特点:生物降解性好;可用于高热和高钙水。
1996 年Donlar 公司获美国总统绿色化学挑战奖;(2)聚环氧琥珀酸(方程式)特点:无磷、无氮,不会引起水体的富营养化。
第二章、离子交换树脂离子交换树脂的结构与性能要求:(1)结构要求:1)其骨架或载体是交联聚合物,2)聚合物链上含有可以离子化的功能基。
(2)性能要求:a、一定的机械强度;b、高的热稳定性、化学稳定性和渗透稳定性;c、足够的亲水性;d、高的比表面积和交换容量;e、合适的粒径分布。
离子交换树脂的分类:(1)按照树脂的孔结构可以分为凝胶型(不含不参与聚合反应的其它物质,透明)和大孔型(含有不参与聚合反应物质,不透明)。
(2)根据所交换离子的类型:阳离子交换树脂(-S03H);阴离子交换树脂(-N+R3CI-);两性离子交换树脂离子交换树脂的制备:(1)聚苯乙烯型:(方程式)离子交换树脂的选择性:高价离子,大半径离子优先离子交换树脂的再生:a.钠型强酸型阳离子交换树脂可用10%NaCI溶液再生;b. OH型强碱型阴离子交换树脂则用4%NaOH溶液再生。
离子交换树脂在水处理中的用:(1)水的软化;(2)水的脱盐。
第三章、高吸液树脂淀粉接枝聚丙烯腈(丙烯酸)改性淀粉类高吸水性树脂特点:优点:1)原料来源丰富,2)产品吸水倍率较高,通常都在千倍以上。
缺点:1)吸水后凝胶强度低,2)保水性差,3)易受细菌等微生物分解而失去吸水、保水作用。
纤维素类高吸水性树脂的特点:优点: 1 )原料来源丰富,2)吸水后凝胶强度高。
缺点:1)吸水能力比较低,2)易受细菌等微生物分解而失去吸水、保水作用。
壳聚糖类:壳聚糖类高吸水树脂具有好的耐霉变性。
聚丙烯酸型高吸水树脂:(1 )丙烯酸直接聚合法:由于强烈的氢键作用,体系粘度大,自动加速效应明显,反应较难控制。
(2)聚丙烯腈水解法:可用于废腈纶丝的回收利用,来制备高吸水纤维。
(3)聚丙烯酸酯水解法:丙烯酸酯品种多样,反应易控制聚乙烯醇型高吸水树脂:初期吸水速度较快,耐热性和保水性都较好高吸水性树脂的吸水机制:亲水作用(亲水性基团);渗透压作用(可离子化基团);束缚作用(高分子网格)高吸油树脂类型及制备方法: ( 1)聚丙烯酸酯类( 2)聚烯烃类树酯( 3)丙烯酸酯和烯烃共 聚物( 4)聚氨酯吸油泡沫 第四章、高分子螯合剂配位原子【 O 】:-OH ;-O-;-CO ; -COOH ;-COOR ;-P (OH )2;【N 】:-NH2;-C=N-R ;-C=N-OH ; -N=N-; -NH-NH-氧配位的高分子螯合剂:(1 )水杨酸树脂用于海水中 Fe3+、Cu2+的定量分析。
(2) EDTA 螯 合树脂(方程式)吸附受 pH 的影含席夫碱结构的螯合树脂(方程式)对 Cu2+,Co2+含偶氮结构的螯合树脂:可用于稀土元素的吸附和富集。
巯基树脂:对Hg2+有很高的吸附容量。
第五章、高分子反应试剂高分子载体上肽的固相合成: (1)聚合物载体的选择: ( 2)氨基酸的保护及与载体的键合;(3)氨基酸的去保护和去质子化; (4)肽键的生成(;5)肽键从载体上的解脱 (方程式) 高分子反应试剂的特点: (1 )可以简化分离过程; (2)高分子试剂可以回收,经再生重新使 用;( 3)减少副反应。
(1)高分子过氧酸试剂 (2)高分子磺酰肼还原试剂 (2)高分子N-卤代酰亚胺(NBS )(2)高分子酸酐高分子叶立德试剂: (1) 高分子膦叶立德试剂(方程式) 第六章高分子催化剂 高分子酸碱催化剂(结构式) :( 1 ) H 型强酸型阳离子交换树脂( SO3H );( 2) OH 型强碱型 阴离子交换树脂( CH2N+R3OH )-;Mizoroki-Heck (沟吕木 -赫克)反应: (方程式) 高分子相转移催化剂特点: ( 1)只需简单过滤即可定量回收,产物分离也很方便; ( 2)可多 次重复使用,而活性不降低或稍微降低;( 3)毒性很小,可减少对环境的污染; ( 4)适合于 工业上的连续化生产。
高分子季磷盐相转移催化剂(结构式) 第七章、液晶高分子材料液晶高分子的分类: ( 1)按照液晶的形成条件不同:热致液晶;溶致液晶;场致液晶。
( 2)根据分子排列的形式和有序性的不同:近晶型;向列型;胆甾型。
主链型液晶高分子:(1)聚对苯二甲酰对苯二胺(PPTA (凯夫拉纤维)(方程式);(2)聚 苯并噁唑(PBO )(方程式)PPTA 纤维的特点:1 )刚性苯环,对称;2)高比强度,高比模量,高抗撕裂,耐高温耐低 温。
PPTA 纤维的应用:1 )飞机导弹上复合材料;2 )防弹服赛马服;3)高性能绳索;4)体育 用品 Vectran 纤维:耐酸,耐碱,耐水,耐磨优于凯夫拉。
热致液晶高分子: ( 1 )引入异种刚性结构; (2)引入刚性扭曲成分; (3)刚性主链中引入侧 步结构;(4)在刚性主链中引入柔性间隔基; ( 5)引入取代基特殊结构的液晶高分子: ( 1)甲壳型液晶高分子; (2)氢键型液晶高分子第八章、导电高分子材料 复合型导电高分子材料:优点:工艺简单、加工性好;耐腐蚀;电阻率可调范围大;价格低 等。
炭黑粉末填充型:目前用途最广、用量最大的一种复合导电高分子材料。
金属粉末填充型:金、银:抗氧化性,但价格高,难以进入民用领域;铜、镍、铝:价格便 宜,但易氧化,需要进行特殊处理。
聚苯乙炔(选一种方法) : Witting 反应; Heck 反应。
(方程式)导电高分子聚苯胺的特点:①原料廉价易得, 合成简单;②具有较高的电导率;③稳定性好 (耐高温、良好的抗氧化性):④改进合成方法后可进行溶液和熔融加工。
高分子氧化试剂 高分子还原试剂 高分子卤代试剂 高分子酰化试剂导电高分子聚苯胺的应用:①金属防腐;②二次电池;③抗静电材料;④隐身材料。
第九章光敏材料光刻胶:( 1)正性光刻胶:聚合物在光照下发生降解反应,溶解性得到提高,在显影过程中曝光部分被除去; ( 2)负性光刻胶(聚乙烯醇肉桂酸) :在光照下发生聚合或交联反应,生成物的溶解性下降,在显影时曝光部分被保留。
光敏涂料:( 1)组成:预聚物、稀释剂、交联剂、光引发剂;( 2)优点: a. 不含溶剂或溶剂含量很少,减少材料消耗,对环境污染小,使用安全; b. 交联过程在涂刷之后进行,可得到交联度高、力学强度高的涂层。
( 3)预聚物:不饱和聚酯型,现在常用饱和苯酐代替部分马来酸酐,另外用一缩乙二醇、丙二醇、1,3-丁二醇代替部分乙二醇,进行共缩聚光致变色高分子材料的应用:( 1)光致变色伪装材料; ( 2)强闪光防护、宇宙线的防护 ( 3)光致变色油墨( 4)防复印材料第十章医用高分子医用高分子材料的分类: ( 1)按材料与活体组织的相互作用关系: A. 生物降解医用高分子材料;B .生物惰性医用高分子材料;C. 生物活性医用高分子材料。
( 2)按材料与肌体接触的部位和时间长短进行分类: A. 长期植入材料;B. 短期植入材料; C. 体内体外连通使用的材料;D. 体表接触材料与一次性使用医疗用品材料。
对医用高分子材料的人体效应的要求:( 1)无毒;(2)无热原反应或低热原反应;( 3)不致癌、不致畸; ( 4)不引起过敏反应; ( 5)不破坏邻近组织; (6)良好的血液相容性。
聚乳酸在医疗上的应用:①可降解手术缝合线;②作为组织缺损补强材料;③作为接合固定材料;④药物控制释放材料。
聚乳酸的合成方法:开环聚合(方程式)聚酸酐的合成方法(方程式) :(1)混合酸酐法; ( 2)酰氯羧酸酰化法; ( 3)开环聚合。
聚a -腈基丙烯酸酯类(1)优点:A.不需固化剂;B.能与比较潮湿的人体组织强烈结合;C.聚合热低;D.不致癌、不致畸;E.抗菌且具有良好的生物相容性。
(2)缺点:A.粘接部位弹性差; B. 储存期短,易发生凝固。
甲壳素及壳聚糖在医学领域的应用: (1)制作医用纤维和膜材料; (2)作为药物载体; (3) 作为凝血材料;(4)作为高分子药物①增强免疫力、抗肿瘤②降血糖③降低脂肪和胆固醇④消炎⑤健胃; ( 5)人工器官制作材料。
聚氨酯在医学领域的用途: (1)人工心脏及其辅助装置材料;(2)医用导管;(3)假肢(义肢)聚丙烯酸酯类: ( 1 )骨固化剂(骨水泥) ( PMMA 粉); (2)牙科材料:聚甲基丙烯酸甲酯强度高、无毒、易加工,可以作为制作假牙的主要材料;( 3)隐形眼镜( PMMA)聚四氟乙烯性能: ( 1 )耐强酸、强碱、强氧化剂;( 2)耐有机溶剂; ( 3)耐老化;( 4)自润滑性好,是固体材料中摩擦系数最低的;(5)耐高温、耐低温,;(6)生物相容性好。
高分子药物(结构) :(1)利用含羧基聚合物和胺基反应;(2)利用含胺基聚合物和羧基反应;( 3)青霉素自身缩合低分子量聚二甲基硅氧烷:用于肠胃胀气的治疗(消胀片) ,聚乙烯氮-氧吡啶:因大量吸入游离二氧化硅粉尘所引起的急性和慢性矽肺病有较好的治疗和预防效果。
血液净化膜材料:(1)纤维素膜特点:①具有一定的机械强度;②良好的透过性;③由于纤维素是天然的高分子材料,安全性高;④原料来源丰富、价格低廉。
第十一章农用高分子农用转光膜:(1 )功能:黄绿光和紫外光转换为红橙光和蓝紫光;(2)效能:增温,生物,减病,品质,增产,早熟。
转光膜的制备方法:(1)附染法;(2)母料法;(3)三层共挤法。
缓释型化肥:(1)优点:A. 在植物生长过程中,持续提供肥料,减少施肥次数,降低人力成本;B. 化肥的释放速度被控制,可达到较高的利用效率,从而减少对地下水和大气的污染。
高分子包膜肥料作用机理:高分子包膜化肥施入土壤后,在水的浸润下,水分透过高分子膜接触到固体化肥,使其缓慢溶解,通过膜上的孔隙向外渗出。