12.2 第4课时 “斜边、直角边”1

合集下载

12.2三角形全等的判定第4课时斜边、直角边(HL)教案2021-2022学年人教版数学八年级上册

12.2三角形全等的判定第4课时斜边、直角边(HL)教案2021-2022学年人教版数学八年级上册

12.2 三角形全等的判定第4课时斜边、直角边(HL)一、教学目标1.掌握判定直角三角形全等的一种特殊方法——“斜边、直角边”(即“HL”).2.会运用“HL”解决一些简单的实际问题和推理证明问题.二、教学重难点重点“斜边、直角边”的探究及其运用.难点灵活运用三角形全等的判定方法进行证明,并注意“HL”与其他判定方法的区别与联系.重难点解读“HL”是直角三角形特有的判定方法,对于一般三角形不适用.“HL”实际上就是两边及其中一边的对角对应相等,但所对的角是直角,所以它只对直角三角形适用,对一般三角形并不适用,因此在“HL”使用过程中要突出直角三角形这个条件.三、教学过程活动1 旧知回顾1.如图,在Rt△ABC中,直角边是________,________,斜边是________.2.我们学过的判定两个三角形全等的方法有:________,________,________,________.活动2 探究新知1.教材第41页思考.提出问题:(1)判定一般三角形全等的依据是什么?请说出它们的共同点.(2)对于两个直角三角形,除了直角相等外,还需要满足几个条件,就能证明这两个直角三角形全等?2.教材第42页 探究5.提出问题:(1)你能画出Rt △A ′B ′C ′吗?怎么画?用什么方法?(2)将画好的Rt △A ′B ′C ′剪下,比一比,看一看,它能否与Rt △ABC 重合?(3)根据上面的探究,你能否得出判定两个直角三角形全等的条件? 活动3 知识归纳提出问题:(1)判定两个直角三角形全等的特殊方法是什么?它对一般的三角形是否适用?(2)归纳判定两个直角三角形全等的方法.1. 斜边 和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“ HL ”.2.判定两个直角三角形全等的方法有 SSS , SAS , ASA , AAS ,HL .HL 只适用于 直角三角形 ,对于一般三角形不适用.活动4 典例赏析及练习例 如图,AB ⊥BD ,CD ⊥BD ,AD=CB.求证:AD ∥BC.【答案】证明:∵AB ⊥BD ,CD ⊥BD ,∴∠ABD=∠CDB=90°(垂直的定义).在Rt △ABD 和Rt △CDB 中,,,AD CB BD DB ∴Rt △ABD ≌Rt △CDB (HL ).∴∠ADB=∠CBD.∴AD∥BC(内错角相等,两直线平行).练习:1.下列语句中不正确的是( C )A.斜边和一条直角边对应相等的两个直角三角形全等B.有两边对应相等的两个直角三角形全等C.有两个锐角相等的两个直角三角形全等D.有一条直角边和一个锐角对应相等的两个直角三角形全等2.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是( D )A.DF∥AEB.∠C=∠BC.CF=BED.∠A+∠D=90°活动5 课堂小结1.“HL”判别法是证明两个直角三角形全等的特殊方法,它只对两个直角三角形有效,不适合一般三角形.2.证明两个直角三角形全等的方法有:SSS,SAS,ASA,AAS,HL.注意SSA 和AAA不能判定两个三角形全等.四、作业布置与教学反思。

12.2 第4课时 “斜边、直角边”的判定 初中八年级上册数学教案教学设计课后反思 人教版

12.2 第4课时  “斜边、直角边”的判定 初中八年级上册数学教案教学设计课后反思 人教版

教师姓名徐伟单位名称雪松中学填写时间2020.7.23学科数学年级/册八年级教材版本人教版课题名称第十二章 全等三角形12.2 三角全等形的判定第4课时 “斜边、直角边”难点名称探索并理解直角三角形全等的判定方法“HL”.难点分析从知识角度分析为什么难不能很好的在三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,不能熟练地用直角三角形全等的判定方法“HL”判定两个直角三角形全等。

难点教学方法让学生在回顾全等三角形判定的基础上,进一步研究特殊的三角形全等的判定的方法,让学生充分认识特殊与一般的关系,加深他们对公理的多层次的理解.在教学过程中,让学生充分体验到实验、观察、比较、猜想、归纳、验证的数学方法,一步步培养他们的逻辑推理能力.教学环节教学过程新课导入一、情境引入(显示图片)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?方法一:测量斜边和一个对应的锐角(AAS);方法二:测量没遮住的一条直角边和一个对应的锐角(ASA或AAS).工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?知识讲解(难点突破)二、探究新知多媒体出示教材探究5.任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′,使∠C′=90°,B′C ′=BC,A′B′=AB.把画好的Rt△A′B′C′剪下来,放到Rt△ABC上,它们全等吗?画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB.想一想,怎么样画呢?AB C作法:(1)画∠MC'N=90°;(2)在射线C'M上截取B'C'=BC;(3)以点B'为圆心,AB为半径画弧,交射线C'N于点A';(4)连接A'B'.想一想:从中你能发现什么规律?学生把画好的△A′B′C′剪下放在△ABC上,观察这两个三角形是否全等.由探究5可以得到判定两个直角三角形全等的一个方法:斜边和一条直角边分别相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”.多媒体出示教材例5如图,AC⊥BC,B D⊥A D,垂足分别为C,D,AC=B D.求证:BC=A D.想一想:你能够用几种方法判定两个直角三角形全等?直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法:SAS,ASA,AAS,SSS,还有直角三角形特殊的判定全等的方法——“HL”.课堂练习三、巩固练习(难点巩固)学生独立思考完成.教师点评.4.如图,AB=C D, B F⊥AC,DE⊥AC,A E=C F.求证:B F=DE.证明:∵ B F⊥AC,DE⊥AC,∴∠B F A=∠DE C=90 °.∵A E=C F, ∴A E+EF=C F+EF.即A F=C E.在Rt△AB F和Rt△C DE中,AB=C D,A F=C E.∴ Rt△AB F≌Rt△C DE(HL).∴B F=DE.。

12.2.4 “斜边、直角边”判定三角形全等

12.2.4 “斜边、直角边”判定三角形全等

方法一:测量斜边和一个对应的锐角(AAS); 方法二:测量没遮住的一条直角边和一个对应的锐角 (ASA或AAS). 工作人员测量了每个三角形没有被遮住的直角边和斜边, 发现它们分别相等,于是他就肯定“两个直角三角形是全 等的”.你相信他的结论吗?
二、探究新知 多媒体出示教材探究5. 任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A′B′C′, 使∠C′=′C′ 剪下来,放到Rt△ABC上,它们全等吗? 画一个Rt△A′B′C′,使∠C′=90°,B′C′=BC,A′B′=AB. 想一想,怎么样画呢?
本节课教学,主要是让学生在回顾全等三角形判定的基础 上,进一步研究特殊的三角形全等的判定的方法,让学生 充分认识特殊与一般的关系,加深他们对公理的多层次的 理解.在教学过程中,让学生充分体验到实验、观察、比 较、猜想、归纳、验证的数学方法,一步步培养他们的逻 辑推理能力.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四2022/3/32022/3/32022/3/3 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022 •4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
三、巩固练习 如图,两根长度为12米的绳子,一端系在旗杆上,另一 端分别固定在地面两个木桩上,两个木桩离旗杆底部的 距离相等吗?请说明你的理由.

12.2 第4课时 “斜边、直角边”1

12.2 第4课时 “斜边、直角边”1

第4课时“斜边、直角边”1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边”判定三角形全等如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.解析:由题意可得△ABF与△DCE都为直角三角形,由BE=CF可得BF=CE,然后运用“HL”即可判定Rt△ABF与Rt△DCE全等.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形.在Rt△ABF和Rt△DCE中,∵⎩⎪⎨⎪⎧BF=CE,AB=CD,∴Rt△ABF≌Rt△DCE(HL).方法总结:利用“HL”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边”判定三角形全等的运用【类型一】利用“HL”判定线段相等如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.解析:根据“HL”证Rt△ADC≌Rt△AFE,得CD=EF,再根据“HL”证Rt△ABD≌Rt△ABF,得BD=BF,最后证明BC=BE.证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF.即BC=BE.方法总结:证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【类型二】利用“HL ”判定角相等或线段平行如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等. 证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt △ABC 和Rt △ADC中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt△ABC ≌Rt △ADC (HL),∴∠1=∠2.方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL ”解决动点问题如图,有一直角三角形ABC ,∠C=90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC=∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL ”外,还有:SSS 、SAS 、ASA 、AAS. 三、板书设计“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL ”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL ”,除此之外,还可以选用“SAS ”“ASA ”“AAS ”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.。

12.2 第4课时 “斜边、直角边”

12.2 第4课时  “斜边、直角边”

萧老师
I have a dream
口答: 1.两个直角三角形中,斜 边和一个锐角对应相等, 这两个直角三角形全等吗? 为什么?
BAA′C来自B′C′2.两个直角三角形中,有一条直角边和一锐角对应相
等,这两个直角三角形全等吗?为什么?
3.两个直角三角形中,两直角边对应相等,这两个直 角三角形全等吗?为什么?
【分析】本题要分情况讨论:(1)Rt△APQ≌Rt△CBA,此时AP=BC=5cm, 可据此求出P点的位置.(2)Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.
解:(1)当P运动到AP=BC时, ∵∠C=∠QAP=90°. 在Rt△ABC与Rt△QPA中, ∵PQ=AB,AP=BC, ∴Rt△ABC≌Rt△QPA(HL), ∴AP=BC=5cm;
A
E
C 角形,即∠B=∠E=90°,
且AC=DF,BC=EF,现在能 判定△ABC≌△DEF吗?
D
F
萧老师
I have a dream
作图探究
任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A ′B ′C ′,使∠C′=90 °,B′C′=BC,A ′B ′=AB,把画好的 Rt△A′B′ C′ 剪下来,放到Rt△ABC上,它们能重合吗?
直角三角形全等.(重点)
导入新课
萧老师
I have a dream
旧知回顾:我们学过的判定三角形全等的方法
SSS SAS
ASA AAS
萧老师
I have a dream
思考:
A
B
C
AC 、 如图,Rt△ABC中,∠C =90°,直角边是_____ BC ,斜边是______. AB _____

人教版数学八年级上册12.2第4课时斜边、直角边优秀教学案例

人教版数学八年级上册12.2第4课时斜边、直角边优秀教学案例
3.实际问题解决:引导学生运用勾股定理解决一些与实际生活相关的问题,如测量物体的高度、计算三角形的面积等。
(三)学生小组讨论
1.分组讨论:将学生分成小组,让他们在小组内进行讨论,共同探究斜边和直角边的关系,并解决一些实际问题。
2.分享与交流:让学生分享自己的小组讨论成果,促进学生之间的交流和思维碰撞。
(四)反思与评价
1.引导学生自我反思:让学生回顾自己的学习过程,思考自己在探究斜边和直角边关系时的优点和不足。
2.同伴评价:鼓励学生互相评价,互相学习,共同提高。
3.教师评价:教师对学生的学习过程和成果进行评价,给予肯定和鼓励,并提出改进建议。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个实际问题:展示一个建筑物的高度需要测量,但是直接测量有困难,引导学生思考如何使用斜边和直角边的关系来解决问题。
3.培养学生运用数学知识解决实际问题的意识,提高学生对数学学科的实用性和价值的认识。
三、教学策略
(一)情景创设
1.以实际问题引入:通过展示一个实际问题,如测量一个物体的高度,引导学生思考如何使用斜边和直角边的关系来解决问题。
2.利用多媒体展示:利用多媒体课件展示斜边和直角边的实际应用场景,如建筑设计、物理实验等,让学生感受到数学与现实的联系。
在教学过程中,我将注重启发式教学,通过引导学生观察、思考和讨论,让学生主动发现斜边和直角边的关系,并能够运用这一关系解决实际问题。同时,我还会运用多媒体教学手段,为学生提供丰富的学习资源,激发学生的学习兴趣,提高学生的学习积极性。
希望通过本节课的教学,学生能够更好地理解斜边和直角边的关系,提高他们的数学思维能力和解决问题的能力。同时,我也将不断反思和总结教学过程,不断提高自己的教学水平,为学生提供更好的教学服务。

12.2 第4课时 “斜边、直角边”1

12.2 第4课时 “斜边、直角边”1

第4课时 “斜边、直角边”1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个办法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边”判定三角形全等如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,BE =CF .求证:Rt △ABF ≌Rt △DCE .解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL ”即可判定Rt △ABF 与Rt △DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF 与△DCE都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,AB =CD , ∴Rt △ABF ≌Rt △DCE (HL).方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边”判定三角形全等的运用【类型一】 利用“HL ”判定线段相等如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .解析:根据“HL ”证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL ”证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.【类型二】 利用“HL ”判定角相等或线段平行如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等.证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt△ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2. 方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL ”解决动点问题如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】 综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE(ASA).∴OB=OC.方法总结:判定直角三角形全等的方法除“HL”外,还有:SSS、SAS、ASA、AAS.三、板书设计“斜边、直角边”1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL”.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL”,除此之外,还可以选用“SAS”“ASA”“AAS”以及“SSS”.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.。

人教版八年级上数学课件12.2第4课时“斜边、直角边”

人教版八年级上数学课件12.2第4课时“斜边、直角边”
在Rt△ABF和Rt△CDE中, 判断两个直角三角形全等的方法不正确的有( )
求证:△EBC≌△DCB.
A
E
F
C
AB=CD, 再画一个Rt△A ′B ′C ′,使∠C′=90 °,B′C′=BC,A ′B ′=AB,把画好的Rt△A′B′ C′ 剪下来,放到Rt△ABC上,它们能重合吗?
斜边和一条直角边对应相等
Rt△ABF≌Rt△CDE(HL).
C
BF=DE
∠BFG=∠DEG ∠BGF=∠DGE
Rt△GBF≌Rt△GDE(AAS).
FG=EG BD平分EF
【拓展】如图,有一直角三角形ABC,∠C=90°,AC=10cm
,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A
点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置
(1) AD=BC
( HL )
(2) BD=AC
( HL )
(3) ∠ DAB= ∠ CBA (AAS ) D
(4)
∠ DBA= ∠ CAB ( AAS )
A
C B
【变式2】如图,AC、BD相交于点P,AC⊥BC,BD⊥AD,
垂足分别为C、D,AD=BC.求证:AC=BD.
D
C
HL
P
Rt△ABD≌Rt△BAC A
E ,AD、CE交于点H,已知EH=EB=3,AE=4,
( (2)
() 1)一个( 锐)角和这个角的对边对应相等.(AAS

在Rt△ABC与Rt△QPA中,
∴ Rt△ABC≌Rt△DEF (HL).
((1)先()画∠M2C)′ N=9一0° 个锐角和这个角的邻边对应相等.( × )
证明:∵AD、AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4课时 “斜边、直角边”
1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)
2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)
一、情境导入
舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)你能帮他想个办法吗?
(2)如果他只带了一个卷尺,能完成这个任务吗?
工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?
二、合作探究
探究点一:应用“斜边、直角边”判定三角形全等
如图,已知∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB =CD ,
BE =CF .求证:Rt △ABF ≌Rt △DCE .
解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL ”即可判定Rt △ABF 与Rt △DCE 全等.
证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF 与△DCE
都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩
⎪⎨⎪⎧BF =CE ,AB =CD , ∴Rt △ABF ≌Rt △DCE (HL).
方法总结:利用“HL ”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.
探究点二:“斜边、直角边”判定三角形全等的运用
【类型一】 利用“HL ”判定线段相等
如图,已知AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .
求证:BC =BE .
解析:根据“HL ”证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL ”证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .
证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .
方法总结:证明线段相等可通过证明三角形全等解决,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.
【类型二】 利用“HL ”判定角相等或线段平行
如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.
解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等.
证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt
△ABC 和Rt △ADC 中,∵⎩
⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2. 方法总结:证明角相等可通过证明三角形全等解决.
【类型三】 利用“HL ”解决动点问题
如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,
P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?
解析:本题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.
解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪
⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;
(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA
中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.
方法总结:判定三角形全等的关键是找对应边和对应角,由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.
【类型四】 综合运用全等三角形的判定方法判定直角三角形全等
如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:
OB =OC .
解析:已知BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .
证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,
∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,
∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,
∴△BOD ≌
△COE(ASA).∴OB=OC.
方法总结:判定直角三角形全等的方法除“HL”外,还有:SSS、SAS、ASA、AAS.
三、板书设计
“斜边、直角边”
1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL”.
2.方法归纳:
(1)证明两个直角三角形全等的常用方法是“HL”,除此之外,还可以选用“SAS”“ASA”“AAS”以及“SSS”.
(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.
本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.。

相关文档
最新文档