第1课时 解直角三角形.ppt
合集下载
初中数学《解直角三角形》课件

解:∠A=90°-∠B=90°-35°=55°
A
tan B b
c
b
a
35°
20
a
b tan B
20 tan 35
20 0.70
28.6
B
a
C
sin B b c
你还有其他 方法求出c吗?
练习
在Rt△ABC中,∠C=90°,根据下列条件解直角三角形;
(1)a = 30 , b = 20 ;
解:根据勾股定理
么开挖点E离D多远正好能使A,C,E成一直线(精确到0.1m)
解:要使A、C、E在同一直线上, 则 ∠ABD是 △BDE 的一个外角
AB 140°
∴∠BED=∠ABD-∠D=90°
C
E
cos BDE DE
50°
BD
D
cos 50 520 0.64 520 332.8
答:开挖点E离点D 332.8m正好能使A,C,E成一直线.
2
2(勾股定理)
A
(2)两锐角之间的关系 ∠A+∠B=90°
b
c
(3)边角之间的关系
Ca
B
sin
A
A的对边 斜边
a c
sin
B
B的对边 斜边
b c
cos
A
A的邻边 斜边
b c
cos
B
B的邻边 斜边
a c
tan
A
A的对边 A的邻边
a b
tan
B
B的对边 B的邻边
b a
三、例题讲解
例1 如图,在Rt△ABC中,∠C=90°, AC 2, BC 6
解这个直角三角形
A
解: tan A BC 6 3 AC 2
26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
《解直角三角形》PPT课件

这是已知直角三角形的两边解直角三角形的问题.
要会选择适当的三角比.
B
解:因为a2 + b2 = c2 , 所以
b = c2 - a2 = 63.52 -17.52 = 60.
A
b
C
由sin A = a = 17.5 = 0.28,得A = 16°15'37".
c 62.5
所以B = 90°- A = 90°-16°15'37"= 73°44'23".
c
b c
,tanA=
a b
利用这些关系,如果知道直角三角形的哪几个
元素就可以求其他的元素了?
两个角 × 两条边 √
一边一角 √
两个元素(至少一个是边)
由直角三角形中已知的元素求出未知元素的过 程,叫做解直角三角形.
例1 在Rt△ABC 中,已知∠C=90°,a = 17.5 ,c=
a
62.5 .解这个直角三角形
c = 12 5 , ∠A=30 °, ∠ B = 60° .
2.在Rt△ABC 中,∠C = 90 °. (l)已知c = 15 ,∠ B = 60° ,求a ; (2)已知∠A=35 ° ,a=24 ,求b , c .
(1)a=7.5 (2)b=34.3, c≈41.8
1.直角三角形的边角关系:
下载
/jiaoa
n/
例2在 RtDAP论PB坛TC 中 , 已知 C = 90 °,c = 128 , B = 52°.
解这个直:w角ww三. 角形 (边长精确到 0.01).
B
1ppt.
a
cn
PPT
A
课件
解:A =/nk/e9jia0°- B = 90°- 52°= 38°;
要会选择适当的三角比.
B
解:因为a2 + b2 = c2 , 所以
b = c2 - a2 = 63.52 -17.52 = 60.
A
b
C
由sin A = a = 17.5 = 0.28,得A = 16°15'37".
c 62.5
所以B = 90°- A = 90°-16°15'37"= 73°44'23".
c
b c
,tanA=
a b
利用这些关系,如果知道直角三角形的哪几个
元素就可以求其他的元素了?
两个角 × 两条边 √
一边一角 √
两个元素(至少一个是边)
由直角三角形中已知的元素求出未知元素的过 程,叫做解直角三角形.
例1 在Rt△ABC 中,已知∠C=90°,a = 17.5 ,c=
a
62.5 .解这个直角三角形
c = 12 5 , ∠A=30 °, ∠ B = 60° .
2.在Rt△ABC 中,∠C = 90 °. (l)已知c = 15 ,∠ B = 60° ,求a ; (2)已知∠A=35 ° ,a=24 ,求b , c .
(1)a=7.5 (2)b=34.3, c≈41.8
1.直角三角形的边角关系:
下载
/jiaoa
n/
例2在 RtDAP论PB坛TC 中 , 已知 C = 90 °,c = 128 , B = 52°.
解这个直:w角ww三. 角形 (边长精确到 0.01).
B
1ppt.
a
cn
PPT
A
课件
解:A =/nk/e9jia0°- B = 90°- 52°= 38°;
《解直角三角形》教学课件

利用正弦、余弦函数的定 义和勾股定理,可以分别 求出斜边c和另一直角边b 的长度。
sin60°=a/c,即√3/2=4/c b=√(c²-a²)=√(4.62²-
,解得c≈4.62。
4²)≈2.31。
本题主要考察了解直角三 角形中已知一边一角求其 他元素的方法,通过正弦 、余弦函数的定义和勾股 定理进行求解。在实际应 用中,还可以利用正切等 三角函数进行求解。
加强公式应用训练
通过大量的练习题,让学生熟练掌握解直角三角形的相关公式,并 能够正确应用。
提高计算准确性
鼓励学生进行反复练习,提高计算速度和准确性。同时,教师可以 提供一些计算技巧和方法,帮助学生更好地进行计算。
提高计算准确性和效率策略
使用科学计算器
鼓励学生使用科学计算器进行计算,以提高计算效率和准确性。
《解直角三角形》教 学课件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 典型例题分析与解答 • 学生常见错误及纠正方法 • 拓展延伸:三角函数在解直角三角形中应
用 • 总结回顾与课堂互动环节
01
直角三角形基本概念与性质
直角三角形的定义
01
有一个角为90度的三角形称为直 角三角形。
学生自我评价报告分享
学习成果展示
学生可以通过绘制思维导图、制作海报或写学习报告等方式 ,展示自己的学习成果,包括掌握的知识点、解题技巧和学 习心得等。
学习反思与改进
学生可以反思自己在学习过程中的不足和遇到的困难,提出 改进措施和学习计划,以便更好地掌握解直角三角形的相关 知识和技能。
教师点评及建议
典型例题三:综合应用问题
01
02
03
04
解直角三角形(第1课时)(课件)-九年级数学下册同步精品课件(苏科版)

∴Leabharlann c==≈34.9 .
°
B
A
c
35°
a
b=20
C
例题讲授
例2 在Rt△ABC中,∠C=90°,a=5,b=20.49 .
(1)求c的值(精确到0.01);(2)求∠A、∠B的大小(精确到0.01°).
解:(1)在Rt△ABC中,根据勾股定理,得
c= + = + . ,
36.87
思考与探索
在Rt△ABC中,
(1)已知∠B和直角边AC,你能求出这个三角形的其他元素吗?
(2)已知AC和斜边AB,你能求出这个三角形的其他元素吗?
(3)已知∠A和∠B,你能求出这个三角形的其他元素吗?
B
知道其中哪些元素,可以求出其余的元素?
C
A
归纳总结
在Rt△ABC中,除直角外,还有a、b、c、∠A、∠B这5个元素.
解:在Rt△ABC中,∠C=90°,∠A=30°,
∴ ∠B=90°-∠A=90°-30°=60°.
∵ sinA= ,
∴ c= =
��°
=10.
∵ tanB= ,
∴ b=a ∙ tanB=5 ∙ tan60°=5 .
还可以利用勾股定理计算,
b= − = − = .
新知巩固
2.在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,
c,由下列条件解直角三角形:
(1)∠B=30°,a-b=3 -3;
解:(1)在Rt△ABC中,
∵∠C=90°,∠B=30°,∴∠A
∠C的对边)
新知归纳
已 知 类 型
解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
解直角三角形ppt课件

经济学中的复利计算
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
沪科版数学九年级上册23.2第1课时解直角三角形 课件(共19张PPT)

D
C
拓展提升
1.如图,在△ABC中,∠A=30︒,∠B=45︒,AC=2 ,求AB的长.解:作CD⊥AB于D,∠A=30°, ∴AD=AC, 在Rt△BCD中,∠B=45°,
2.已知,如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12, .求: (1)线段DC的长; (2)tan∠EDC的值.解:(1)∵AD是边BC上的高,AD=12,
∠A的对边
斜边斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月1日
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
例1 如图,在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形(精确到0.1).解:∵cosB= ,∴a=c cosB=287.4×0.7420≈213.3 . ∵sinB= ,∴b=c sinB=287.4×0.6704≈192.7 . ∠A=90º-∠B=90º-42º6′=47º54′ .
(2)∵E是斜边AC的中点, ∴DE=EC, ∴∠EDC=∠C, 在Rt∆ADC中, ∴
归纳小结
在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (勾股定理)(2)两锐角之间的关系∠A+∠B=90°.(3)边角之间的关系sinA= , sinB= , cosA= , cosB= ,tanA= , tanB= .
归纳
根据以上探究,解直角三角形有哪些类型?试填写下表
C
拓展提升
1.如图,在△ABC中,∠A=30︒,∠B=45︒,AC=2 ,求AB的长.解:作CD⊥AB于D,∠A=30°, ∴AD=AC, 在Rt△BCD中,∠B=45°,
2.已知,如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12, .求: (1)线段DC的长; (2)tan∠EDC的值.解:(1)∵AD是边BC上的高,AD=12,
∠A的对边
斜边斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月1日
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
例1 如图,在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形(精确到0.1).解:∵cosB= ,∴a=c cosB=287.4×0.7420≈213.3 . ∵sinB= ,∴b=c sinB=287.4×0.6704≈192.7 . ∠A=90º-∠B=90º-42º6′=47º54′ .
(2)∵E是斜边AC的中点, ∴DE=EC, ∴∠EDC=∠C, 在Rt∆ADC中, ∴
归纳小结
在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (勾股定理)(2)两锐角之间的关系∠A+∠B=90°.(3)边角之间的关系sinA= , sinB= , cosA= , cosB= ,tanA= , tanB= .
归纳
根据以上探究,解直角三角形有哪些类型?试填写下表