第五章钛及钛合金的热处理

合集下载

钛及钛合金热处理工艺

钛及钛合金热处理工艺

冷却方式 空冷或更慢冷 空冷或更慢冷
合金牌号 TA1 TA2 TA3 TC4
棒材\线材\锻件\铸件 加热温度/℃ 630-815 700-850
合金牌号 TA1, TA2 TA3 TC4
加热温度/℃ 700-750 800
钛及钛合金管材真空退火工艺 坯料退火和中间退火 出炉温度(不高于)/℃ 保温时间/min 温度/℃ 60 200 650-680 60 200 700-750 钛合金固溶处理工艺
钛及钛合金的β 转变温度(Tβ ) 合金种类 工业纯钛 α +β 型 合金牌号 TA1,ZTA1 TA2 TA3 TC4 ZTC4 名义β 转变温度/℃ 900 910 930 995
合金种类 工业纯钛 α +β 型

钛及钛合金的去应力退火工艺 合金牌号 加热温度/℃ TA1, TA2 TA3 445-595 ZTA1 600-750 TC4 480-650 ZTC4 600-800
保温时间/min 15-360 60-240 60-360 60-240 钛及钛合金完全退火工艺
合金种类 工业纯钛 α +β 型
合金牌号 TA1 TA2 TA3 TC4
板材\带材\箔材\管材 加热温度/℃ 保温时间/min 630-815 15-120 520-570 15-120 700-870 15-120
成品退火 保温时间/min 45-60 45-60
出炉温度(不高于)/℃
100-150 150
合金类型 α +β 型
合金牌号 TC4
板材\带材\箔材 加热温度/℃ 890-970 钛合金时效工艺 保温时间/min 2-90
棒材\线材\锻件\铸件 保温时间/min 加热温度/℃ 890-970 20-120

钛及钛合金的热处理及耐蚀性表面处理

钛及钛合金的热处理及耐蚀性表面处理

钛及钛合金的热处理及耐蚀性表面处理1 有关热处理的标准与热处理炉钛及钛合金的热处理条件虽然在JIS或ASTM中都没有标准化,但在美国军用标准(MIL —H81200)中有详细的规定,下表列出了根据该标准整理的纯钛和钛合金的热处理温度、*ELI表示氧、氮等间隙元素特别低的材料在MIL标准中还规定了热处理炉的炉膛温度分布均匀性,要求退火或固溶处理时不超过±14℃,时效处理时不超过±8.3℃,针对这些要求希望采用具有(1)可控硅控制的电源;(2)升温、保温、冷却的程序控制机构;(3)用风扇搅拌炉内空气等功能的电炉。

在使用燃烧炉的时候,必须注意(1)为了防止吸氢,保持微氧化性气氛;(2)被处理材料装入马弗缸内,不要直接接触火焰。

2 退火一般地说,金属的退火是使其内部应变消除、加工组织产生恢复与再结晶的热处理。

钛及钛合金的热处理是为了组织稳定化、稳定制品尺寸、提高可切削性以及改善力学性能而实施的。

α合金的退火是在α相区加热,使平衡状态的α相充分地恢复与再结晶,然后再冷却到室温。

冷却速度引起的组织变化很小,快冷或缓冷均可。

α—β合金的退火是在两项区进行。

β合金则是在高于β相变点的温度下退火处理。

Ti-6Al-4V是采取在两相区加热后空冷进行退火的,以便在常温下得到稳定的β相和α相混合组织。

MIL标准规定的退火工艺为690~871℃下加热并保温,然后空冷。

β合金的退火与固溶处理相同。

3 固溶处理所谓固溶处理,就是使所有合金元素溶入基体相中形成均匀的固溶体后快冷到室温,将高温下的组织状态保持下来,获得过饱和固溶体的热处理操作。

由于过饱和固溶体是不稳定的,若在某一温度下重新加热,溶入的元素或者以化合物形态析出或者形成平衡的稳定相,从而达到稳定的状态。

α—β合金的固溶处理是在β相变点以下的两相区加热,类似于铁素体+奥氏体两相不锈钢的固溶处理。

加热到固溶温度后溶入该温度下处于平衡状态的α和β相中的合金元素是不同的,各自的成分也完全不同于合金的平均组成。

钛及钛合金的热处理及耐蚀性表面处理

钛及钛合金的热处理及耐蚀性表面处理

钛及钛合金的热处理及耐蚀性表面处理1 有关热处理的标准与热处理炉钛及钛合金的热处理条件虽然在JIS或ASTM中都没有标准化,但在美国军用标准(MIL —H81200)中有详细的规定,下表列出了根据该标准整理的纯钛和钛合金的热处理温度、*ELI表示氧、氮等间隙元素特别低的材料在MIL标准中还规定了热处理炉的炉膛温度分布均匀性,要求退火或固溶处理时不超过±14℃,时效处理时不超过±8.3℃,针对这些要求希望采用具有(1)可控硅控制的电源;(2)升温、保温、冷却的程序控制机构;(3)用风扇搅拌炉内空气等功能的电炉。

在使用燃烧炉的时候,必须注意(1)为了防止吸氢,保持微氧化性气氛;(2)被处理材料装入马弗缸内,不要直接接触火焰。

2 退火一般地说,金属的退火是使其内部应变消除、加工组织产生恢复与再结晶的热处理。

钛及钛合金的热处理是为了组织稳定化、稳定制品尺寸、提高可切削性以及改善力学性能而实施的。

α合金的退火是在α相区加热,使平衡状态的α相充分地恢复与再结晶,然后再冷却到室温。

冷却速度引起的组织变化很小,快冷或缓冷均可。

α—β合金的退火是在两项区进行。

β合金则是在高于β相变点的温度下退火处理。

Ti-6Al-4V是采取在两相区加热后空冷进行退火的,以便在常温下得到稳定的β相和α相混合组织。

MIL标准规定的退火工艺为690~871℃下加热并保温,然后空冷。

β合金的退火与固溶处理相同。

3 固溶处理所谓固溶处理,就是使所有合金元素溶入基体相中形成均匀的固溶体后快冷到室温,将高温下的组织状态保持下来,获得过饱和固溶体的热处理操作。

由于过饱和固溶体是不稳定的,若在某一温度下重新加热,溶入的元素或者以化合物形态析出或者形成平衡的稳定相,从而达到稳定的状态。

α—β合金的固溶处理是在β相变点以下的两相区加热,类似于铁素体+奥氏体两相不锈钢的固溶处理。

加热到固溶温度后溶入该温度下处于平衡状态的α和β相中的合金元素是不同的,各自的成分也完全不同于合金的平均组成。

钛及钛合金固溶和时效

钛及钛合金固溶和时效

钛及钛合金固溶和时效
钛及钛合金是一种重要的金属材料,具有优异的力学性能、耐腐蚀性能和生物相容性等特点,因此被广泛应用于航空、航天、医疗、化工等领域。

其中,固溶和时效是钛及钛合金的重要热处理工艺,可以显著提高其力学性能和耐腐蚀性能。

固溶是指将钛及钛合金加热到一定温度,使其内部的合金元素溶解在钛基体中,形成固溶体。

固溶温度和时间是影响固溶效果的重要因素。

一般来说,固溶温度越高、时间越长,合金元素的溶解度越大,固溶效果越好。

但是,过高的固溶温度和时间会导致钛及钛合金的晶粒长大,从而降低其力学性能和耐腐蚀性能。

时效是指将固溶后的钛及钛合金在一定温度下保温一段时间,使其内部的合金元素重新分布,形成一定的强化相,从而提高其力学性能和耐腐蚀性能。

时效温度和时间也是影响时效效果的重要因素。

一般来说,时效温度越高、时间越长,强化相的数量和尺寸越大,时效效果越好。

但是,过高的时效温度和时间会导致钛及钛合金的晶粒长大,从而降低其力学性能和耐腐蚀性能。

固溶和时效是钛及钛合金的重要热处理工艺,可以显著提高其力学性能和耐腐蚀性能。

但是,固溶和时效的温度和时间需要根据具体的合金成分和应用要求进行选择,以充分发挥其优异的性能。

此外,固溶和时效过程中需要注意控制温度和时间,避免过高的温度和时
间导致晶粒长大,从而降低其性能。

钛合金热处理综述

钛合金热处理综述

钛合金热处理综述姓名学号目录引言 (1)一、钛合金在航空航天的应用 (2)二、钛合金综述 (3)1. 钛合金的分类及特点 (3)A. 分类 (3)B. 各类钛合金的特点 (4)2. 合金元素 (5)A. 合金元素分类 (5)B. 合金元素作用 (6)3. 钛的相变 (6)A. 同素异构转变 (6)B. β相转变 (6)C. 时效过程中亚稳定相的分解 (8)D. 钛合金二元相图 (9)三、热处理引言 (9)四、热处理基本原理 (9)4. 退火 (10)A. 回复 (10)B. 再结晶 (10)C. 去应力退火 (10)D. 简单退火 (11)E. 完全退火 (11)F. 等温退火和双重退火 (11)G. 真空退火 (11)5. 固溶与时效处理(强化热处理) (12)A. 固溶处理 (13)B. 时效处理 (13)C. 固溶-时效处理 (14)6. 形变热处理(热机械处理) (14)7. 化学热处理 (15)五、热处理缺陷和防治 (15)六、钛合金组织与性能 (16)1. 钛合金相组成 (16)2. 钛合金组织类型 (16)A. 魏氏体组织 (16)B. 网篮组织 (16)C. 等轴组织 (17)D. 双态组织 (17)3. 钛合金的热处理与组织、性能的关系 (17)A. 常规拉伸性能 (17)B. 疲劳性能 (17)C. 断裂韧性 (18)D. 应力腐蚀断裂 (18)七、钛的表面热处理 (18)1. 渗无机元素表面热处理 (18)A. 渗碳 (18)B. 渗氮 (19)C. 渗硼 (19)2. 渗金属元素表面热处理 (19)参考文献 (21)引言钛是20世纪50年代发展起来的一种重要的结构金属,因其具有质轻、高强、耐蚀、耐热、无磁等一系列优良性能,以及形状记忆、超导、储氢、生物相容性四大独特功能,被广泛应用在航空航天、舰船、军工、冶金、化工、海水淡化、轻工、环境保护、医疗器械等领域,并创造了巨大的经济和社会效益,在国民经济发展和国防中占有重要的地位和作用。

钛及钛合金的热处理

钛及钛合金的热处理

钛及钛合金的热处理 钛及钛合金通过程序控制技术和各种热处理工艺可获得不同特性的产品,表1~表4列出了工业纯钛及部分钛合金的热处理工艺。

表1 工业纯钛和部分钛合金的β相变温度合 金β相变温度℃,±15°υ,±25°工业纯钛,0125%O2最大9101675工业纯钛,014%O2最大9451735α或近α合金Ti25Al2215Sn10501925Ti28Al21Mo21V10401900Ti2215Cu(IM I230)8951645Ti26Al22Sn24Zr22Mo9951820Ti26Al25Zr2015Mo2012Si(IM I685)10201870Ti2515Al2315Sn23Zr21Nb2013Mo2013Si(IM I829)10151860Ti2518Al24Sn2315Zr2017Nb2015Mo2013Si(IM I834)10451915Ti26Al22Cb21Ta2018Mo10151860Ti2013Mo2018Ni(TiCode12)8801615α2β合金Ti26Al24V1000(a)1830(b) Ti26Al27Nb(IM I367)10101850Ti26Al26V22Sn(Cu+Fe)9451735Ti23Al2215V9351715Ti26Al22Sn24Zr26Mo9401720Ti24Al24Mo22Sn2015Si(IM I550)9751785Ti24Al24Mo24Sn2015Si(IM I550)10501920Ti25Al22Sn22Zr24Mo24Cr(Ti217)9001650Ti27Al24Mo10001840Ti26Al22Sn22Zr22Mo22Cr20125Si9701780Ti28Mn800(c)1475(d)β或近β合金Ti213V211Cr23Al7201330Ti21115Mo26Zr2415Sn(βШ)7601400Ti23Al28V26Cr24Zr24Mo(βC)7951460Ti210V22Fe23Al8051480Ti215V23Al23Cr23Sn7601400 (a)±20℃,(b)±30υ,(c)±35℃,(d)±50υ。

钛合金热处理的一般特点

钛合金热处理的一般特点

钛合金热处理的一般特点1.钛合金热处理的目的:钛合金热处理的目的是通过加热和冷却处理来改变钛合金的组织结构,以提高其机械性能和耐蚀性能。

2.钛合金的相变特性:钛合金具有显著的相变特性,主要有α相和β相。

α相具有良好的塑性和韧性,而β相具有较高的强度和硬度。

通过热处理工艺,可以使钛合金的相变达到理想的组织结构。

3.热处理工艺的选择:钛合金的热处理工艺主要包括固溶处理、时效处理和高温固溶处理等。

不同的工艺选择可以改变钛合金的强度、韧性和耐蚀性等性能。

4.固溶处理:固溶处理是指将钛合金加热至高温下,使β相溶解于α相中形成固溶体。

通过固溶处理,可使钛合金的强度和硬度得到提高。

5.时效处理:时效处理是指对固溶后的钛合金进行恒温保持一段时间,使其晶粒细化和析出细小的强化相。

通过时效处理,钛合金的强度和耐蚀性能可以得到改善。

6.高温固溶处理:高温固溶处理是指将钛合金加热至较高温度下,保持一定时间,然后迅速冷却。

此处理方式能使钛合金得到完全的晶粒再结晶,消除残余应力,提高材料的延展性和塑性。

7.热处理参数的选择:热处理参数的选择对于钛合金的热处理效果至关重要。

包括加热温度、保温时间和冷却方式等。

不同的钛合金材料和应用要求,需要选择不同的热处理参数。

8.温度过程控制:热处理过程中的温度控制十分重要。

温度过高可能导致合金的烧结、插杂元素析出等问题;温度过低则无法达到预期的热处理效果。

9.冷却方式的影响:不同的冷却方式对钛合金的性能有着不同的影响。

常见的冷却方式有空气冷却、水淬和油淬等。

不同的合金材料和要求可能需要采用不同的冷却方式。

10.热处理后的检测:对于热处理后的钛合金进行性能测试和检测是必要的。

包括金相组织观察、力学性能测试、耐蚀性测试等。

总结来说,钛合金热处理是一种通过加热和冷却来改变钛合金组织结构的工艺。

通过选择合适的热处理工艺和参数,可以提高钛合金的硬度、强度、韧性和耐蚀性能。

不同的钛合金具有不同的热处理特点,因此需要根据具体的合金材料和要求选择合适的热处理工艺。

第五章_钛及钛合金的热处理

第五章_钛及钛合金的热处理

5.1.2 钛的合金化

周期表中各元素按与钛作用性质可纳如下:①在周期表上 与钛同族的元素锆和铪具有与钛相同的外层电子结构和晶 格类型,原子半径也相近,故它们与α和β钛均能无限互溶 ,形成连续固溶体;②在周期表上靠近钛的元素,如钒、
钼、铌、钽等与β钛具有相同的晶格类型,能与β钛无限互
溶,在α钛中有限溶解;③在外层电子结构、晶体类型和 原子尺寸上都与Ti有较大的差异,如锰、铁、钴、镍等元 素与钛只能形成有限的固溶体,超过溶解极限则形成化合 物。
将工件加热到再结晶温度以上进行的退火工艺。在这一退 火中主要发生再结晶,使加工硬化消除,组织稳定,塑性 提高。退火温度介于再结晶温度和相变温度之间。

再结晶温度过高,会导致组织粗大。
(5)真空退火 目的:使钛合金表面层的含氢量降低到安全浓度,消除产生氢 脆的可能性。此外,降低残余应力和保证合金的力学性能及 使用性能等。 注意事项: 把钛合金表面层的氢浓度降低到在以后的使用过程中不会产 生氢脆(慢性断裂)的水平; 将残余应力(特别是焊接应力)降低到不能对钛合金构件的 使用特性产生负面影响的水平; 不许保证钛合金构件应有的力学性能和使用性能,必须把合 金元素从表面层的蒸发等不利因素降低到最低水平; 使退火构件保持原有的尺寸; 在真空退火件表面上形成氧化膜,防止金属与水汽和其它含 氢气体相互作用。 影响因素:退火温度和保温时间
随着杂质含量的增加,钛的强度升高,塑性下降。
5.1.2 钛的合金化

纯钛虽然其塑性和韧性很好,但强度较低,影响了 应用范围。加入适当的合金元素后,可以明显地改 善其组织和性能,满足工程上的性能和要求。
5.1.2.1 钛与其他元素之间的作用

钛与其他合金元素之间的作用,取决于原子的电子 层结构、原子半径、晶格类型等诸因素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



660
1668
2.7
4.5
0.52
0.036
22.9
9.0
铁 1535 7.8 0.19 11.7
钛的力学性能
钛的力学性能主要取决于钛的成分、组织以及对其所进行 的加工和热处理工艺等。
钛的力学性能
钛中含有杂质时,强度升高,塑性下降(氮、氧、 碳影响显著)
钛的力学性能 随着变形程度的增大,强度指标升高,塑性下降
(1)Al 7.45% (2) Fe 4.20% (3)Mg 2.35% (4)Ti 0.61%
5.1.1 纯钛
纯钛的化学及物理性能: 化学活性大 钛易吸氢引起氢脆 耐蚀性强(空气中、水中、硝酸中)
钛的主要几个物理性能与铝、铁的比较
物理性能 熔点/℃ 密度/(g/cm3) 热导率/[cal/(cm·s·℃] 线膨胀系数/×10-6℃-1
5.1.2 钛的合金化
5.1.2.2 钛二元相图类型及合金元素的分类 钛的二元相图可分为下列四种主要类型。
5.1.2 钛的合金化
5.1.2 钛的合金化
5.1.2.3 常见合金元素的作用 工业钛合金中常用的合金元素有:铝、锆、锡、
钒、钼、锰、铬、铁、铜、硅等。 铝主要起固溶强化作用,每增加1%Al,可使室温
钛的力学性能
钛的力学性能与热处理制度紧密相联
工业纯钛的牌号、性能 按杂质含量的不同,工业纯钛分为三个等级,TA表示α型 钛合金的代号,数字表示合金的序号,序号越大,钛的纯 度越低。
随着杂质含量的增加,钛的强度升高,塑性下降。
5.1.2 钛的合金化
纯钛虽然其塑性和韧性很好,但强度较低,影响了 应用范围。加入适当的合金元素后,可以明显地改 善其组织和性能,满足工程上的性能和要求。
5.1.2 钛的合金化
(3)α+β钛合金 这种合金是指其退火组织为α+β相的钛合金,
也称为两相钛合金。我国这类合金的牌号为TC, 后跟合金序号,如TC4、TC5、TC6等。 (4)钛合金 此类合金含β稳定元素较多。我国这类合金的牌 号为TB,后跟合金序号,如TB1、TB2等。
5.2 钛的相变
抗拉强度增加50MPa。铝在钛中的极限溶解度为 7.5%,一般加铝量不超过7%。 锡和锆为常用的中性元素,在α钛和β钛中均有 较大的溶解度,常和其他元素同时加入,有补充 强化作用,对塑性的不利影响比铝小,使合金具 有良好的压力加工性能和焊接性能。
5.1.2 钛的合金化
钒和钼是β稳定元素中应用最广的两种元素,对 β相起固溶强化作用,降低相变点,增加合金的 淬透性,从而强化热处理强化效果。
锰、铁、铬等元素强化效果高,稳定β的能力强 ,比钨、钼、铌轻,故应用较广。
硅的共析转变温度较高(860℃),加硅可改善合 金的耐热性能。加入少量的硼可以细化宏观组织 。稀土元素可显著地提高合金的瞬时强度和蠕变 强度。
5.1.2 钛的合金化
5.1.2.4工业钛合金的分类和编号 根据钛合金退火(空冷)后的组织特点,钛合金可
5.2.1 同素异构相变
纯钛在固态有两种同素异晶体,即体心立方晶格 的β相和密排六方晶格的α相,在882.5℃发生下 列同素异构转变: 882.5℃ α(密排六方) β(体心立方)
相变特点:
(1)相变体积效应不大 (2)在β相转变为α相的过程中相变阻力及所需过冷度都
很小 (3)钛合金中的同素异构转变,温度对合金的成分极为敏
分为α、近α 、 (α+β)和β四类。 因这四类的形成与钛合金中所含β稳定元素的数量
1.2 钛的合金化
(1)α钛合金 此合金是指其退火组织以α钛为基体的单相固溶
体的合金。我国α钛合金的牌号为TA后加一个代 表合金序号的数字,如TA1、TA2、TA3等。 (2)近α钛合金 这类合金主要靠α稳定元素固溶强化,另加少量 β稳定元素,以使退火组织中有少量β相。
感 (4)加热温度超过β相变点后,β相长大倾向很大,极易
使β相晶粒粗化
5.2.2 β相转变
5.2.2.1 β相在快冷过程中的转变 当钛合金自高温快速冷却(淬火)时,根据合金成分的不 同, β相可以转变为马氏体、ω相或过冷β等亚稳定相。
(1)形成马氏体 定义:α稳定元素过饱和的固溶体为钛合金的马氏体。 类型: β稳定元素含量不大,六方马氏体α′(板条状和针状);
5 钛及钛合金的热处理
5.1 钛及钛合金 5.2 钛合金的相变 5.3 钛合金的热处理 5.4 钛合金的组织及其性能 5.5 常用钛合金的热处理制度
5.1 钛及钛合金
钛及钛合金的优点: 密度小、比强度高、耐热性较铝高、良好的耐蚀性
钛及钛合金的缺点: 导热性差、耐磨性差、弹性模量低、化学活性高 钛资源在地壳中的含量
5.2.1 同素异构转变 5.2.2 β相转变 (1)β相在快冷过程中的转变
1)马氏体相变 2)ω相变 3)淬火钛合金的亚稳定相图 (2)β相在慢冷过程中的转变 (3)β相共析反应和等温转变 5.2.3 时效过程亚稳相的分解 (1)六方马氏体α′的分解 (2)斜方马氏体α〞的分解 (3)ω相的分解 (4)亚稳定βm相的分解
β稳定元素含量较大,斜方马氏体α〞(细针状马氏体);
5.2.2 β相转变
板条马氏 体内有密 集的位错
针状马氏 体内有大 量孪晶
5.2.2 β相转变
途径:淬火或者受力 除淬火时β相可发生马氏体转变外,过冷β相在受力时也可 能发生马氏体转变,称为应力诱发马氏体。应力诱发马氏 体均为α〞晶体结构,为细针状。 钛合金中马氏体不像钢中马氏体能强烈提高合金的强度和 硬度,因为钢中的马氏体为过饱和的间隙固溶体,钛中马 氏体为过饱和的置换固溶体,产生的晶格畸变较小,对位 错滑移的阻力较小,因此对合金只有较小的强化作用。
5.1.2.1 钛与其他元素之间的作用 钛与其他合金元素之间的作用,取决于原子的电子
层结构、原子半径、晶格类型等诸因素。
5.1.2 钛的合金化
周期表中各元素按与钛作用性质可纳如下:①在周期表上 与钛同族的元素锆和铪具有与钛相同的外层电子结构和晶 格类型,原子半径也相近,故它们与α和β钛均能无限互 溶,形成连续固溶体;②在周期表上靠近钛的元素,如钒 、钼、铌、钽等与β钛具有相同的晶格类型,能与β钛无 限互溶,在α钛中有限溶解;③在外层电子结构、晶体类 型和原子尺寸上都与Ti有较大的差异,如锰、铁、钴、镍 等元素与钛只能形成有限的固溶体,超过溶解极限则形成 化合物。
相关文档
最新文档