广西壮族自治区普通高中2017-2018学年11月学业水平考试数学试题 Word版含答案
广西南宁市第八中学2017-2018学年高二11月段考数学(理)试题含答案

2017~2018学年度上学期南宁市第八中学段考高二数学(理)试卷一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在△ABC 中,60A ∠=︒,2AB =,且△ABC的面积ABCS ∆=,则边AC 的长为( )A .1B .3 CD .2 2.设命题p :对x eR x xln ,>∈∀+,则p ⌝为( )A .00ln ,0x e R x x <∈∃+ B .x e R x x ln ,<∈∀+C .00ln ,0x e R x x≤∈∃+D .x e R x x ln ,≤∈∀+3. 已知,,a b c 满足c b a <<且0ac <,下列选项中不一定...成立的是( ) A .ab ac > B.()0c b a -> C.22cbab > D.()0ac a c -<4.已知,x y 满足约束条件0,2,0.x y x y y -≥⎧⎪+≤⎨⎪≥⎩则2z x y =+的最大值为( )A .4B 。
3 C. 2-D 。
3-5.已知等差数列}{na 的前n 项和为nS ,满足95S S =,且01>a ,则n S 中最大的是( )A .6S B .7S C .8S D .9S6.已知在△ABC 中,sin A ∶sin B ∶sin C =0。
3∶0。
5∶0。
7,那么这个三角形的最大角是( )A .90°B .120°C .135°D .150°7。
当x 〉3时,不等式11x a x +≥-恒成立,则实数a 的取值范围是( )(][)77.,3.3,.,.,22A B C D ⎡⎫⎛⎤-∞+∞+∞-∞⎪⎢⎥⎣⎭⎝⎦ 8. 2x 2-5x -3〈0是-1〈x 〈6 的( )条件A .充分必要B .充分不必要C .必要不充分D .既不充分也不必要 9.数列}{na 的通项公式是)()1(1*∈+=N n n n an,若前n 项的和为1110,则项数=n ( )A .12B .11C .10D .910.已知命题[]2:"1,2,0"p x xa ∀∈-≥,命题2:",220"q x R x ax a ∃∈++-=,若命题“p q ⋂” 是真命题,则实数a 的取值范围是( )A.(]{},21-∞-⋃ B 。
最新-2018年2018月广西壮族自治区普通高中学业水平考试地理试题及答案 精品

2018年12月广西壮族自治区普通高中学业水平考试地理(全卷满分100分,考试时间90分钟)注意事项:1.答题前,考生务必将姓名、座位号、考籍号填写在试卷和答题卡上。
2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试题上作答无效。
一、单项选择题(本大题共35小题,每小题2分,共70分。
在每小题列出的四个备选项中只有一项符合题目要求。
错选、多选或未选均不得分。
温馨提示:请在答题卡上作答,在本试题上作答无效。
) 1.“太阳大,地球小,太阳带着地球跑”这句童谣所指的天体系统是A.总星系 B.太阳系 C.银河系 D.河外星系2.图l为大气受热过程示意图。
低层大气的热量直接来源于A.① B.② C.③ D.④3.古诗云:“才从塞北踏冰雪,又向江南看杏花。
”造成塞北与江南景观差异的自然要素是A.气候 B.植被 C.地形 D.河流4.普通服装厂工业布局的主导因素是A.技术 B.市场 C.原料 D.劳动力5.我国境内沿40°N纬线从东向西出现“森林一草原一荒漠”自然景观的变化,体现了A.垂直地带性分异规律 B.地方性(非地带性)规律C.从沿海向内陆(经度)的地域分异规律 D.从赤道向两极(纬度)的地域分异规律6.图2为黄果树瀑布景观示意图,该图显示的地球圈层有A.1个 B.2个 C.3个 D.4个7.有利于环境可持续发展的生产生活方式是A.使用一次性餐具 B.购物使用塑料袋 C.分类回收、处理垃圾 D.大量使用矿产资源8.冷空气入侵造成24小时内降温10℃以上,且最低气温在5℃以下,称为寒潮。
寒潮严重危害我国农作物的季节是A.夏秋之交 B.盛夏时节 C.隆冬季节 D.秋末、春初9.黄梅戏《天仙配》中的歌词“你耕田来我织布,我挑水来你浇园”所描述的生产方式多出现在A.采猎文明时期 B.农业文明时期 C.工业文明时期 D.后工业文明时期图3为我国南方某区域聚落分布示意图,回答10~11题。
10.图中沿河流分布的a、b、c、d四个聚落,最有可能发展成为大城市的是A.a B.b C.c D.d11.为发展地区经济,计划修建连接a、b两地的公路。
2017-2018学年(新课标)最新广西南宁市高二下期末数学试卷(理)(有答案)-精品试题

2017-2018学年广西南宁市高二(下)期末数学试卷(理科)一、选择题(每小题5分,共60分.每小题有且只有一个正确答案.)1.全称命题:∀x∈R,x2+5x=4的否定是()A.∃x∈R,x2+5x=4 B.∀x∈R,x2+5x≠4 C.∃x∈R,x2+5x≠4 D.以上都不正确2.i是虚数单位,复数等于()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i3.椭圆+=1的焦点坐标是()A.(±5,0)B.(0,±5)C.(0,±12)D.(±12,0)4.函数f(x)=x3﹣3x2+1是减函数的区间为()A.(2,+∞)B.(﹣∞,2)C.(﹣∞,0)D.(0,2)5.双曲线的离心率为()A.2 B.C.D.6.曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+27.已知点A(4,1,3),B(2,﹣5,1),C为线段AB上一点,且3||=||,则点C的坐标是()A. B.C. D.8.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值()A.2个 B.1个 C.3个 D.4个9.若向量=(1,x,0),=(2,﹣1,2),,夹角的余弦值为,则x等于()A.﹣1 B.1 C.1或7 D.﹣1或﹣710.若(2x+)dx=3+ln2,则a的值是()A.6 B.4 C.3 D.211.由y=,x轴及x=1,x=2围成的图形的面积为()A.ln2 B.lg2 C.D.112.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为()A.B.C.D.二、填空题(每小题5分,共20分)13.设复数z满足,则z= .14.抛物线y2=﹣8x的焦点坐标是.15.曲线y=x3在点(1,1)处的切线与x轴、直线x=2所围成的三角形的面积为.16.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是三、解答题:(本大题共70分)17.已知z∈C,表示z的共轭复数,若z•+i•z=,求复数z.18.在棱长为1的正方体ABCDA1B1C1D1中,E为棱BC的中点,点F是棱CD上的动点,试确定点F 的位置,使得D1E⊥平面AB1F.19.设函数y=4x3+ax2+bx+5在x=与x=﹣1时有极值.(1)写出函数的解析式;(2)指出函数的单调区间.20.已知函数f(x)=x2﹣2ax+b在x=1处有极值2.求函数f(x)=x2﹣2ax+b在闭区间[0,3]上的最值.21.已知椭圆C:+=1(a>b>0)的离心率为,其中左焦点F(﹣2,0).(1)求椭圆C的方程;(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段的中点M在圆x2+y2=1上,求m的值.22.已知a∈R,函数f(x)=(﹣x2+ax)e x(x∈R,e为自然对数的底数).(Ⅰ)当a=2时,求函数f(x)的单调递增区间;(Ⅱ)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.参考答案与试题解析一、选择题(每小题5分,共60分.每小题有且只有一个正确答案.)1.全称命题:∀x∈R,x2+5x=4的否定是()A.∃x∈R,x2+5x=4 B.∀x∈R,x2+5x≠4 C.∃x∈R,x2+5x≠4 D.以上都不正确【考点】全称命题;命题的否定.【分析】根据全称命题的否定是特称命题即可得到结论.【解答】解:∵全称命题的否定是特称命题,∴∀x∈R,x2+5x=4的否定是:∃x∈R,x2+5x≠4.故选:C.2.i是虚数单位,复数等于()A.﹣1﹣i B.﹣1+i C.1﹣i D.1+i【考点】复数代数形式的乘除运算.【分析】直接利用复数的除法运算进行化简计算.【解答】解:.故选B.3.椭圆+=1的焦点坐标是()A.(±5,0)B.(0,±5)C.(0,±12)D.(±12,0)【考点】椭圆的简单性质.【分析】由a,b,c的关系即可得出焦点坐标.【解答】解:椭圆的方程+=1中a2=169,b2=25,∴c2=a2﹣b2=144,又该椭圆焦点在y轴,∴焦点坐标为:(0,±12).故选:C.4.函数f(x)=x3﹣3x2+1是减函数的区间为()A.(2,+∞)B.(﹣∞,2)C.(﹣∞,0)D.(0,2)【考点】利用导数研究函数的单调性.【分析】求出f′(x)令其小于0即可得到函数是减函数的区间.【解答】解:由f′(x)=3x2﹣6x<0,得0<x<2∴函数f(x)=x3﹣3x2+1是减函数的区间为(0,2).故答案为D.5.双曲线的离心率为()A.2 B.C.D.【考点】双曲线的简单性质.【分析】双曲线的离心率为==,化简得到结果.【解答】解:由双曲线的离心率定义可得,双曲线的离心率为===,故选B.6.曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1 B.y=﹣x+1 C.y=2x﹣2 D.y=﹣2x+2【考点】利用导数研究曲线上某点切线方程.【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选A.7.已知点A(4,1,3),B(2,﹣5,1),C为线段AB上一点,且3||=||,则点C的坐标是()A. B.C. D.【考点】空间向量的数乘运算.【分析】C为线段AB上一点,且3||=|||,可得,利用向量的坐标运算即可得出.【解答】解:∵C为线段AB上一点,且3||=|||,∴,∴=(4,1,3)+(﹣2,﹣6,﹣2),=.故选:C.8.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值()A.2个 B.1个 C.3个 D.4个【考点】利用导数研究函数的极值.【分析】如图所示,由导函数f′(x)在(a,b)内的图象和极值的定义可知:函数f(x)只有在点B处取得极小值.【解答】解:如图所示,由导函数f′(x)在(a,b)内的图象可知:函数f(x)只有在点B处取得极小值,∵在点B的左侧f′(x)<0,右侧f′(x)>0,且f′(x B)=0.∴函数f(x)在点B处取得极小值.故选:B.9.若向量=(1,x,0),=(2,﹣1,2),,夹角的余弦值为,则x等于()A.﹣1 B.1 C.1或7 D.﹣1或﹣7【考点】空间向量的数量积运算.【分析】由已知利用cos<>==,能求出x的值.【解答】解:∵向量=(1,x,0),=(2,﹣1,2),,夹角的余弦值为,∴cos<>===,解得x=1.故选:B.10.若(2x+)dx=3+ln2,则a的值是()A.6 B.4 C.3 D.2【考点】定积分.【分析】将等式左边计算定积分,然后解出a.【解答】解:因为(2x+)dx=3+ln2,所以(x2+lnx)|=a2﹣1+lna=3+ln2,所以a=2;故选D.11.由y=,x轴及x=1,x=2围成的图形的面积为()A.ln2 B.lg2 C.D.1【考点】定积分在求面积中的应用.【分析】利用定积分的几何意义将所求首先利用定积分表示,然后计算.【解答】解:由y=,x轴及x=1,x=2围成的图形的面积为:=lnx|=ln2﹣ln1=ln2;故选:A.12.如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为()A.B.C.D.【考点】直线与平面所成的角.【分析】由题意,由于图形中已经出现了两两垂直的三条直线所以可以利用空间向量的方法求解直线与平面所成的夹角.【解答】解:以D 点为坐标原点,以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴,建立空间直角坐标系(图略),则A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,1)∴=(﹣2,0,1),=(﹣2,2,0),且为平面BB 1D 1D 的一个法向量.∴cos <,>═=.∴BC 1与平面BB 1D 1D 所成角的正弦值为故答案为D .二、填空题(每小题5分,共20分)13.设复数z 满足,则z= 2﹣i .【考点】复数代数形式的乘除运算.【分析】直接化简复数方程,复数的分子、分母同乘分母的共轭复数,求出复数z 即可.【解答】解:,可得z=故答案为:2﹣i14.抛物线y 2=﹣8x 的焦点坐标是 (﹣2,0) . 【考点】抛物线的简单性质.【分析】先根据抛物线的标准方程,可判断出焦点所在的坐标轴和p ,进而求得焦点坐标. 【解答】解:∵抛物线方程y 2=﹣8x , ∴焦点在x 轴,p=4,∴焦点坐标为(﹣2,0) 故答案为(﹣2,0).15.曲线y=x 3在点(1,1)处的切线与x 轴、直线x=2所围成的三角形的面积为 .【考点】利用导数研究曲线上某点切线方程.【分析】欲求所围成的三角形的面积,先求出在点(1,1)处的切线方程,只须求出其斜率的值即可,故要利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决. 【解答】解:∵y=x 3,∴y'=3x 2,当x=1时,y'=3得切线的斜率为3,所以k=3; 所以曲线在点(1,1)处的切线方程为: y ﹣1=3×(x ﹣1),即3x ﹣y ﹣2=0.令y=o得:x=,∴切线与x轴、直线x=2所围成的三角形的面积为:S=×(2﹣)×4=故答案为:.16.用数学归纳法证明等式时,第一步验证n=1时,左边应取的项是1+2+3+4【考点】用数学归纳法证明不等式.【分析】本题考查的知识点是数学归纳法的步骤,由等式,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,由此易得答案.【解答】解:在等式中,当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,故n=1时,等式左边的项为:1+2+3+4故答案为:1+2+3+4三、解答题:(本大题共70分)17.已知z∈C,表示z的共轭复数,若z•+i•z=,求复数z.【考点】复数代数形式的乘除运算.【分析】设出复数的代数形式,利用两个复数的乘法法则和两个复数相等的条件建立方程组,用待定系数法求复数.【解答】解:设z=a+bi(a,b∈R),则=a﹣bi,z•+i•z=(a+bi)(a﹣bi)+i(a+bi)=a2+b2+ai﹣b=(a2+b2﹣b)+ai.又∵z•+i•z=,∴(a2+b2﹣b)+ai==3﹣i.根据复数相等的充要条件得解得或∴z=﹣1﹣i或z=﹣1+2i.18.在棱长为1的正方体ABCDA1B1C1D1中,E为棱BC的中点,点F是棱CD上的动点,试确定点F 的位置,使得D1E⊥平面AB1F.【考点】直线与平面垂直的性质.【分析】建立空间直角坐标系,表示出直线D1E所在的向量与AF,AB1所在的向量,利用线面垂直关系得到向量的数量积为0,进而得到答案.【解答】(本小题满分12分)解:如图建立空间直角坐标系:则A(1,0,0),B1(1,1,1),D1(0,0,1),E(,1,0).设F(0,y,0),则=(0,1,1),=(﹣1,y,0),=(,1,﹣1),要使D1E⊥平面AB1F,只需:,即:,即:y=.∴当F为CD中点时,有D1E⊥平面AB1F.19.设函数y=4x3+ax2+bx+5在x=与x=﹣1时有极值.(1)写出函数的解析式;(2)指出函数的单调区间.【考点】函数单调性的判断与证明;函数解析式的求解及常用方法.【分析】(1)先求出函数的导函数f′(x),然后根据在x=与x=﹣1时有极值,导数值为0,结合韦达定理可得a,b的值,进而得到函数的解析式;(2)分析导函数在定义域各个子区间上的符号,可得函数的单调区间.【解答】解:(1)∵y=4x3+ax2+bx+5,∴y′=12x2+2ax+b,又∵函数y=4x3+ax2+bx+5在x=与x=﹣1时有极值,故x=与x=﹣1为方程y′=12x2+2ax+b=0的两个根,由韦达定理得:﹣1==﹣=,×(﹣1)==,解得a=﹣3,b=﹣18,故y=4x3﹣3x2﹣18x+5,(2)由(1)得y′=12x2﹣6x﹣18=6(2x﹣3)(x+1),当x∈(﹣∞,﹣1)∪(,+∞)时,y′>0,当x∈(﹣1,)时,y′<0,故函数y=4x3﹣3x2﹣18x+5的单调调增区间为:(﹣∞,﹣1),(,+∞);单调递减区间为:(﹣1,).20.已知函数f(x)=x2﹣2ax+b在x=1处有极值2.求函数f(x)=x2﹣2ax+b在闭区间[0,3]上的最值.【考点】利用导数研究函数的极值.【分析】由已知得f′(x)=2x﹣2a,且,由此利用导数性质能求出函数f(x)=x2﹣2ax+b在闭区间[0,3]上的最值.【解答】解:∵f(x)=x2﹣2ax+b,∴f′(x)=2x﹣2a,∵f(x)在x=1时有极值2,∴,解方程组得:a=1,b=3,∴f(x)=x2﹣2x+3,….当x∈[0,1]时,f′(x)<0,∴f(x)单调递减,当x∈[1,3]时,f′(x)>0,∴f(x)单调递增,且f(0)=3,f(1)=2,f(3)=6,∴f(x)的最大值为6,f(x)最小值为2.…21.已知椭圆C:+=1(a>b>0)的离心率为,其中左焦点F(﹣2,0).(1)求椭圆C的方程;(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段的中点M在圆x2+y2=1上,求m的值.【考点】圆与圆锥曲线的综合.【分析】(1)由题意,得由此能够得到椭圆C的方程.(2)设点A、B的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由消y得,3x2+4mx+2m2﹣8=0,再由根的判断式结合题设条件能够得到m的值.【解答】解:(1)由题意,得解得∴椭圆C的方程为.(2)设点A、B的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由消y得,3x2+4mx+2m2﹣8=0,△=96﹣8m2>0,∴﹣2<m<2.∴=﹣,.∵点M(x0,y0)在圆x2+y2=1上,∴,∴.22.已知a∈R,函数f(x)=(﹣x2+ax)e x(x∈R,e为自然对数的底数).(Ⅰ)当a=2时,求函数f(x)的单调递增区间;(Ⅱ)若函数f(x)在(﹣1,1)上单调递增,求a的取值范围.【考点】利用导数研究函数的单调性;函数的单调性与导数的关系.【分析】(Ⅰ)求导函数,令f′(x)>0,可得f(x)的单调递增区间;(Ⅱ)f′(x)=[﹣x2+(a﹣2)x+a]e x,若f(x)在(﹣1,1)内单调递增,即当﹣1<x<1时,f′(x)≥0,即﹣x2+(a﹣2)x+a≥0对x∈(﹣1,1)恒成立,分离参数求最值,即可求a的取值范围.【解答】解:(Ⅰ)当a=2时,f(x)=(﹣x2+2x)e x,f′(x)=﹣(x2﹣2)e x令f′(x)>0,得x2﹣2<0,∴﹣<x<∴f(x)的单调递增区间是(﹣,);(Ⅱ)f′(x)=[﹣x2+(a﹣2)x+a]e x,若f(x)在(﹣1,1)内单调递增,即当﹣1<x<1时,f′(x)≥0,即﹣x2+(a﹣2)x+a≥0对x∈(﹣1,1)恒成立,即a≥对x∈(﹣1,1)恒成立,令y=,则y′=∴y=在(﹣1,1)上单调递增,∴y<1+1﹣=∴当a=时,当且仅当x=0时,f′(x)=0∴a的取值范围是[,+∞).。
广西钦州市2017-2018学年高一数学下学期期末考试试题(扫描版)

广西钦州市2017-2018学年高一数学下学期期末考试试题(扫描版)钦州市2018年春季学期教学质量监测参考答案高一 数 学一、选择题答案:(每小题5分,共60分)二、填空题答案:(每小题5分,共20分)13.240x y +-= 14. 2- 15. 4 16.(1)10(2)13 . 三、解答题:17、(1)解:原不等式可化为 22520x x -+< ·············· 1分即 (21)(2)0x x --< ············ 3分 所以原不等式的解集为 1{|2}2x x <<········ 5分 法2、解:原不等式可化为 22520x x -+< ··············· 1分方程 22520x x -+= 的根是 12534x ±==、 ····· 3分即 112x =或22x = 所以原不等式的解集为 1{|2}2x x << ········· 5分 (2)因为2(1)0mx m x m --+=没有实根,所以22(1)40m m ∆=--< ···················· 6分 即 23210m m --+< ····················· 7分 即 23210m m +-> ····················· 8分解得 113m m <->或 所以实数m 的取值范围是:1{|1}3m m m <->或 · 10分18、(1)解:设数列{}n a 的公差为d , ·················· 1分则321a a d d =+=+,62414a a d d =+=+ ············ 2分 依题意,得2(1)14d d +=+ 即 220d d -= ··············· 3分因为0d ≠,所以2d = ····················· 4分所以 121a a d =-=- ····················· 5分 所以,数列{}n a 的通项公式是 23n a n =- ············· 6分 (2、(Ⅰ))由(1)知11111=()(21)(23)(21)22321n n n n n n n b a ==------,···· 8分 所以 11111111=[(11)(1)()()()]233525232321n n n n n S --+-+-++-+-----L································· 10分111-2-=(1)22122121n nn n n --=⨯=---- ············ 12分 (2、(Ⅱ))由(1)知1()=2n n a a nS +⨯ ················ 7分 (123)=2n n-+-⨯ ················· 9分2(2)=2n n-⨯ ················ 10分 2=2n n - ················ 12分19、解(1cos sin C c A ⋅=⋅及正弦定理,得s i n c o s s i n s i n A C C A ⋅=⋅ ·················· 2分在ABC ∆中,因为 sin 0A ≠ ·················· 3分所以 sin C C = 即tan C = ·············· 4分而 (0,)C π∈ ························ 5分 所以 3C π=························· 6分(2)由ABC ∆的面积1sin 2S ab C == ············ 7分及(1)得 12S a b ==⨯ ················ 8分 得3ab = ····························· 9分由余弦定理,知 2222cos c a b ab C =+- ·············· 10分即 22227()3()9a b a b a b a b a b =+-=+-=+- ········ 11分所以 4a b += ························· 12分20、(1)解:由已知,得所求圆的半径的平方为:222(11)(12)1r =-+-= ·· 2分所以圆的标准方程是:22(1)(1)1x y -+-= ·············· 4分(2)因为直线0x y m ++=与圆C 相交于A 、B 两点,所以1d =< ························ 6分两边平方,得 2(2)2m +< 即 2420m m ++< ·········· 7分所以 11m -<<-+ …………8分再由ABC ∆是直角三角形,得2d ==········· 10分 整理得,2(2)1m +=,即2430m m ++= ·············· 11分解得 1m =-或3m =- ······················ 12分21、(1)证明:取PD 的中点E ,连结EM ,EC , · 1分 ∵M 是PA 的中点,∴//EM AD ,且12EM AD =, · 2分 而12NC BC =,且//AD BC , ∴//EM NC ,且EM NC = ·········· 3分 ∴四边形EMNC 是平行四边形,∴//EC MN ····· 4分 PDC MN PDC EC ⊄⊂平面,平面,所以,//PDC MN 平面 ······· 5分(2)取A D 的中点H ,连结NH ,则NH AD ⊥ ············· 6分由已知,PD ABCD ⊥底面,∴PAD ABCD ⊥侧面底面,∴NH PAD ⊥侧面 ··········· 7分过H 作HF PA ⊥,连结FN ,则NH PA ⊥,∴PA NHF ⊥平面,∴FN PA ⊥, ······ 8分所以HFN ∠是二面角N PA D --的平面角, 在PAD ∆中,FH AH PD PA =, ········· 9分 由22AD PD ==,得PA =FH 5= ············ 10分而2NH =,∴5FN == ············ 11分所以二面角N PA D --的平面角的余弦值为:cos HFN 21FH FN ∠==。
广西南宁市第三中学2017-2018学年高一上学期期末考试数学试题含答案

南宁三中2017~2018学年度上学期高一期考数学试题 2018。
1一、选择题(本大题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集{}{}{}1,2,3,4,5,6,7,2,4,6,1,3,5,7U A B ===,则=A B C U)(( )A 。
{}2,4,6 B. {}1,3,5 C 。
{}2,4,5 D. {}2,5 2.函数()()lg 21x f x =+-的定义域为( )A. (),1-∞ B 。
(]0,1 C. ()0,1 D 。
()0,+∞3.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A 。
a c b << B. b a c << C. a b c << D.b ac <<4.已知定义在R 上的奇函数()f x 和偶函数()g x 满足: ()()xf xg x e +=,则( ) A.)(21)(x x e e x f -+= B 。
)(21)(x x e e x f --=C 。
)(21)(x x e e x g --= D 。
)(21)(x x e e x g -=-5.函数()2f x lgx x =+-的零点所在的区间是( ). A. ()0,1 B. ()2,3 C 。
()1,2 D. ()3,10 6.已知函数)(322)(2R m m mx xx f ∈+++=,若关于x 的方程0)(=x f 有实数根,且两根分别为,,21x x 则2121)(x x x x ⋅+的最大值为( ) A 。
29 B. 2 C. 3 D. 497.已知直线()()212430m x m y m ++-+-=恒经过定点P,则点P 到直线0443:=-+y x l 的距离是()A 。
6 B.3 C 。
4 D 。
78。
如下左图,正四棱锥P ABCD 的底面ABCD 在球O 的大圆上,点P 在球面上,如果V P 。
2018年广西壮族自治区普通高中会考数学真题及答案

2018年广西壮族自治区普通高中会考数学真题及答案2018年广西壮族自治区普通高中会考数学真题及答案本次考试共分为选择题和非选择题两部分,满分100分,考试时间为120分钟。
选择题:1.已知集合A={0.1.2},则A中不包含3,因此选项B“1∉A”正确。
2.π/2的角度数为90°,因此选项C“90°”正确。
3.该几何体的三视图分别为正视图为圆形,侧视图为长方形,俯视图为正方形,因此该几何体是棱柱,选项C正确。
4.虚数单位i的平方等于-1,因此(3+i)+(1+2i)=4+3i,选项D正确。
5.指数函数y=2x的图象是指数函数的标准图象y=ex的左移1个单位,因此选项B正确。
6.圆(x-1)2+(y-2)2=1的半径长为1,因此选项A正确。
7.向量a=(2.1),b=(0.2),因此a+b=(2.3),选项A正确。
8.图形符号表示流程线的是箭头符号,选项A正确。
9.不等式y≥x表示y轴上方的平面区域,因此选项C正确。
10.函数y=log2x是对数函数,选项A正确。
11.根据回归直线方程ŷ=1.04x+12,当x=30时,ŷ=43,因此选项B正确。
12.直线x-y+3=0与直线x+y-1=0的交点坐标为(1.2),因此选项B正确。
13.直线y=2x+1的斜率为2,因此选项B正确。
14.“同位角相等”是“两直线平行”的充要条件,选项C正确。
15.将x=2代入函数f(x)=x3+2x中,得到f(2)=12,因此选项B正确。
16.函数y=Asin(2x+π/3)(A>0)的图象振幅为1,因此A=π/3,选项B正确。
1.共有三种结果:B1B2、B1B3、B2B3,因此从[2,3)组中抽取两个人都属于事件C的概率为P(C)=3/6=1/2.2.题目要证明的是在三棱柱ABC-AB1C1中,CC1垂直于平面ABC。
由于AA1垂直于平面ABC,所以CC1也垂直于平面ABC。
同时,由于AD平行于平面ABC且BC为等边三角形,所以AD垂直于BC,进而垂直于平面BCC1B1.又因为CC1与BC1相交于C,所以AD也垂直于BC1.因此,AD垂直于平面BCC1B1,即CC1垂直于平面ABC。
广西高级中学2017届高三11月阶段性检测理数试题 含解析

广西高级中学2017届高三11月阶段性检测理数试题一、选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.已知集合{}3,2,1M =---,{}|(2)(3)0N x x x =+-<,则M N 等于()A .{}1-B .{}2,1--C .()2,1--D .()3,3-【答案】A考点:1、集合的表示方法;2、集合的交集.2.已知i 是虚数单位,若312i i z=-+,则z 的共轭复数z 等于( )A .2133i +B .2133i -C .6355i +D .6355i -【答案】C 【解析】试题分析:因为()()()3123631212125i i i i z i i i ---===-+-+--,所以6355z i =+,故选C.考点:1、复数的运算;2、共轭复数的定义. 3.在等差数列{}na 中,3611aa +=,5839a a +=,则公差d 为( )A .14-B .7-C .7D .14【答案】C 【解析】试题分析:因为等差数列{}na 中,3611aa +=,5839a a +==,由()()58363911428a a a a d +-+=-==,得7d =.故选C.考点:等差数列的性质.4。
如图是一名篮球运动员在最近5场比赛中所得分数的茎叶图,若该运动员在这5场比赛中的得分的中位数为12,则该运动员这5场比赛得分的平均数不可能为( ) A .685B .695C .14D .715【答案】D考点:1、茎叶图的应用;2、中位数与平均值的性质。
5.已知2a >,函数,1,()log ,1,x a a x f x x x ⎧<=⎨≥⎩则[](2)f f 等于( )A .2aB .log 2aC .2D .log(log 2)aa【答案】C 【解析】试题分析:因为2a >,函数,1,()log ,1,x a a x f x x x ⎧<=⎨≥⎩,所以,由21>得()2log 2a f =,因为log21a<,所以[]log 2(2)2a f f a ==,故选C.考点:1、分段函数的解析式;2、对数与指数的性质。
广西省桂林市2017-2018学年高一下学期期末质量检测数学试题(含精品解析)

桂林市2017-2018学年度下学期期末质量检测高一年级数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 与角终边相同的角是( )A. B.C. D.【答案】C【解析】分析:根据 表示终边相同角,即可判断。
详解:因为周期为,所以与终边相同的角是所以选C点睛:本题考查了终边相同角的表示方法,考查基本的概念,属于基础题。
2. 圆的半径是( )A. B. 2 C. D. 4【答案】A【解析】分析:一般方程转化为标准方程,即可得到半径值。
详解:把一般方程转化为圆的标准方程由标准方程,可知半径为 所以选A点睛:本题考查了圆的一般方程与标准方程的转化,根据标准方程求圆心或半径,属于基础题。
3. 已知如图所示的矩形,其长为12,宽为5.在矩形内随机地撒1000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为( )A. 11B. 22C. 33D. 44【答案】C【解析】分析:计算出阴影部分黄豆占总数的比值;由几何概型概率求法即可求得阴影部分面积。
详解:落在阴影部分的黄豆占总数的比例为矩形面积为所以阴影部分面积为所以选C点睛:本题考查了利用几何概型求阴影面积的方法,属于基础题。
4. 在单位圆中,面积为1的扇形所对的圆心角的弧度数为()A. 1B. 2C. 3D. 4【答案】B【解析】试题分析:根据扇形面积公式,,可得,选B.考点:扇形的面积.【思路点晴】本题主要考查的是弧度制下扇形的面积公式的应用,属于容易题,本题利用弧度制下扇形的面积公式确定已知中包含的条件有:,将两者代入面积公式即可解出.在本题中要熟悉两个点:第一,单位圆中的半径为;第二,弧度制下的扇形的面积公式:,做题过程中注意应用那个公式.5. 在如图所示空间直角坐标系内,正方体的棱长为1,则棱中点的坐标为()A. B. C. D.【答案】A【解析】分析:根据空间直角坐标系,求得B、B1的坐标,根据中点坐标公式即可求得中点坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年广西壮族自治区普通高中学业水平考试数 学(全卷满分100分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、座位号、考籍号填写在答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试题上作答无效.一、单项选择题:本大题共30小题,每小题2分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.(温馨提示:请在答题卡上作答,在本试题上作答无效.)1.已知集合{}5A =,{}45B =,,则A B =A .∅B .{}4C .{}5D .{}4 5,2.1977年是高斯诞辰200周年,为纪念这位伟大的数学家对复数 发展所做出的杰出贡献,德国特别发行了一枚邮票(如图).这 枚邮票上印有4个复数,其中的两个复数的和:=+-++)i 65()i 44( A .110i -+ B .29i -+ C .92i - D .10i - 3.直线1y x =-的斜率等于A .1-B .1C .4πD .34π4.设向量AB =a ,BC =b ,则AC = A .a +b B .-a bC .--a bD .-a +b 5.函数()f x x =的定义域是A .RB .{}0x x ≥C .{}0x x >D .{}0x x < 6.某几何体的三视图如右图所示,则该几何体是A .棱柱B .圆柱C .棱锥D .圆锥7.某校高二年级共有600名学生,编号为001~600.为了分析 该年级上学期期末数学考试情况,用系统抽样方法抽取了 一个样本容量为60的样本.如果编号006,016,026在样 本中,那么下列编号在样本中的是 A .010 B .020 C .036 D .042 8.执行如图所示的程序框图,输出的结果是A .3B .9C .27D .649.60角的弧度数是(第2题图)(第6题图)俯视图正视图侧视图(第8题图)A .2π B .3πC .4πD .6π10.指数函数()01x y a a a =>≠且的图像必过定点 A .()00, B .()01,C .()10,D .()11,11.经过点(02) P ,且斜率为2的直线方程为 A .220x y ++= B .220x y --= C .220x y -+= D .220x y +-= 12.函数2sin y x x =∈R ,的最大值为A .2-B .1-C .1D .213.3log 9=A .9B .3C .2D .1314.“若两个三角形全等,则这两个三角形的面积相等”的逆是 A .若两个三角形的面积相等,则这两个三角形全等B .若两个三角形不全等,则这两个三角形的面积相等C .若两个三角形的面积相等,则这两个三角形不全等D .若两个三角形不全等,则这两个三角形的面积不相等15.在等比数列{}n a 中,已知1=2a ,2=4a ,那么4=aA .6B .8C .16D .3216.下列正确的是 A .1a a +的最小值是2 B .221a a +的最小值是2C .1a a+的最大值是2D .221a a+的最大值是217.设向量7 (5)=-,a ,(4) 6=--,b ,则=a b A .58- B .2- C .2 D .22 18.在△ABC 中,角A 、B 、C 的对边分别为a b 、、c ,若145b c A ===,,则a 的长为A .1BCD .219.已知双曲线2221y x m-=的虚轴长是实轴长的2倍,则实数m 的值是A .1±B .2±C .2D .420.已知某种细胞分裂时,由1个分裂成2个,2个分裂成4个……依此类推,那么1个这样的细胞分裂3次后,得到的细胞个数为A .4个B .8个C .16个D .32个21.棱长均为a 的三棱锥的表面积是A .24aB2C2 D222.从某中学高三年级中随机抽取了6名男生,其身高和体重的数据如下表所示:由以上数据,建立了身高x 预报体重y 的回归方程ˆ0.8071.6yx =-.那么,根据 上述回归方程预报一名身高为175cm 的高三男生的体重是A .80 kgB .71.6 kgC .68.4 kgD .64.8 kg23.抛物线26y x =的准线方程是A .32x =-B.32x =C .32y =-D .32y =24.不等式组0020x y x y ⎧⎪⎨⎪+-⎩,,≥≥≤所表示的平面区域的面积为A .1B .32C .2D .325…的一个通项公式是A .n a = B .na =C .n a =D .n a =26.sin75=A B C D 27.某居民小区拟将一块三角形空地改造成绿地.经测量,这块三角形空地的两边长分别为32m 和68m ,它们的夹角是30.已知改造费用为50元/m 2,那么,这块三角形空地的改造费用为 A . B .C .27200元D .54400元28.函数()31f x x x =--的零点所在的区间是 A .(01), B .(12),C .(23),D .(34),29.关于函数()3log 1y x =-的单调性,下列说法正确的是 A .在()0+∞,上是减函数 B .在()0+∞,上是增函数C .在()1+∞,上是减函数 D .在()1+∞,上是增函数 30.由个别事实概括出一般结论的推理,称为归纳推理.以下推理为归纳推理的是A .三角函数都是周期函数,sin x 是三角函数,所以sin x 是周期函数B .一切奇数都不能被2整除,525是奇数,所以525不能被2整除C .由211=,2132+=,21353++=,得()()2*1321n n n N +++-=∈…D .两直线平行,同位角相等.若A ∠与B ∠是两条平行直线的同位角,则A B ∠=∠二、填空题:本大题共6小题,每小题2分,共12分.(温馨提示:请在答题卡上作答,在本试题上作答无效.)31.若函数()2100 x x f x x x +⎧=⎨>⎩,,,,≤则()2f = .32.在等差数列{}n a 中,已知31=a ,73=a ,则公差=d . 33.已知4sin 5x =,且x 是第一象限角,则cos x = . 34.已知向量a =(2,1),b =(1,5),则2+a b 的坐标为 .35.椭圆221259x y +=的离心率e = .36.不等式223x x -++≥0的解集为 .三、解答题:本大题共4小题,共28分.解答应写出文字说明、证明过程或演算步骤.(温馨提示:请在答题卡上作答,在本试题上作答无效.) 37.(本小题满分6分)赵州桥是当今世界上建造最早、保存最完整的我国古代单孔敞肩石拱桥(图一).若以赵州桥跨径AB 所在直线为x 轴,桥的拱高OP 所在直线为y 轴,建立平面直角坐标系(图二),有桥的圆拱APB 所在的圆的方程为()22220.727.9x y ++=.求OP .(第37题图)(图一)(图二)38.(本小题满分6分)在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥. 证明:BC ⊥平面PAC .39.(本小题满分8分)据相关规定,24小时内的降水量为日降水量(单位:mm ),不同的日降水量对应的降水强度如下表:日降水量 (010),[1025),[2550),[50100),[100250), [250)+∞,降水强度小雨中雨大雨暴雨大暴雨特大暴雨为分析某市“主汛期”的降水情况,从该市2015年6月~8月有降水记录的监测数据中,随机抽取10天的数据作为样本,具体数据如下: 16 12 23 65 24 37 39 21 36 68 (1)请完成以下表示这组数据的茎叶图;12 21336765(2)从样本中降水强度为大雨以上(含大雨)天气的5天中随机选取2天,求恰有1天是暴雨天气的概率.40.(本小题满分8分)已知函数()ln 1f x x x a =-+-,()2ln 2x g x ax x x =+-,其中0a >.(1)求()f x 的单调区间; (2)当1x ≥时,()g x 的最小值大于3ln 2a -,求a 的取值范围. (第38题图)2016年6月广西壮族自治区普通高中学业水平考试数学 参考答案及评分标准说明:1.第一题选择题,选对得分,多选、错选或不选一律给0分. 2.第二题填空题,不给中间分.3.第三题解答题,本答案给出了一种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制定相应的评分细则.4.对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.5.解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 6.只给整数分数.二、填空题(共6小题,每小题2分,共12分) 31.4 32.2 33.35 34.(5 ,7) 35.4536.[]13-,三、解答题(共4小题,共28分)37.解:在方程()22220.727.9x y ++=中,令0x =, ·································· 2分则()2220.727.9y +=, ······························································ 3分 解得17.2y =,248.6y =-(舍去).··············································· 5分 7.2OP ∴=.··········································································· 6分38.证明: ⊥PA 平面ABC ,⊂BC 平面ABC ,BC PA ⊥∴. ·················· 3分又AC BC ⊥,······································································· 4分 PA ⊂平面PAC ,AC ⊂平面PAC ,A AC PA = ,BC ∴⊥平面PAC . ································································ 6分 39.解:(1)12 6213 4367 965 8····························································· 4分(2)记降水强度为大雨的3天为a ,b ,c ,降水强度为暴雨的2天为d ,e ,从这5天中抽取2天的所有情况为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,基本事件总数为10. ··································································· 6分记“5天中抽取2天,恰有一天发生暴雨”为事件A ,可能结果为ad ,ae ,bd ,be ,cd ,ce ,即事件A 包含的基本事件数为6. ···························· 7分 所以恰有1天发生暴雨的概率6()0.610P A ==. ···································· 8分 40.解:(1)函数()f x 的定义域为(0)+∞,. ··········································· 1分 11()1x f x x x-'=-=.····················································· 2分 当01x <<时,()0f x '<;当1x >时,()0f x '>.∴函数()f x 的单调递减区间是(0) 1,,单调递增区间是(1) +∞,. 4分 (2)易知()ln 1().g x x x a f x '=-+-=由(1)知,()(1)0f x f a =>≥,所以当1x ≥时,()(1)0g x g a ''=>≥.从而()g x 在[1)+∞,上单调递增, ·········································· 5分 所以()g x 的最小值()112g a =+. ············································ 6分 依题意得12a +3ln 2a >-,即ln 10a a +->. ···························· 7分 令()ln 1h a a a =+-,易知()h a 在()0+∞,上单调递增. 所以()()10h a h >=,所以a 的取值范围是()1+∞,. ··················· 8分。