2018年6月广西壮族自治区普通高中学业水平考试数学试题(解析版)

合集下载

广西南宁市2018届高三综合能力测试数学(理)试题+扫描版含答案

广西南宁市2018届高三综合能力测试数学(理)试题+扫描版含答案

2018年南宁市高三年级综合能力测试全套(三)理科数学答案一、选择题(共12小题,每小题5分,共60分)(1)【答案】C 【解析】因为{}0,1,2,3,...A =,[]=2,2B -,故{}0,1,2A B = (2)【答案】C 【解析】如图,2z i =-+,令1z a bi =+,则221()(2)z z a bi i ⋅=+-+()(34)a bi i =+-.又21z z ⋅为纯虚数,则21z z ⋅实部为0,即3+40a b =,故选C. (3)【答案】D 【解析】22cos 212sin 2cos 1ααα=-=-.则可以算出21sin 3α=,22cos 3α=.则2221sin 13tan 2cos 23ααα===,故选D. (4)【答案】B 【解析】A 选项为37,C 选项为污染,D 选项应为小于.(5)【答案】A 【解析】如图,ABC ∆为满足不等式组的区域,当直线2z x y =+经过点(21)C ,时值最小.此时224z =+=.故选A(6)【答案】B 【解析】()4211a x x x ⎛⎫+++ ⎪⎝⎭常数项为122441+1C a C a ⋅+⋅=.解得:203a =或-.故选B.(7)【答案】D 【解析】16在第三象限,则cos160<.进行一次循环得到8,2m n ==.8在第二象限,则cos80<.又进行一次循环得到4,3m n ==.4在第三象限,cos 40<. 又进行一次循环得到2,4m n ==.2在第二象限,cos 20<.又进行一次循环得到1,5m n ==,此时cos10>.故输出n 为5.故选D.(8)【答案】B 【解析】平移后的函数为()sin(+)3g x x ππϕ=+,由()g x 为偶函数可以推出=6πϕ.则()sin()6f x x ππ=+.所以()f x 的单调递增区间为2,2,622x k k k Z ππππππ⎛⎫+∈-+∈ ⎪⎝⎭即21(2,2),33x k k k Z ∈-+∈.故选B.(9)【答案】A 令2()ln f x x x =-,定义域为()()00-∞+∞ ,,且2()ln ()f x x x f x -=-=,故函数2ln y x x =-为偶函数,图象关于y 轴对称,排除B 、D ;考虑2()ln g x x x =-,1()2g x x x'=-,当)22,0(∈x 时1()20g x x x '=->,2()ln g x x x =-单调递增,排除C.选A.(10)【答案】A (11)【答案】B【解析】考虑到对称性,不妨设P 点在第一象限.令:1l x =-,过P 作PK l ⊥于K.根据抛物线的第一定义,PK PF =.则若要使PF PA最小,则直线PA 的斜率应最大.令:1PA x ky =-,代入抛物线方程得:2440y ky -+=,216160k ∆=-≥.则k 最小为1.此时P 点坐标为1,2().圆心O 到直线PF 的距离为1.故选B.(12)【答案】A 【解析】如图为函数图像,若函数()=-y f x k 有三个不同的零点,则(]0,1k ∈.又由于函数5log x 的性质5152log log 0x x +=.则121x x =.又311,62x ⎡⎫∈⎪⎢⎣⎭.所以12311,62x x x ⎡⎫∈⎪⎢⎣⎭.故选A.二、填空题(共4小题,每小题5分,共20分)(13)【答案】2-【解析】2(4,42)a b m -=-可得:24=442m-,解得2m =-. (14)sin 2sin B C =由正弦定理知2b c =. 2π3A =,由余弦定理知:222(2)14cos 322c c c cπ+-=⋅⋅.解得:c =故满足条件的c =(15)【答案】4【解析】126PF PF -=,则点P 应该在双曲线的右侧.依题意得P 满足22219x y b -=,得:225119b -=.解得:2169b =,得c =,c e a ==(16)【解析】显然该三棱锥的底面(面BDE )与俯视图相同,有一个侧面(面ECD)E与正视图相同且垂直于底面。

2018年广西壮族自治区普通高中会考数学真题及答案

2018年广西壮族自治区普通高中会考数学真题及答案

2018年广西壮族自治区普通高中会考数学真题及答案2018年广西壮族自治区普通高中会考数学真题及答案本次考试共分为选择题和非选择题两部分,满分100分,考试时间为120分钟。

选择题:1.已知集合A={0.1.2},则A中不包含3,因此选项B“1∉A”正确。

2.π/2的角度数为90°,因此选项C“90°”正确。

3.该几何体的三视图分别为正视图为圆形,侧视图为长方形,俯视图为正方形,因此该几何体是棱柱,选项C正确。

4.虚数单位i的平方等于-1,因此(3+i)+(1+2i)=4+3i,选项D正确。

5.指数函数y=2x的图象是指数函数的标准图象y=ex的左移1个单位,因此选项B正确。

6.圆(x-1)2+(y-2)2=1的半径长为1,因此选项A正确。

7.向量a=(2.1),b=(0.2),因此a+b=(2.3),选项A正确。

8.图形符号表示流程线的是箭头符号,选项A正确。

9.不等式y≥x表示y轴上方的平面区域,因此选项C正确。

10.函数y=log2x是对数函数,选项A正确。

11.根据回归直线方程ŷ=1.04x+12,当x=30时,ŷ=43,因此选项B正确。

12.直线x-y+3=0与直线x+y-1=0的交点坐标为(1.2),因此选项B正确。

13.直线y=2x+1的斜率为2,因此选项B正确。

14.“同位角相等”是“两直线平行”的充要条件,选项C正确。

15.将x=2代入函数f(x)=x3+2x中,得到f(2)=12,因此选项B正确。

16.函数y=Asin(2x+π/3)(A>0)的图象振幅为1,因此A=π/3,选项B正确。

1.共有三种结果:B1B2、B1B3、B2B3,因此从[2,3)组中抽取两个人都属于事件C的概率为P(C)=3/6=1/2.2.题目要证明的是在三棱柱ABC-AB1C1中,CC1垂直于平面ABC。

由于AA1垂直于平面ABC,所以CC1也垂直于平面ABC。

同时,由于AD平行于平面ABC且BC为等边三角形,所以AD垂直于BC,进而垂直于平面BCC1B1.又因为CC1与BC1相交于C,所以AD也垂直于BC1.因此,AD垂直于平面BCC1B1,即CC1垂直于平面ABC。

2018年6月广西壮族自治区普通高中学业水平考试参考答案及评分细则

2018年6月广西壮族自治区普通高中学业水平考试参考答案及评分细则

2018年6月广西壮族自治区普通高中学业水平考试思想政治参考答案及评分细则一、单项选择题(本大题共35小题,每小题2分,共70分)二、非选择题(本大题共3小题,共30分)36.衬衣标价165元是货币执行价值尺度职能(2分),衬衣以158元成交是货币执行流通手段职能(2分)。

【评分细则】①答出价值尺度(职能)和流通手段(职能)且前后顺序正确或序列号正确,给4分;顺序颠倒给1分;只答价值尺度(职能)、流通手段(职能)其中一个职能,给2分。

②罗列两种以上的货币职能,前两个是价值尺度(职能)、流通手段(职能),且顺序正确的给3分,其他答法最多能给1分。

不含价值尺度(职能)、流通手段(职能)的不给分。

③职能名称表述必须准确,如价值职能、尺度职能、价格尺度、流通职能等不给分。

37.(1)实施创新驱动发展战略,提高农业劳动生产率,推进科技强农;推动特色优势产业升级,优化农村产业结构,促进乡村产业振兴;推动城乡发展一体化,促进城乡区域协调发展,加快形成新型工农城乡关系;加强乡村生态环境保护,推进生态乡村建设,促进广西乡村振兴。

评分说明:不写材料只答观点,每答对1个观点给1分,最多给3分;不答观点只正确写出材料,1个材料给1分,最多给3分;每答对1个观点并写出与观点一致的材料给2分,最多给6分;若将“推动特色优势产业升级,优化农村产业结构”答成“推进经济结构战略性调整”,或将“加强乡村生态环境保护”答成“全面促进资源节约和环境保护”,也可对应给分。

本小题满分6分。

【评分细则】①实施创新驱动发展战略(或树立创新思维、或明确创新发展方向、或加强新技术的研发应用),提高农业劳动生产率,推进科技强农。

②推动特色优势产业升级(或优化农村产业结构,或推进经济结构战略性调整),促进乡村产业振兴。

③推动城乡发展一体化,促进城乡区域协调发展,加快形成新型工农城乡关系。

④加强乡村生态环境保护(或全面促进资源节约和环境保护、或坚持全面协调可持续)推进生态乡村建设,促进广西乡村振兴。

广西壮族自治区南宁市第二中学2018届高三年级6月份考试数学(理科)试卷及解析

广西壮族自治区南宁市第二中学2018届高三年级6月份考试数学(理科)试卷及解析

……外…………○……○……学______班级:__……内…………○……○……广西壮族自治区南宁市第二中学2018届高三年级6月份考试数学(理科)试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.已知集合M,N ⊂I ,若M ∩N =N ,则( (A. C I M ⊇C I NB. M ⊆C I NC. C I M ⊆C I ND. M ⊇C I N2.若复数z=(x 2−1)+(x −1)i 为纯虚数,则实数x 的值为( )A. −1B. 0C. 1D. −1或13.如右饼图,某学校共有教师120人,从中选出一个30人的样本,其中被选出的青年女教师的人数为( (A. 12B. 6C. 4D. 3 4.在△ABC 中,命题p :“B ≠60°”,命题q (“(ABC 的三个内角A 、B 、C 不成等差数列”。

那么p是q 的( (A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件5.某四面体三视图如图所示,该四面体的体积为( (A. 8B. 10C. 20D. 246.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是答案第2页,总17页装…………○…………订……※※要※※在※※装※※订※※线※※内※※答※※装…………○…………订……0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A. 0.4 B. 0.6 C. 0.75 D. 0.87.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两名是对的,则获奖的歌手是 A. 甲 B. 乙 C. 丙 D. 丁8.执行下面的程序框图,如果输入的N=4,那么输出的S=( )A. 1+12+13+14 B. 1+12+13×2+14×3×2 C. 1+12+13+14+15D. 1+12+13×2+14×3×2+15×4×3×2 9.在棱长为1的正方体ABCD −A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值是( ) A. −25 B. 25 C. 35 D. √101010.已知(√2x +√33y +z)6的展开式中,系数为有理数的项的个数为( ) A. 4 B. 5 C. 6 D. 7○…………外……………订…_________考号:○…………内……………订…11.定义在R 上的偶函数f(x)满足:对任意的实数x 都有f(1−x)=f(x +1),且f(−1)=2,f(2)=−1。

2018年广西高考数学试卷(理科)(全国新课标Ⅲ)

2018年广西高考数学试卷(理科)(全国新课标Ⅲ)

2018年广西高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合A={x|x−1≥0},B={0, 1, 2},则A∩B=()A.{0}B.{1}C.{1, 2}D.{0, 1, 2}2. (1+i)(2−i)=()A.−3−iB.−3+iC.3−iD.3+i3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4. 若sinα=13,则cos2α=()A.89B.79C.−79D.−895. (x2+2x)5的展开式中x4的系数为()A.10B.20C.40D.806. 直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x−2)2+y2=2上,则△ABP面积的取值范围是()A.[2, 6]B.[4, 8]C.[√2, 3√2]D.[2√2, 3√2]7. 函数y=−x4+x2+2的图象大致为()A.B.C.D.8. 某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(X=4)<P(X=6),则p=()A.0.7B.0.6C.0.4D.0.39. △ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为a2+b2−c24,则C=()A.π2B.π3C.π4D.π610. 设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D−ABC体积的最大值为()A.12√3B.18√3C.24√3D.54√311. 设F1,F2是双曲线C:x2a2−y2b2=1(a>0,b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P ,若|PF 1|=√6|OP|,则C 的离心率为( )A.√5B.2C.√3D.√212. 设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b 二、填空题:本题共4小题,每小题5分,共20分。

2018年广西壮族自治区高中数学竞赛试题及详细答案

2018年广西壮族自治区高中数学竞赛试题及详细答案


.
解析:设 AM x AB y AC ,则点 M 也在平面 内, MP AP AM PQ ,故 PQ 平面 , 所以向量 PQ 与 BC 所成的角为




. 2
2018 年全国高中数学联赛广西赛区预赛试卷答案 第 1页(共 5 页)
2 2
从而 sin 3 x cos 3 x (sin x cos x)(sin x cos x sin x cos x)
1 3 11 (1 ) . 2 8 16
6. 如图,在正三棱柱 A1 B1C1 - ABC 中, AB = 2 , A1 A = 2 3 , D , F 分别 是棱 AB , AA1 的中点, E 为棱 AC 上的动点,则 △DEF 周长的最小值为 解析:由正三棱柱 A1 B1C1 - ABC 可得 AA1 ^ 底面 ABC , 所以 AA1 ^ AB , AA1 ^ AC .在 Rt △ ADF 中, DF = ▲ .

D
B
(第六题图) A1 C1
Hale Waihona Puke FEFDE = ( 3) 2 + 12 - 2 3 ´ cos150 = 7 .
所以 △DEF 周长的最小值为 7 + 2 .
A
D
C
A
E
D B
C
B
图 (1) 7. 把 16 本相同的书全部分给 4 个学生,每个学生至少有一本书且所得书的数量互不相同, 则不同的分配方法种数为 ▲ .(用数字作答) 解析:因为将 16 分解成 4 个互不相同的正整数的和有 9 种不同的方式:
0 及 x1 x2 0 可知 0 m 2 2 且 m 2 1 .

2018广西中考数学试卷及答案解析

2018广西中考数学试卷及答案解析

2018广西中考数学试卷及答案解析2018年广西的中考试卷大家都做了吗?数学试卷难吗?想不想要校对数学试卷的答案呢?下面由店铺为大家提供关于2018广西中考数学试卷及答案解析,希望对大家有帮助!2018广西中考数学试卷一、选择题本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是( )A.7B.﹣7C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.2.数据3,2,4,2,5,3,2的中位数和众数分别是( )A.2,3B.4,2C.3,2D.2,2【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.3.如图是一个空心圆柱体,它的左视图是( )A. B. C. D.【考点】U1:简单几何体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.4.下列二次根式中,最简二次根式是( )A. B. C. D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.5.下列运算正确的是( )A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B .2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.7.下列命题中假命题是( )A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【考点】O1:命题与定理.【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是( )A. B. C. D.1【考点】X6:列表法与树状图法;K6:三角形三边关系.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)= = ,故选B9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M 是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是( )A.45°B.60°C.75°D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是( )A.y=(x﹣1)2+1B.y=(x+1)2+1C.y=2(x﹣1)2+1D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是( )A.4B.3C.2D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′ B′=AB=4,∴A′P=PB′,∴PC= A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M 是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2= MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是( )A.2B.3C.4D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积= x(2﹣x)=﹣ x2+x,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣ = ,故⑤正确;综上所述,正确结论的个数是5个,故选:D.2018广西中考数学试卷二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= ﹣8 .【考点】1A:有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a |<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE= ∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′= = = .故答案为 .17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2 .(结果保留π)【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:连接O、AD,∵点C为OA的中点,∴∠C DO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD= = π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)= ﹣﹣( π﹣×2×2 )= π﹣π﹣π+2= π+2 .故答案为π+2 .18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y= (x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9.【考点】G8:反比例函数与一次函数的交点问题.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y= 得:﹣x+6= ,x2﹣6x +k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y= 的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.2018广西中考数学试卷三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+( +π)0﹣(﹣ )﹣2﹣2cos60°;(2)先化简,在求值:( ﹣ )+ ,其中a=﹣2+ .【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2× =4﹣4﹣1=﹣1(2)当a=﹣2+原式= +===7+520.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作 OB的垂线.【考点】N3:作图—复杂作图.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;21.如图,一次函数y=2x﹣4的图象与反比例函数y= 的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y= 得k=6,则反比例函数的解析式是y= ;(2)根据题意得2x﹣4= ,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时) 频数(人) 频率1≤x<2 18 0.122≤x<3 a m3≤x<4 45 0.34≤x<5 36 n5≤x<6 21 0.14合计 b 1(1)填空:a= 30 ,b= 150 ,m= 0.2 ,n= 0.24 ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC= ,求⊙O的半径.【考点】ME:切线的判定与性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,t an∠DAC= ,得到DF=2 ,根据勾股定理得到AD= =2 ,求得AE= ,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC= ,∴AF=4,tan∠DAC= = ,∴DF=2 ,∴AD= =2 ,∴AE= ,在Rt△PAE中,tan∠1= = ,∴PE= ,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣ )2+( )2,∴R= ,即⊙O的半径为 .25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD:S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【考点】HF:二次函数综合题.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a 的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD= ×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x= ,∴E( ,0),∴BE=3﹣ =∴S△BCD=S△BEC+S△BED= × ×(3a+a)=3a,∴S△BCD:S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣ (舍去)或a= ,此时抛物线解析式为y= x2﹣2 x+ ;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y= x2﹣2 x+ .26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC 边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.【考点】LO:四边形综合题.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x= ,推出DN= = ,由△BDN∽△BAM,可得 = ,由此求出AM,由△ADM∽△APE,可得= ,由此求出AE= ,可得EC=AC﹣AE=4﹣= 由此即可解决问题.【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB= =2 ,∵AD=CD=2,∴BD= =2 ,由翻折可知,BP=BA=2 .②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x= ,∵DB=DA,DN⊥AB,∴BN=AN= ,在Rt△BDN中,DN= = ,由△BDN∽△BAM,可得 = ,∴ = ,∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得 = ,∴ = ,∴AE= ,∴EC=AC﹣AE=4﹣ = ,易证四边形PECH是矩形,∴PH=EC= .。

2018广西高考理科数学真题及答案

2018广西高考理科数学真题及答案

2018广西高考理科数学真题及答案注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

答题卡:一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C = A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为AB .2CD 12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】C
【分析】分别判断充分性和必要性得到答案.
【详解】同位角相等,则两直线平行,故充分性;两直线平行,则同位角相等,必要性;
故选:
【点睛】本题考查了充要条件,意在考查学生的推断能力.
15.已知函数 ,那么 ()
A.20B.12C.3D.1
【答案】B
【分析】直接代入数据计算得到答案.
【详解】 ,则 .
17.在 中,已知角A,B,C的对边分别为a,b,c.若 , , ,则角C=()
A.15°B.45°C.75°D.90°
【答案】D
【分析】直接利用正弦定理计算得到答案.
【详解】根据正弦定理: ,即 ,故 , .
故选: .
【点睛】本题考查了正弦定理求角度,意在考查学生的计算能力.
18.已知函数 的图象如图所示,那么方程 在区间 内的根的个数为()
【点睛】本题考查了归纳推理,意在考查学生的推理能力.
22.在 中, , ,若 ,则 是_______三角形(填“钝角”、“直角”或“锐角”)
【答案】直角
故选: .
【点睛】本题考查了函数图像的识别,意在考查学生的理解能力.
6.圆 的半径长等于()
A.2B. C. D.1
【答案】D
【分析】
直接根据圆的标准方程得到答案.
【详解】圆 ,故半径长为 .
故选: .
【点睛】本题考查了圆的半径,属于简单题.
7.已知向量 , ,则 ()
A. B. C. D.
【答案】A
A. B. C. D.
【答案】A
【分析】
根据对数函数的定义直接得到答案.
【详解】A. 是对数函数;B. 是一次函数;C. 是正弦函数;D. 是二次函数.
故选: .
点睛】本题考查了对数函数定义,属于简单题.
11.一商店为了研究气温对某冷饮销售的影响,对出售的冷饮杯数y(杯)和当天最高气温x(℃)的数据进行了统计,得到了回归直线方程 .据此预测:最高气温为30℃时,当天出售的冷饮杯数大约是()
二、填空题
21.如图,①②③④都是由小正方形组成的图案,照此规律,图案⑤中的小正方形个数为_______.
【答案】25
【分析】根据图形的规律得到答案.
【详解】第一个图像有小正方形 个,第二个图像有小正方形 个,第三个图像有小正方形 个,
第四个图像有小正方形 个,故第五个图像有小正方形 个.
故答案为: .
【分析】
直接根据向量的坐标运算得到答案.
【详解】向量 , ,则 .
故选: .
【点睛】本题考查了向量的坐标运算,属于简单题.
8.在程序框图中,下列图形符号表示流程线的是()
A. B.
C. D.
【答案】C
【分析】
直接根据程序框图的图形符号得到答案.
【详解】根据程序框图的图形符号知:箭头表示流程线.
故选: .
【点睛】本题考查了直线的交点,意在考查学生的计算能力.
13.直线 的斜率等于()
A.-4B.2C.3D.4
【答案】B
分析】直接根据直线的斜截式方程得到答案.
【详解】 ,故 .
故选: .
【点睛】本题考查了直线的斜率,属于简单题.
14.“同位角相等”是“两直线平行”的()
A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件
2018年6月广西壮族自治区普通高中学业水平考试
数学
一、选择题
1.已知集合 ,则()
A. B. C. D.
【答案】A
【分析】
根据元素和集合的关系得到答案.
【详解】 ,则 , , , .
故选: .
【点睛】本题考查了元素和集合的关系,属于简单题.
2. 的角度数是()
A.30°B.60°C.90°D.100°
故选: .
【点睛】本题考查了求函数值,意在考查学生的计算能力.
16.已知函数 部分图象如图所示,那么A=()
A. B. C.1D.2
【答案】D
【分析】根据函数图像得到函数的最大值为 ,得到答案.
【详解】根据函数图像知:函数最大值为 ,故 .
故选: .
【点睛】本题考查了三角函数图像求参数,意在考查学生对于图像的识别能力.
【点睛】本题考查了程序框图的图形符号,属于基础题.
9.在平面直角坐标系中,不等式 表示的平面区域是()
A. B.
C. D.
【答案】A
【分析】
表示 直线 的左上部分,对比图像得到答案.
【详解】 表示的直线 的左上部分.
故选: .
【点睛】本题考查了不等式表示的平面区域,意在考查学生的理解能力.
10.下列函数中,是对数函数的是()
A.33B.43C.53D.63
【答案】B
【分析】将 代入回归方程计算得到答案.
【详解】当 时, .
故ቤተ መጻሕፍቲ ባይዱ: .
【点睛】本题考查了回归方程,意在考查学生的应用能力.
12.直线 与直线 的交点坐标是()
A. B. C. D.
【答案】B
【分析】直接联立方程得到答案.
【详解】 ,解得 ,故交点为 .
故选: .
A.2B.3C.4D.5
【答案】B
【分析】直接根据图像得到答案.
【详解】根据图像知:方程 在区间 内的根的个数为 .
故选: .
【点睛】本题考查了根据函数图像求方程解的个数,意在考查学生的图像理解能力.
19.椭圆 的两个焦点的坐标分别为()
A. , B. , C. , D. ,
【答案】C
【分析】直接求椭圆焦点得到答案.
【详解】椭圆 的焦点的坐标为 .
故选: .
【点睛】本题考查了椭圆的焦点坐标,意在考查学生的计算能力.
20.已知 ,且 ,那么 ()
A. B. C. D.1
【答案】C
【分析】计算得到 ,代入 计算得到答案.
【详解】 ,且 ,则 , .
故选: .
【点睛】本题考查了三角函数值的计算,意在考查学生的计算能力.
【答案】C
【分析】
根据弧度制和角度制 转化公式得到答案.
【详解】 .
故选: .
【点睛】本题考查了弧度制和角度制的转化,属于简单题.
3.某几何体的三视图如图所示,则该几何体是()
A.圆锥B.圆柱C.棱柱D.棱锥
【答案】B
【分析】
根据三视图直接得到答案.
【详解】根据三视图知:几何体为圆柱.
故选:
【点睛】本题考查了三视图,意在考查学生的空间想象能力.
4.已知是虚数单位,那么 ()
A. B. C. D.
【答案】D
【分析】
直接利用复数加法运算得到答案.
【详解】 .
故选: .
【点睛】本题考查了复数的运算,意在考查学生的计算能力.
5.在平面直角坐标系中,指数函数 的大致图象是()
A. B.
C. D.
【答案】A
【分析】
根据指数函数 的单调性得到答案.
【详解】指数函数 ,单调递增,过点 .
相关文档
最新文档