C编写3D游戏框架示例
C语言实现跑酷游戏

C语言实现跑酷游戏跑酷游戏是一种充满挑战和刺激的游戏类型。
在这种游戏中,玩家需要操控游戏角色在不断变化的场景中奔跑、跳跃、翻滚,避开各种障碍物,尽可能长时间地保持生存。
本文将介绍如何使用C语言来实现一个简单的跑酷游戏。
一、环境设置在开始编写跑酷游戏之前,我们首先需要搭建C语言开发环境。
我们可以使用集成开发环境(IDE)例如Dev-C++或Code::Blocks来编写程序,同时需要确保计算机上已经安装了C语言的编译器。
这些软件都可以在官方网站上免费下载和安装。
二、界面设计在设计跑酷游戏的界面时,我们可以使用ASCII字符来绘制各种元素。
比如,我们可以使用“@”表示游戏角色,使用“#”表示墙壁或障碍物,使用“-”表示地面等。
下面是一个简单的示例界面:```------------@-----------#-----```三、游戏角色控制在C语言中,我们可以利用键盘输入函数来获取玩家的指令。
玩家可以使用键盘上的方向键来控制游戏角色的移动。
比如,当玩家按下“向上”键时,游戏角色将会向上跳跃;当玩家按下“向下”键时,游戏角色将会向下滑动。
我们可以使用条件语句来判断玩家的操作,并更新游戏角色的位置。
四、障碍物生成跑酷游戏的关键之一就是障碍物的生成和移动。
我们可以使用随机数函数来生成随机的障碍物,并且设置障碍物的初始位置和移动速度。
障碍物可以以一定的间隔不断生成,玩家需要通过合适的时机来跳过或避开这些障碍物。
五、碰撞检测为了增加游戏的可玩性,我们需要引入碰撞检测机制。
当游戏角色与障碍物相撞时,游戏将会结束。
我们可以通过比较游戏角色和障碍物的坐标位置来判断它们是否发生碰撞。
当碰撞发生时,游戏结束并显示最终得分。
六、计分系统为了让游戏更加有挑战性,我们可以引入计分系统。
在游戏开始后,游戏角色每成功跳过一个障碍物,玩家的得分将增加一定的分数。
我们可以设置一个变量来记录玩家的得分,并在游戏结束时显示最终得分。
七、游戏循环为了让游戏连续进行,我们需要使用游戏循环。
Unity3D一些比较基本的脚本及组件(C#)

Unity3D⼀些⽐较基本的脚本及组件(C#)通过代码创造图形//创建顶点,创建序列,创建⽹格,然后把⽹格赋给⽹格序列器//draw a trianglevoid Start () {Vector3[] vs = new Vector3[3];vs[0] = new Vector3(0,0,0);vs[1] = new Vector3(1,0,0);vs[2] = new Vector3(0,1,0);int[ts] = new int[3];ts[0] = 0;ts[1] = 1;ts[2] = 2; //要注意顺序,要⽤左⼿系,法线向外,拇指向外Mesh mesh = new Mesh();GetComponet<MeshFilter>().mesh = mesh;mesh.vertices = vs; // vertices⾄⾼点mesh.triangles = ts;}///* */////draw a triangle程序封装代码public GameObject Create Triangle(){GameObject obj = new GameObject(“Triangle”);MeshFilter mf = obj.AddComponet<MeshFilter>();obj.AddComponent<MeshRender>();Mesh mesh = new Mesh();mesh.vertices = nes[]{new Vector3(0,0,0);new Vector3(3,0,0);new Vector3(0,3,0);};mesh.triangles = new[]{0,2,1//不⽤分号,初始化系,直接把初始值放进去};mf.mesh = mesh;return obj;}Camera 的性质与使⽤public CameraClearFlags clearFlags; //clearFlags是相机清除表识public ColorbackgroundColor; //给定他的颜⾊,背景⾊,只有单⾊才起作⽤public int cullingMask; //提出掩码public class chapter6 : MonoBehaviour{public GameObject cube;void Start(){ber = 9; //把cube设置在第9层Camera cam = this.GetComponet<Camera>()’cam.clearFlags = CameraClearFlags.SolidColor;cam.backgroundColor = new Vector3(1,0,0,0); //表⽰设置颜⾊cam.cullingMask = 9; //表⽰第9层的都不会被渲染出来,也就是说cube不会显⽰出来}}//CameraClearFlags是⼀个枚举类型,有以下四个成员:solidColor 表⽰⽤backgroundColor所制定的填充背景skybox 表⽰天空盒,模拟天空效果填充Depth 只是清除深度缓存,保留上⼀帧所使⽤的颜⾊Nothing 不进⾏背景清除,这种情况在游戏和模拟应⽤中⽐较少⽤public bool orthographic;//⽤于读取和设定相机的投影⽅式,如果为true则表⽰是正交投影,否则为透视投影;正交投影可⽤于UI和2D开发public float orthographicSize; //⽤以指定正交投影的视景体的垂直⽅向尺⼨的⼀半public Rect rect; //相机对应的视⾓⼝的位置和⼤⼩,rect以单位化形式制定相机视⼝在屏幕中的位置和⼤⼩,位置⼤⼩取值范围为0~1,满屏为1Camera main = this.gameObject.GetComponet<Camera>();this.gameObject.SetActive(false);Camera cam0 = camGO0.AddComponet<Camera>();cam0.orthographic = true;cam0.transform.position = main.transform.position;cam0.transform.rotation = main.transform. rotation;cam0.orthographicSize = 2.0f; //指物体渲染后显⽰的⼤⼩远近,数值越⼤,相机视⼝越靠近该物体,从⽽该物体显⽰出来的更加⼤cam0.rect = new Rect(0f,0f, 0.5f, 0.5f); //前两个参数是camera的位置,后⾯两个参数设置相机⼤⼩(0.5f,0.5f)表⽰占x轴的⼆分之⼀,y轴的⼆分之⼀,所以总共占渲染窗⼝的四分之⼀Camera cam1 = camGO1.AddComponet<Camera>();cam1.orthographic = true;cam1.transform.position = main.transform.position;cam1.transform.rotation = main.transform. rotation;cam1.orthographicSize = 7.0f;cam1.rect = new Rect(0.5f, 0.5f, 0.5f, 0.5f);}Material,Shader,Texture(材质,着⾊器,纹理)光照、纹理等让物体更加的真实。
SYJ教你制作3D游戏1-6

SYJ教你制作3D游戏(1-5)(图片:Lite-C)本文由SYJ原创,如需转载,请注明作者。
在这个教程中,我们要用到的软件是3D gstudio A786,大家可以到官方网站下载该软件。
3D gstudio A786这款软件包含了Wed、Med和Sed,它们分别是关卡编辑器、模型编辑器和脚本编辑器。
关卡编辑器,顾名思义,就是制作游戏场景的地方,我们可以把它当做是3D gstudio A786的主要部分,因为它集合了一个非常重要的游戏发布向导;模型编辑器,即用于编辑角色动画,以及游戏场景中的各元素,比如桌子,椅子,地形等,编辑好之后置入关卡编辑器就形成了一个完整的三维场景;脚本编辑器,当然是写游戏脚本的地方,也就是编程,在3D gstudio A786中,我们需要用到的脚本语言是C-script的简化语言Lite-C,当然,有能力的开发者可以扩展C++。
我就简单介绍到这里,下面开始进入正题。
一个游戏通常由场景和角色构成,对于编程方面我们先不讨论。
我们先来学习如何建造最基本的3D模型。
3D模型的构建十分简单,大家不要抱着难学、学不会的心态来看教程。
打开Med模型编辑器,我们可以看到有四个视窗,其中右上方的视窗叫做3D 视窗,其它三个视窗叫做2D视窗,左上方的2D视窗表示俯视角度,下方两个2D视窗分别表示不同的平视角度,视窗可以自由移动、放大和缩小,且3D视窗可以旋转。
在做模型之前,我们先来简单设置一下工作环境。
点“文件”“参数设置”选“视频输出”,大家可以在这里根据自己的爱好设置编辑视图,我呢,习惯把“绘制原点”和“2D/3D网格”打勾,“栅格低=10”以及“栅格高=8”。
设置好之后点确定,这样看起来爽多了。
刚开始呢,我们先从最基本的模型学起,嗯……我们先来制作一个最简单的东西,比如说,教室里的一张椅子,该怎么做呢?点工具栏上的“立方体”,再点一下任意视图,比如俯视图吧。
这时,你会看到在四个视图中同时出现了一个实实在在的正方体,我们可以在2D视图中看到这个正方体的透视图,甚至是每个面,我们应该不难发现,所有的三维模型都是由三角形块面构成的。
计算机科技与应用专业毕业论文--基于Opengl的3D游戏设计

摘要随着时代进步,从简单的色块堆砌而成的画面到数百万多边形组成的精细人物,游戏正展示给我们越来越真实且广阔的世界。
对于近几年游戏的发展来说,老式2D游戏的画面、游戏性、互动性已经无法满足各类玩家的需要,而3D游戏无论是在游戏画面的真实程度、操作的流畅程度、以及故事背景方面的优越性都非常突出。
在这种发展趋势下,2D游戏所占领的市场将会变得微乎其微,3D游戏的开发将会成为整个游戏制作领域的一种趋势。
针对于3D游戏开发,OpenGL作为一个3D的应用程序编程接口(API)来说,是非常合适的。
OpengGL作为与硬件无关的软件接口,只要操作系统使用了OpengGL适配器就可以打到相同的效果。
它又是一个开放图形库,在跨平台领域上非常便利。
并且它具有优良的移植性,是广大3D游戏开发者的首选。
本论文为利用OpengGL进行3D射击游戏的设计与开发,采用碰撞检测、粒子系统、MD2模型绘制、3D声效等技术,最终实现一个射击游戏。
关键词:游戏, 基于OpengGL,三维, 射击游戏Abstract: Along with the progress of the times,fine characters from simple color swatch built the picture to the millions of polygons, the game is to show us more and more real and the wide world.For the development of the game in recent years, the old 2D games' screen ,games andinteractive have been unable to meet all kinds of game player needs, while 3D regardless of the game on the game screen reality, smooth operation, and the background of the story of the superiority is very prominent.In this trend, 2D game occupied market will become very little, the development of 3D games will become the game made a trend in the field.For 3D game development, OpenGL as the application programming interface of a 3D (API), is a very suitable. OpengGL as the interface of the software and hardware independence, as long as the operating system uses the OpengGL adapter can reach the same effect. It is also an open graphics library, cross-platform in areas very convenient. And it has good transplantation, is the 3D game developer's choice.In this paper, the design and development of 3D shooting game is to use OpengGL, the collision detection, particle system, MD2 model, 3D sound rendering technology, the ultimate realization of a shooting game.Keywords game, OpengGL, 3D, shooting game目录1 引言 (1)1.1 课题的背景及意义 (1)1.2 毕业设计的任务 (1)1.3 国内外现状的研究 (2)1.4 开发技术与开发平台 (3)1.4.1 开发技术 (3)1.4.2 开发平台 (3)2 OpenGL简介与3D图形学相关 (5)2.1 OpenGL简介 (5)2.1.1 OpenGl特点 (5)2.1.2 OpenGL功能 (6)2.1.3 OpenGL渲染 (7)2.2 3D图形学相关 (8)2.2.1 向量与矩阵 (8)2.2.2 变换 (8)2.2.3 投影 (8)2.2.4 3D裁剪 (9)3 游戏设计 (11)3.1 游戏的组成 (11)3.2 游戏的结构 (11)3.3 本游戏设计 (12)4 关键技术 (15)4.1 摄像机漫游 (15)4.2 碰撞检测 (16)4.3 粒子爆炸 (19)4.4 云雾效果 (20)4.5 简易AI (21)4.6 3D模型 (23)4.7 3D音效 (26)4.8 游戏场景随机地形 (28)5 运行游戏 (30)结论 (36)参考文献 (37)致谢 .................................................................................................................................. 错误!未定义书签。
C语言游戏模型(飞机)编程实现

C语言游戏模型(飞机)编程实现用C语言编写一个有关飞机的小游戏,首先要解决游戏中主要元素:飞机模型的屏幕绘图。
是绘二维平面图还是绘三维立体图?下面用三维立体图绘制它,如下图所示:图1、飞机模型图图2、飞机模型图上面两幅图是在VC6中用OpenGL函数绘制的屏幕三维飞机模型,它的表面数据用双二次Nurbs曲面生成。
-、光(光照)在屏幕上绘制的三维图形,要用光照亮它同而产生明暗变化,才能使绘制的图形更能真实地再现要生成的物体。
在OpenGL函数里有专门用于光照的函数,只要调用它们就能还原一个真实的模似三维世界。
二、Nurbs曲面生成曲面的一种算法,这里主要用的是双二次曲面。
程序中飞机机身的设计基本上是一个圆柱体。
用7个顶点表示的一个正方形利用NURBS二次圆弧构成一个整圆,描绘圆柱体的外形数据。
下面是一个双二次NURBS曲面和曲线的算法源程序:#include"gl\gl.h"#include"math.h"//*-*-*-*-*-*-*-*-*-*-*-*-*-*-* B样条基函数计算部分*-*-*-*-*-*-*-*-*-*-*-*-*-*//计算所有非零B样条基函数并返回其值//i为参数u所在的节点区间下标void BasisFunction(int i,int p,float u,float U[],float N[]){int j,di,dp,k;float tul,tur,left,right;float tmpN[50][50];for(k=0;k<=p;k++){dp=0;for(di=i+p-k;di>=i-k;di--){if(u>=U[di]&&u<U[di+1])tmpN[di][0]=1;elsetmpN[di][0]=0;dp+=1;for(j=1;j<dp;j++){tul=U[di+j]-U[di];tur=U[di+j+1]-U[di+1];if(tul!=0)left=(u-U[di])/tul;elseleft=0;if(tur!=0)right=(U[di+j+1]-u)/tur;elseright=0;tmpN[di][j]=left*tmpN[di][j-1]+right*tmpN[di+1][j-1];}}N[i-k]=tmpN[i-k][p];}}//*-*-*-*-*-*-*-*-*-*-*-*-*-* Bezier曲线曲面部分*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*void BernsteinFunc(int n,double u,float B[]){double u1;int j,k;B[0]=1.0;u1=1.0-u;for(j=1;j<=n;j++){float saved=0.0;for(k=0;k<j;k++){float temp=B[k];B[k]=float(saved+u1*temp);saved=float(u*temp);}B[j]=saved;}}//获取p次Bezier曲线上的lines个点的值void BezierPoint(int p,float px[],float py[],float pz[],int lines,float tmp[][3]) {float BC[20];int i,j;for(j=0;j<=lines;j++){double t=j/(float)lines;BernsteinFunc(p,t,BC);tmp[j][0]=tmp[j][1]=tmp[j][2]=0;for(i=0;i<p+1;i++){tmp[j][0]+=BC[i]*px[i];tmp[j][1]+=BC[i]*py[i];tmp[j][2]+=BC[i]*pz[i];}}}//获取p次有理Bezier曲线上的lines个点的值void NBezierPoint(int p,float px[],float py[],float pz[],float pw[],int lines,float tmp[][4]) {float x,y,z,w,BC[20];int i,j;for(j=0;j<=lines;j++){double t=j/(float)lines;BernsteinFunc(p,t,BC);x=y=z=w=0;for(i=0;i<p+1;i++){x+=BC[i]*px[i]*pw[i];y+=BC[i]*py[i]*pw[i];z+=BC[i]*pz[i]*pw[i];w+=BC[i]*pw[i];}tmp[j][0]=x/w;tmp[j][1]=y/w;tmp[j][2]=z/w;tmp[j][3]=w;}}//-----------------------------------------------------------------------------------//绘制p次的Bezier曲线void Bezier(int p,float px[],float py[],float pz[],int lines){float pt[100][3];int j;BezierPoint(p,px,py,pz,lines,pt);for(j=1;j<=lines;j++){glBegin(GL_LINES);glVertex3f(pt[j-1][0],pt[j-1][1],pt[j-1][2]);glVertex3f(pt[j][0],pt[j][1],pt[j][2]);glEnd();}}//------------------------------------------------------------------------------//绘制p次的有理Bezier曲线void NBezier(int p,float px[],float py[],float pz[],float w[],int lines){float pt[100][4];int j;NBezierPoint(p,px,py,pz,w,lines,pt);for(j=1;j<=lines;j++){glBegin(GL_LINES);glVertex3f(pt[j-1][0],pt[j-1][1],pt[j-1][2]);glVertex3f(pt[j][0],pt[j][1],pt[j][2]);glEnd();}}//--------------------------------------------------------------------------------- //计算双p次Bezier曲面上所有的点并保存在Pt[][][]中//u和v分别为曲面(u,v)方向上的网格数void BezierFacePoint(int p,int u,int v,float px[][4],float py[][4],float pz[][4],float pt[161][161][3]){float urx[11][161],ury[11][161],urz[11][161];float tx[11],ty[11],tz[11],tmp[161][3];int i,j,k;for(j=0;j<p+1;j++){for(i=0;i<p+1;i++){tx[i]=px[i][j];ty[i]=py[i][j];tz[i]=pz[i][j];}BezierPoint(p,tx,ty,tz,v,tmp);for(k=0;k<=v;k++){urx[j][k]=tmp[k][0];ury[j][k]=tmp[k][1];urz[j][k]=tmp[k][2];}}for(i=0;i<=v;i++){for(k=0;k<p+1;k++){tx[k]=urx[k][i];ty[k]=ury[k][i];}BezierPoint(p,tx,ty,tz,u,tmp);for(j=0;j<=u;j++){pt[i][j][0]=tmp[j][0];pt[i][j][1]=tmp[j][1];pt[i][j][2]=tmp[j][2];}}}//--------------------------------------------------------------------------------//计算双p次有理Bezier曲面上所有的点并保存在Pt[][][]中//u和v分别为曲面(u,v)方向上的网格数void NuBezierFacePoint(int p,int u,int v,float px[][4],float py[][4],float pz[][4],float w[][4],float pt[161][161][3]){float urx[11][161],ury[11][161],urz[11][161],urw[11][161];float tx[11],ty[11],tz[11],tw[11],tmp[161][4];int i,j,k;for(j=0;j<p+1;j++){for(i=0;i<p+1;i++){tx[i]=px[i][j];ty[i]=py[i][j];tz[i]=pz[i][j];tw[i]=w[i][j];}NBezierPoint(p,tx,ty,tz,tw,v,tmp);for(k=0;k<=v;k++){urx[j][k]=tmp[k][0];ury[j][k]=tmp[k][1];urz[j][k]=tmp[k][2];urw[j][k]=tmp[k][3];}}for(i=0;i<=v;i++){for(k=0;k<p+1;k++){tx[k]=urx[k][i];tz[k]=urz[k][i];tw[k]=urw[k][i];}NBezierPoint(p,tx,ty,tz,tw,u,tmp);for(j=0;j<=u;j++){pt[i][j][0]=tmp[j][0];pt[i][j][1]=tmp[j][1];pt[i][j][2]=tmp[j][2];}}}//-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* B样条曲线曲面部分-*-*-*-*-*-*-*-*-*-*-*-*-*-*-//计算曲线上的点(u所对应的所有点)保存在Poi[]中//n=m-p-1//p为曲线的次数void BSplinePoint(int n,int p,float U[],float P[],float Poi[]){float N[100],tmp;int i,j;for(i=p+1;i<=n;i++){BasisFunction(i,p,U[i],U,N);tmp=0;for(j=i;j>=i-p;j--)tmp+=N[j]*P[j];Poi[i-p]=tmp;}}//计算次样条曲线上的所有控制多边形保存在CP[]中//m为节点矢量U[]的最大下标void B2SplineControlPoint(int m,float U[],float P[],float CP[]){int n,k,tm,i,cp,p;float Poi[100];p=2;n=m-p-1;BSplinePoint(n,p,U,P,Poi);cp=(n-p)*2+p;for(i=0;i<2;i++)CP[i]=P[i];CP[cp]=P[n];tm=2;for(i=2;i<cp-1;i+=2){k=(int)i/2;CP[i]=Poi[k];CP[i+1]=P[tm];tm++;}}//绘制次B样条曲线//m为节点矢量U[]的最大下标void BSpline2L(int m,float U[],float px[],float py[],float pz[]){float pcx[100],pcy[100],pcz[100],drx[3],dry[3],drz[3];int i,j,tmcp;B2SplineControlPoint(m,U,px,pcx);B2SplineControlPoint(m,U,py,pcy);B2SplineControlPoint(m,U,pz,pcz);tmcp=m-5;for(i=0;i<=tmcp;i++){for(j=i*2;j<i*2+3;j++){drx[j-i*2]=pcx[j];dry[j-i*2]=pcy[j];drz[j-i*2]=pcz[j];}Bezier(2,drx,dry,drz,20);}}//计算双二次(x2)B样条曲面所有控制多边形顶点,并保存在pt[][][]中//mu,mv分别为节点矢量U[],V[]的最大下标值void BS2FaceControlPoint(int mu,float U[],int mv,float V[],float px[],float py[],float pz[],float pt[100][100][3]){int i,j,k,dp;float tmx[50],tmy[50],tmz[50];float tmpx[50][100],tmpy[50][100],tmpz[50][100];float uvx[100][100],uvy[100][100],uvz[100][100];for(i=0;i<mv-2;i++){dp=i*(mu-2);for(j=dp;j<mu-2+dp;j++){tmx[j-dp]=px[j];tmy[j-dp]=py[j];tmz[j-dp]=pz[j];}B2SplineControlPoint(mu,U,tmx,tmpx[i]);B2SplineControlPoint(mu,U,tmy,tmpy[i]);B2SplineControlPoint(mu,U,tmz,tmpz[i]);}for(i=0;i<2*mu-7;i++){for(j=0;j<mv-2;j++){tmx[j]=tmpx[j][i];tmy[j]=tmpy[j][i];tmz[j]=tmpz[j][i];}B2SplineControlPoint(mv,V,tmx,uvx[i]);B2SplineControlPoint(mv,V,tmy,uvy[i]);B2SplineControlPoint(mv,V,tmz,uvz[i]);for(k=0;k<2*mv-7;k++){pt[i][k][0]=uvx[i][k];pt[i][k][1]=uvy[i][k];pt[i][k][2]=uvz[i][k];}}}//------------------------------------------------------------------------------- //设置网格数void SetGridCount(int dt,int tu,int tmk[]){int i,tm;tm=tu%dt;for(i=0;i<dt-1;i++)tmk[i]=(tu-tm)/dt;tmk[dt-1]=tmk[0]+tm;}//------------------------------------------------------------------------------ //计算双二次(2x2次)B样条曲面上所有的点并保存在bs[][][]中//nu,mv分别为节点矢量U[],V[]的最大下标//uk,vk分别为B样条曲面(u,v)方向上的网格数//p为曲面的次数void BSplineFace2P(int nu,float U[],int uk,int mv,float V[],int vk,float px[],float py[],float pz[],float bs[161][161][3]){int udk[20],vdk[20],i,j,k,l,hu,sv,du,dv,p=2;float tp[100][100][3],td[161][161][3];float tmx[4][4],tmy[4][4],tmz[4][4];du=nu-2*p;dv=mv-2*p;SetGridCount(du,uk,udk);SetGridCount(dv,vk,vdk);BS2FaceControlPoint(nu,U,mv,V,px,py,pz,tp);for(i=0;i<dv;i++){for(k=0;k<du;k++){for(j=i*p;j<p+1+i*p;j++){for(l=k*p;l<p+1+k*p;l++){tmx[j-i*p][l-k*p]=tp[l][j][0];tmy[j-i*p][l-k*p]=tp[l][j][1];tmz[j-i*p][l-k*p]=tp[l][j][2];}}BezierFacePoint(p,udk[k],vdk[i],tmx,tmy,tmz,td);for(sv=i*vdk[0];sv<=vdk[i]+i*vdk[0];sv++){for(hu=k*udk[0];hu<=udk[k]+k*udk[0];hu++){bs[sv][hu][0]=td[sv-i*vdk[0]][hu-k*udk[0]][0];bs[sv][hu][1]=td[sv-i*vdk[0]][hu-k*udk[0]][1];bs[sv][hu][2]=td[sv-i*vdk[0]][hu-k*udk[0]][2];}}}}}//-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* Nurbs 样条曲线曲面部分-*-*-*-*-*-*-*-*-*-*-*-*-*-*- //计算Nurbs曲线上的点(u所对应的所有点)保存在Poi[]中//n=m-p-1//p为曲线的次数void NurbsPoint(int n,int p,float U[],float P[],float W[],float Poi[]) {float N[100],tmp,tmw;int i,j;for(i=p+1;i<=n;i++){BasisFunction(i,p,U[i],U,N);tmp=0;tmw=0;for(j=i;j>=i-p;j--){tmp+=N[j]*P[j]*W[j];tmw+=N[j]*W[j];}Poi[i-p]=tmp/tmw;}}//计算次Nurbs曲线上的所有控制多边形保存在CP[]中//m为节点矢量U[]的最大下标void Nurbs2ControlPoint(int m,float U[],float P[],float W[],float CP[]) {int n,k,tm,i,cp,p;float Poi[100];p=2;n=m-p-1;NurbsPoint(n,p,U,P,W,Poi);cp=(n-p)*2+p;for(i=0;i<2;i++)CP[i]=P[i];CP[cp]=P[n];tm=2;for(i=2;i<cp-1;i+=2){k=(int)i/2;CP[i]=Poi[k];CP[i+1]=P[tm];tm++;}}//绘制次Nurbs样条曲线//m为节点矢量U[]的最大下标void Nurbs2L(int m,float U[],float px[],float py[],float pz[],float W[]){float pcx[100],pcy[100],pcz[100],drx[3],dry[3],drz[3];float pcw[100],drw[3];int i,j,tmcp;Nurbs2ControlPoint(m,U,px,W,pcx);Nurbs2ControlPoint(m,U,py,W,pcy);Nurbs2ControlPoint(m,U,pz,W,pcz);B2SplineControlPoint(m,U,W,pcw);tmcp=m-5;for(i=0;i<=tmcp;i++){for(j=i*2;j<i*2+3;j++){drx[j-i*2]=pcx[j];dry[j-i*2]=pcy[j];drz[j-i*2]=pcz[j];drw[j-i*2]=pcw[j];}NBezier(2,drx,dry,drz,drw,20);}}//计算双二次(x2)Nurbs样条曲面所有控制多边形顶点,并保存在pt[][][]中//mu,mv分别为节点矢量U[],V[]的最大下标值void Nurbs2FControlPoint(int mu,float U[],int mv,float V[],float px[],float py[],float pz[],float W[],float pt[100][100][4]){int i,j,k,dp;float tmx[50],tmy[50],tmz[50],tmw[50];float tmpx[50][100],tmpy[50][100],tmpz[50][100],tmpw[50][100];float uvx[100][100],uvy[100][100],uvz[100][100],uvw[100][100];for(i=0;i<mv-2;i++){dp=i*(mu-2);for(j=dp;j<mu-2+dp;j++){tmx[j-dp]=px[j];tmy[j-dp]=py[j];tmz[j-dp]=pz[j];tmw[j-dp]=W[j];}Nurbs2ControlPoint(mu,U,tmx,tmw,tmpx[i]);Nurbs2ControlPoint(mu,U,tmy,tmw,tmpy[i]);Nurbs2ControlPoint(mu,U,tmz,tmw,tmpz[i]);B2SplineControlPoint(mu,U,tmw,tmpw[i]);}for(i=0;i<2*mu-7;i++){for(j=0;j<mv-2;j++){tmx[j]=tmpx[j][i];tmy[j]=tmpy[j][i];tmz[j]=tmpz[j][i];tmw[j]=tmpw[j][i];}Nurbs2ControlPoint(mv,V,tmx,tmw,uvx[i]);Nurbs2ControlPoint(mv,V,tmy,tmw,uvy[i]);Nurbs2ControlPoint(mv,V,tmz,tmw,uvz[i]);B2SplineControlPoint(mv,V,tmw,uvw[i]);for(k=0;k<2*mv-7;k++){pt[i][k][0]=uvx[i][k];pt[i][k][1]=uvy[i][k];pt[i][k][2]=uvz[i][k];pt[i][k][3]=uvw[i][k];}}}//------------------------------------------------------------------------------//计算双二次(2x2次)Nurbs样条曲面上所有的点并保存在bs[][][]中//nu,mv分别为节点矢量U[],V[]的最大下标//uk,vk分别为B样条曲面(u,v)方向上的网格数//p为曲面的次数void NurbsFace(int nu,float U[],int uk,int mv,float V[],int vk,float px[],float py[],float pz[],float w[],float bs[161][161][3]) {int udk[20],vdk[20],i,j,k,l,hu,sv,du,dv,p=2;float tp[100][100][4],td[161][161][3];float tmx[4][4],tmy[4][4],tmz[4][4],tmw[4][4];du=nu-2*p;dv=mv-2*p;SetGridCount(du,uk,udk);SetGridCount(dv,vk,vdk);Nurbs2FControlPoint(nu,U,mv,V,px,py,pz,w,tp);for(i=0;i<dv;i++){for(k=0;k<du;k++){for(j=i*p;j<p+1+i*p;j++){for(l=k*p;l<p+1+k*p;l++){tmx[j-i*p][l-k*p]=tp[l][j][0];tmy[j-i*p][l-k*p]=tp[l][j][1];tmz[j-i*p][l-k*p]=tp[l][j][2];tmw[j-i*p][l-k*p]=tp[l][j][3];}}NuBezierFacePoint(p,udk[k],vdk[i],tmx,tmy,tmz,tmw,td);for(sv=i*vdk[0];sv<=vdk[i]+i*vdk[0];sv++){for(hu=k*udk[0];hu<=udk[k]+k*udk[0];hu++){bs[sv][hu][0]=td[sv-i*vdk[0]][hu-k*udk[0]][0];bs[sv][hu][1]=td[sv-i*vdk[0]][hu-k*udk[0]][1];bs[sv][hu][2]=td[sv-i*vdk[0]][hu-k*udk[0]][2];}}}}}//*-*-*-*-*-*-*-*-*-*-*-*-*-*-* 绘制曲面部分*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*//计算多边形的外法线返回值tmN[]void getN(float x[3],float y[3],float z[3],float tmN[3]){float p1,p2,p3,q1,q2,q3;p1=x[1]-x[0];p2=y[1]-y[0];p3=z[1]-z[0];q1=x[2]-x[1];q2=y[2]-y[1];q3=z[2]-z[1];tmN[0]=p2*q3-q2*p3;tmN[1]=q1*p3-p1*q3;tmN[2]=p1*q2-p2*q1;}//----------------------------------------------------------------------------------- //显示B样条曲面//fill取值为或void ShowSurface(int u,int v,float bs[161][161][3],int fill){int i,j;float x[3],y[3],z[3],tmn[3];for(i=0;i<=v;i++){for(j=0;j<=u;j++){if(fill!=0){x[0]=bs[i][j][0];x[1]=bs[i+1][j][0];x[2]=bs[i+1][j+1][0];y[0]=bs[i][j][1];y[1]=bs[i+1][j][1];y[2]=bs[i+1][j+1][1];z[0]=bs[i][j][2];z[1]=bs[i+1][j][2];z[2]=bs[i+1][j+1][2];getN(x,y,z,tmn);glEnable(GL_NORMALIZE);glBegin(GL_QUADS);glNormal3f(tmn[0],tmn[1],tmn[2]);glBegin(GL_LINES);if(j<u){glVertex3f(bs[i][j][0],bs[i][j][1],bs[i][j][2]);glVertex3f(bs[i][j+1][0],bs[i][j+1][1],bs[i][j+1][2]);}if(i<v){glVertex3f(bs[i+1][j+1][0],bs[i+1][j+1][1],bs[i+1][j+1][2]);glVertex3f(bs[i+1][j][0],bs[i+1][j][1],bs[i+1][j][2]);}glEnd();glDisable(GL_NORMALIZE);}else{glBegin(GL_LINES);if(j<u){glVertex3f(bs[i][j][0],bs[i][j][1],bs[i][j][2]);glVertex3f(bs[i][j+1][0],bs[i][j+1][1],bs[i][j+1][2]);}if(i<v){glVertex3f(bs[i][j][0],bs[i][j][1],bs[i][j][2]);glVertex3f(bs[i+1][j][0],bs[i+1][j][1],bs[i+1][j][2]);}glEnd();}}}}三、飞机小游戏编写图3、游戏效果图战机小游戏简单编写了:主战机的上、下、左、右移动和开炮射击(按空格键);音乐的播放(.wav)。
魂斗罗c语言源代码

"魂斗罗"(Contra)是一款经典的横版射击游戏,由Konami公司开发。
编写一个完整的魂斗罗游戏是一个复杂的过程,涉及图形渲染、物理模拟、碰撞检测、音效处理等多个方面。
通常,这样的游戏会使用专业的游戏引擎或者特定的框架来开发,而不是直接用C语言从头开始。
c#include<stdio.h>#include<stdbool.h>// 定义玩家和敌人的结构体typedef struct {int x;int y;bool isAlive;} Player;typedef struct {int x;int y;bool isAlive;int speed; // 敌人的移动速度} Enemy;// 定义游戏的常量const int SCREEN_WIDTH = 800;const int SCREEN_HEIGHT = 600;const int PLAYER_SPEED = 5;const int BULLET_SPEED = 10;const int ENEMY_SPEED = 3;// 初始化玩家和敌人Player player = {SCREEN_WIDTH / 2, SCREEN_HEIGHT - 50, true};Enemy enemy = {SCREEN_WIDTH, SCREEN_HEIGHT / 2, true, ENEMY_SPEED};// 游戏主循环void gameLoop() {while (player.isAlive && enemy.isAlive) {// 处理玩家输入char input;printf("Move player (w/a/s/d): ");scanf(" %c", &input);switch (input) {case'w':if (player.y > 0) {player.y -= PLAYER_SPEED;}break;case'a':if (player.x > 0) {player.x -= PLAYER_SPEED;}break;case's':if (player.y < SCREEN_HEIGHT - 50) {player.y += PLAYER_SPEED;}break;case'd':if (player.x < SCREEN_WIDTH - 50) {player.x += PLAYER_SPEED;}break;}// 移动敌人enemy.x -= enemy.speed;// 检查碰撞if (player.x < enemy.x + 50 && player.x + 50 > enemy.x && player.y < enemy.y + 50 && player.y + 50 > enemy.y) {player.isAlive = false;printf("Game Over!\n");}// 打印游戏状态(仅用于演示)printf("Player position: (%d, %d)\n", player.x, player.y);printf("Enemy position: (%d, %d)\n", enemy.x, enemy.y);}}int main() {printf("Welcome to Contra Demo!\n");gameLoop();return0;}这。
C#实现3D效果完整实例

C#实现3D效果完整实例本⽂实例讲述了C#实现3D效果的⽅法。
分享给⼤家供⼤家参考,具体如下:⼀、新建⼀类⽂件private static double[] addVector(double[] a, double[] b){return new double[] { a[0] + b[0], a[1] + b[1], a[2] + b[2] };}private static double[] scalarProduct(double[] vector, double scalar){return new double[] { vector[0] * scalar, vector[1] * scalar, vector[2] * scalar };}private static double dotProduct(double[] a, double[] b){return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];}private static double norm(double[] vector){return Math.Sqrt(dotProduct(vector, vector));}private static double[] normalize(double[] vector){return scalarProduct(vector, 1.0 / norm(vector));}private static double[] crossProduct(double[] a, double[] b){return new double[]{(a[1] * b[2] - a[2] * b[1]),(a[2] * b[0] - a[0] * b[2]),(a[0] * b[1] - a[1] * b[0])};}private static double[] vectorProductIndexed(double[] v, double[] m, int i){return new double[]{v[i + 0] * m[0] + v[i + 1] * m[4] + v[i + 2] * m[8] + v[i + 3] * m[12],v[i + 0] * m[1] + v[i + 1] * m[5] + v[i + 2] * m[9] + v[i + 3] * m[13],v[i + 0] * m[2] + v[i + 1] * m[6] + v[i + 2] * m[10]+ v[i + 3] * m[14],v[i + 0] * m[3] + v[i + 1] * m[7] + v[i + 2] * m[11]+ v[i + 3] * m[15]};}private static double[] vectorProduct(double[] v, double[] m){return vectorProductIndexed(v, m, 0);}private static double[] matrixProduct(double[] a, double[] b){double[] o1 = vectorProductIndexed(a, b, 0);double[] o2 = vectorProductIndexed(a, b, 4);double[] o3 = vectorProductIndexed(a, b, 8);double[] o4 = vectorProductIndexed(a, b, 12);return new double[]{o1[0], o1[1], o1[2], o1[3],o2[0], o2[1], o2[2], o2[3],o3[0], o3[1], o3[2], o3[3],o4[0], o4[1], o4[2], o4[3]};}private static double[] cameraTransform(double[] C, double[] A){double[] w = normalize(addVector(C, scalarProduct(A, -1)));double[] y = new double[] { 0, 1, 0 };double[] u = normalize(crossProduct(y, w));double[] v = crossProduct(w, u);double[] t = scalarProduct(C, -1);return new double[]{u[0], v[0], w[0], 0,u[1], v[1], w[1], 0,u[2], v[2], w[2], 0,dotProduct(u, t), dotProduct(v, t), dotProduct(w, t), 1};}private static double[] viewingTransform(double fov, double n, double f){fov *= (Math.PI / 180);double cot = 1.0 / Math.Tan(fov / 2);return new double[] { cot, 0, 0, 0, 0, cot, 0, 0, 0, 0, (f + n) / (f - n), -1, 0, 0, 2 * f * n / (f - n), 0 };}public static Image Generate(string captchaText){int fontsize = 24;Font font = new Font("Arial", fontsize);SizeF sizeF;using (Graphics g = Graphics.FromImage(new Bitmap(1, 1))){sizeF = g.MeasureString(captchaText, font, 0, StringFormat.GenericDefault);}int image2d_x = (int)sizeF.Width;int image2d_y = (int)(fontsize * 1.3);Bitmap image2d = new Bitmap(image2d_x, image2d_y);Color black = Color.Black;Color white = Color.White;using (Graphics g = Graphics.FromImage(image2d)){g.Clear(black);g.DrawString(captchaText, font, Brushes.White, 0, 0);}Random rnd = new Random();double[] T = cameraTransform(new double[] { rnd.Next(-90, 90), -200, rnd.Next(150, 250) }, new double[] { 0, 0, 0 }); T = matrixProduct(T, viewingTransform(60, 300, 3000));double[][] coord = new double[image2d_x * image2d_y][];int count = 0;for (int y = 0; y < image2d_y; y += 2){for (int x = 0; x < image2d_x; x++){int xc = x - image2d_x / 2;int zc = y - image2d_y / 2;double yc = -(double)(image2d.GetPixel(x, y).ToArgb() & 0xff) / 256 * 4;double[] xyz = new double[] { xc, yc, zc, 1 };xyz = vectorProduct(xyz, T);coord[count] = xyz;count++;}}int image3d_x = 256;int image3d_y = image3d_x * 9 / 16;Bitmap image3d = new Bitmap(image3d_x, image3d_y);Color fgcolor = Color.White;Color bgcolor = Color.Black;using (Graphics g = Graphics.FromImage(image3d)){g.Clear(bgcolor);count = 0;double scale = 1.75 - (double)image2d_x / 400;for (int y = 0; y < image2d_y; y += 2){for (int x = 0; x < image2d_x; x++){if (x > 0){double x0 = coord[count - 1][0] * scale + image3d_x / 2;double y0 = coord[count - 1][1] * scale + image3d_y / 2;double x1 = coord[count][0] * scale + image3d_x / 2;double y1 = coord[count][1] * scale + image3d_y / 2;g.DrawLine(new Pen(fgcolor), (float)x0, (float)y0, (float)x1, (float)y1);}count++;}}}return image3d;}注意引⽤命名空间:using System.Drawing;⼆、页⾯调⽤Response.ContentType = "image/pjpeg";Captcha.Generate("我就是3D内容").Save(Response.OutputStream, System.Drawing.Imaging.ImageFormat.Jpeg);更多关于C#相关内容感兴趣的读者可查看本站专题:《》、《》、《》、《》及《》希望本⽂所述对⼤家C#程序设计有所帮助。
打地鼠在Unity开发环境下使用C开发的打地鼠小游戏

打地鼠在Unity开发环境下使用C开发的打地鼠小游戏Unity是一款非常流行的游戏开发引擎,它提供了丰富的功能和工具,使得开发者可以轻松开发各种类型的游戏。
在Unity的开发环境下,使用C语言开发打地鼠小游戏是一项有趣且有挑战性的任务。
本文将介绍如何在Unity开发环境下使用C语言来制作一个简单的打地鼠小游戏。
首先,我们需要创建一个新的Unity项目。
打开Unity软件,点击"New Project"来创建一个新的项目。
给项目起个合适的名字,选择一个合适的存储路径。
然后,点击"Create"按钮创建项目。
在Unity的工作区中,我们可以看到屏幕分为多个面板,包括场景视图、项目视图、层次视图等。
我们需要打开"场景视图"来编辑场景。
在场景视图中,我们可以拖拽各种元素来创建游戏场景。
接下来,我们需要创建一个地鼠模型。
在"项目视图"中,右键点击选择"Create",然后选择"3D Object",再选择"Sphere"来创建一个球体模型。
将这个球体模型调整到合适的大小,作为地鼠的模型。
然后,我们需要给地鼠添加一些交互功能。
在"层次视图"中,选中地鼠模型,再点击"Add Component"来添加组件。
我们可以给地鼠添加一个脚本组件来实现游戏逻辑。
点击"Add Component"后,在搜索框中输入"C# Script"来创建一个新的C#脚本。
将脚本命名为"WhackAMole"。
双击打开"WhackAMole"脚本,在其中添加以下代码:```csharpusing UnityEngine;public class WhackAMole : MonoBehaviour{void OnMouseDown(){Debug.Log("Hit!");Destroy(gameObject);}}```以上代码中,我们定义了一个名为"WhackAMole"的脚本类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Visual C#编写3D游戏框架示例
在本文中,我假定你的所有开发工作都将使用Visual Studio .NET 2003来完成
public class GameEngine : IDeviceCreation
{
///程序入口。
初始化所有部分并进入一个消息处理循环。
用空闲时间显示场景
static int Main()
{
using(Framework sampleFramework = new Framework())
{
return sampleFramework.ExitCode;
}
}
}
这段新代码中有三个地方比较突出。
首先,你可能注意到了除了静态的main方法之外,删除了所有东西,而且main方法也被修改过。
剩余的代码是Windows窗体设计器的支撑代码。
由于这个应用程序不需要使用该设计器,因此这些代码就没有用了,可以被删除。
其次,这段代码不能编译,因为游戏引擎希望实现的两个接口还未实现。
再次,这段代码实际上没有做任何事务。
在你开始解决后面两个问题之前,你必须添加一些引用。
由于你准备在这个项目中显示奇特的3D图像,你就必须给项目添加能执行这样的显示操作的组件的引用。
本文采用受控DirectX来执行这种操作,因此你需要在"项目"菜单中选择"添加引用"。
图1显示了弹出的对话框。
图1:添加引用对话框
G Green
B Blue
X Unused
你可以查看DirectX SDK文档得到更多关于格式的信息。
由于我们还需要知道该设备时候可以显示在窗体中,所以这个方法还有一个参数(最后一个)。
尽管大多数游戏都运行在全屏模式下,但是编写和调试在全屏模式下运行的游戏却很困难。
在调试过程中,这个应用程序在窗体模式而不是全屏模式下显示。
请注意
窗体模式是我们运行的大多数应用程序的显示方式。
其中大多数应用程序带有边框和控制菜单,右上角带有最小化、最大化和关闭按钮。
在全屏模式下,应用程序覆盖了整个屏幕,并且在大多数情
况下没有边框。
如果全屏模式使用了另外的屏幕大小(你当前使用的桌面),你可以改变桌面的分辨
率。
你可能注意到了默认行为是接受该设备,但是在接受之前进行了两项检查。
第一项检查确保了传递进来的设备可以进行alpha混合(游戏的用户界面需要这个),如果它不能够实现,就返回false表明这个设备不能被接受。
接着,它检查是否支持活动光源(active light)的能力。
没有光源的屏幕看起来是平面的、是假的,因此一般至少需要一个光源。
还有一些代码在设备建立之前的确修改了该设备,你可能想知道这段代码的作用。
能够执行处理过程的设备需要用多种方法来显示顶点,要么在硬件中计算或软件中计算,或者两者都使用。
如果处理过程完全在硬件中进行,这就是另外一种模式,就叫做"纯硬件设备",它潜在地提供了更高的性能。
这段代码检查你当前是否要建立一个硬件处理设备,如果你正准备这样做,并且该纯设备是可以使用的,那么它就切换到这种模式中。
你不能建立纯设备(如果该设备是可用的)的唯一情形是你计划调用该设备上的某个get方法或属性。
由于在这个例子中你不需要这样操作,所以你可以自由地使用能力更加强大的设备。
示例框架中有一些不安全(unsafe)的代码,因此你需要更新自己的项目并处理这些问题。
见图2。
图2:允许不安全的代码
列举所有设备选项
现在你可以让框架组件开始列举系统中的设备了。
首先,为游戏引擎类声明一个构造函数,并把main中建立的示例框架实例作为参数传递进去。
如列表3所示。
列表3:添加构造函数
private Framework sampleFramework = null; // 示例的框架组件
/// 建立该类的一个新的实例
public GameEngine(Framework f)
{
// 存储框架组件
sampleFramework = f;
}
该构造函数除了存储示例框架实例之外没有做其它的任何操作,这是因为这个实例是游戏中其它的一切东西几乎都需要使用的。
在你调用示例框架之后,它所做的第一件事情是试图列举系统中的所有设备。
在你的项目文件中,你在Framework文件夹中可以看到dxmutenum.cs文件。
这个文件包含了列举系统中所有设备所需要的全部代码。
由于理解如何列举和为什么列举设备是非常重要的,所以请你打开这个文件。
你首先应该注意到Enumeration类自身是不能被创建的,并且每个可用的成员和方法都是用static(静态的)关键字声明的。
由于在正常情况下(最少是现在)应用程序在运行的时候,你的图形硬件是不会改变的,因此这些列举代码只需要在应用程序开头运行一次。
总结
在本文中,你开始建立了第一个游戏项目,并且看到了示例框架的一些内容。
你看到了大量的列举系统中可能支持的设备组合的代码。
这个示例框架是你在未来编写游戏的一个重要的出发点。