分数的四则运算和简便计算

合集下载

四则混合运算及简便计算

四则混合运算及简便计算

四则混合运算及简便计算四则混合运算的顺序和简便计算我们如何进行整数、小数、分数的四则混合运算呢?以下是运算定律:1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。

2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。

例如:75+124+225=124+75+225=4243、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。

例如:25×37×466=37×25×466=5、乘法分配律:两个数的和(差)与一个数相乘,可以把两个加(减)数分别与这个数相乘再把两个积相加(减),即(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】。

例如:(40+4)×25=40×25+4×25=10006、减法的性质:一个数里连续减去两(几)个数,等于这个数连续减去这两(几)个数的和,即a-b-c=a-(b+c)。

【a-b-c-……-n=a-(b+c+……+n)】例如:875-324-376=875-(324+376)=1757、除法性质基本性质:一个数连续除以几个数,可以除以后几个数的积,也可以先除以第一个除数,再除以第二个除数。

a÷b÷c=a÷(b×c)=a÷c÷b。

例如:2500÷4÷256=2500÷(4×256)=2.xxxxxxxx综合练:2×6.6+2.5×611-6-14.6+3+6+5.43×(-÷) = 2583.xxxxxxxx4以上为四则混合运算的顺序和简便计算。

五年级下册数学分数的简便计算讲解

五年级下册数学分数的简便计算讲解

五年级下册数学分数的简便计算讲解数学分数的简便计算是指在计算分数时使用一些技巧和方法,以便更快速、准确地完成计算。

下面将从分数的四则运算、简化分数、比较分数以及转化为小数等方面详细介绍数学分数的简便计算方法。

一、分数的四则运算1.加法计算:两个分数相加,首先需要找到它们的公共分母,然后将分子相加。

如果分子相加后大于或等于公共分母,可以化简为带分数。

例如: 1/3 + 2/5 = (5 × 1 + 3 × 2)/(3 × 5)= 11/152.减法计算:两个分数相减,同样需要找到它们的公共分母,然后将分子相减。

如果分子相减后小于等于0,需要化简为带分数。

例如: 2/3 - 1/4 = (4 × 2 - 3 × 1)/(3 × 4)= 5/123.乘法计算:两个分数相乘,只需要将分子相乘,分母相乘。

最后要化简分数。

例如:2/3 × 4/5 = 8/154.除法计算:两个分数相除,需要倒数并相乘。

最后要化简分数。

例如:2/3 ÷ 5/6 =(2/3)× (6/5) = 4/5二、分数的简化简化分数就是找到分子和分母的最大公约数,并将它们同时除以最大公约数。

简化后的分数仍然表示与原分数相等的数量。

例如: 12/18 = (12 ÷ 6)/(18 ÷ 6)= 2/3三、分数的比较1.相同分母比较:当两个分数的分母相同时,比较分子的大小即可。

分子较大的分数较大。

例如: 3/5 > 2/52.不同分母比较:如果两个分数的分母不同,则需要找到它们的公共分母,然后将分子进行比较。

可以将两个分数的分子相乘,再将它们的分母相乘。

例如: 2/3和5/8比较公共分母为3 × 8 = 242/3 × (8/8) = 16/245/8 × (3/3) = 15/24可以看出16/24 > 15/24,即2/3 > 5/8四、将分数转化为小数1.有限小数:分母可以整除分子的分数转化为有限小数。

六年级分数简便计算

六年级分数简便计算

1.分数的四则运算:对于加法和减法,将分母相同的分数直接相加或
相减即可;对于乘法,将分子相乘得分子,分母相乘得分母;对于除法,
将除号变为乘号,分子乘除以分母的倒数,然后进行乘法运算即可。

例如:计算1/2+3/4-2/5:
首先需要找到一个公共分母,这里可以选择20;
将1/2转化为10/20,3/4转化为15/20,2/5转化为8/20;
然后相加得到:10/20+15/20-8/20=17/20。

2.约分:将一个分数化简为最简分数。

通过将分子和分母同时除以相
同的数,将分数化简为最简形式。

例如:将24/36约分:
首先找到24和36的最大公约数,可以发现它们的最大公约数是12;
将24和36同时除以12,得到2/3,即为最简分数。

3.分数的大小比较:对于同一分母的分数,比较它们的分子的大小即可。

例如:比较5/6和3/6的大小:
由于分母相同,只需要比较分子的大小即可,5>3,所以5/6大于
3/6
4.分数转化为小数:将分子除以分母即可得到小数。

例如:将3/4转化为小数:
3除以4等于0.75,所以3/4等于0.75
5.万分数的换算:将百分数除以100,即为相应的万分数。

例如:将35%转化为万分数:
35除以100等于0.35,所以35%等于0.35万分之1。

分数的混合运算和简便计算

分数的混合运算和简便计算

4 1 2 ( ) (2) 5 3 15
2 5 3 3 (3) 7 8 5 8
(4)(
4 2 2 9 15 15
(5)
7 5 54 9 27
(6)
3 5 5 4 8 4 8 5
巩固(1)
3 1 4 = 4 4
4 1 1 3 [ ( )] 3 6 4 (1) 9
8 7 15 15 9 8 (2)
3 5 14 1 [ ( )] 3 2 (3) 22 4
3
(4)
5 27 13 18 40 16
3 75 60% 24 0.6 5 (5)
1 2 4 2 ( ) 3 3 (6) 6 3
二、计算(能简便的要计算 1 3 7 1 2 2 3 2 ×6.6+2.5×6 11 -6 -1 4.6+3 +6 +5.4 2 5 8 3 3 5 5
6
4 5 3 3 4 5 3 5 3 3 ×( - ÷ )2.8+5 +7.2+3 4 +2.25+5 +7 15 7 14 4 9 9 8 8 4
3.87
3 7 3 2 0.87 175 175 10 10 2 3
1 1 1 1 1 5 13 9 9 ( ) 60 18 ( ) 105 ( 17 ) 2 3 4 5 15 21 16 13 13
4 2 4 2 1 3 7 12 3 4 12 12 5 ÷3+ 3 × 5 5 + 2 × 5 + 10 13 × 7 + 7 × 13 + 13
3
(7)35×
14 17
(8) 10

六年级上册分数四则混合运算+简便计算

六年级上册分数四则混合运算+简便计算

六年级分数的四则运算+简便计算专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。

2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的4、如果符合运算定律,可以利用运算定律进行简算。

练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-3、⎪⎭⎫⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。

分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。

第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

分数四则混合运算法则口诀(3篇)

分数四则混合运算法则口诀(3篇)

第1篇一、分数加法口诀分数加法,看似复杂,其实简单。

先通分,再相加,结果是关键。

以下口诀助你轻松掌握:同分母,直接加,分母不变,分子相加;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。

二、分数减法口诀分数减法,方法类似,注意细节,操作简便。

以下口诀助你一臂之力:同分母,直接减,分母不变,分子相减;异分母,通分法,分母求最小公倍数,分子相乘;最后,约分求最简,确保结果最完美。

三、分数乘法口诀分数乘法,简单易行。

相乘分子,相乘分母,结果约分,最简为止。

以下口诀助你轻松掌握:分子相乘,分母相乘,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。

四、分数除法口诀分数除法,关键是倒数。

相乘倒数,结果是分数,约分求最简。

以下口诀助你轻松应对:除以一个数,等于乘以它的倒数;相乘分子,相乘分母,结果是分数,约分求最简;乘积分子,乘积分母,结果是整数,无需约分。

五、分数四则混合运算口诀分数四则混合运算,先乘除,后加减,注意括号。

以下口诀助你一臂之力:先乘除,后加减,注意括号,顺序别乱;加减乘除,混合运算,先算括号,再算乘除;约分求最简,确保结果,正确无误。

六、特殊情况口诀特殊情况,注意处理,以下口诀助你应对:分母为零,无意义,运算不能继续;分子为零,结果是零,分母为零,无意义;分母相等,结果相等,分子相等,结果相等;分子分母同时乘以或除以相同的数(不为零),分数大小不变。

七、总结分数四则混合运算,看似复杂,实则简单。

只要掌握好以上口诀,运用得当,分数运算轻松自如。

在学习过程中,不断练习,提高计算速度和准确性,为以后的学习打下坚实基础。

祝你学习进步,早日成为数学小达人!第2篇在数学学习中,分数的四则混合运算是一个非常重要的内容。

为了帮助同学们更好地掌握分数的加减乘除运算,以下是一份详细的分数四则混合运算法则口诀,希望能对大家的学习有所帮助。

一、分数加减法口诀1. 分子分母同加减,加减符号要跟上。

《分数混合运算和简便运算》教案

《分数混合运算和简便运算》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分数混合运算的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分数混合运算的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分数四则混合运算的基本概念。分数四则混合运算是指包含加、减、乘、除的分数计算问题。它在数学运算中非常重要,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设你有2/3升的果汁,想要和朋友们分享,每个人分到1/4升,那么你最多可以分给几个朋友?这个案例展示了分数混合运算在实际中的应用,以及它如何帮助我们解决问题。
(2)对于异分母分数的加减,可以设计如1/6 + 1/8 + 1/12的题目,指导学生如何找到最小公分母,并进行通分和约分。
(3)在解决实际问题时,如购物打折、分配物资等,教师应引导学生如何提取关键信息,构建分数运算模型,并选择合适的运算方法进行求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分数混合运算和简便运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个分数相加或相乘的情况?”比如购物时计算折扣,这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分数混合运算的奥秘。
5.熟练运用计算器进行分数混合运算。
本节课将结合具体实例,帮助学生巩固分数混合运算知识,提高运算速度和准确性,培养其解决问题的能力。

六年级上册分数四则混合运算简便计算

六年级上册分数四则混合运算简便计算

六年级分数的四则运算+简便计算专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。

2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的4、如果符合运算定律,可以利用运算定律进行简算。

练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-3、⎪⎭⎫⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。

分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。

第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2143(⨯+涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的四则运算—计算题
专题复习
一、分数四则运算的运算法则和运算顺序
运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:
异分母分数相加减,先通分,再分母不变,分子相加减。

2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母
3、除法:除以一个数就等于乘这个数的倒数
运算顺序是:混合计算,先算乘除法再算加减;如果有括号,先算括号里面的(先算小括号,再算中括号)同一级运算,一般从左往右计算。

如果符合运算定律,可以进行简算。

练习:
1、34 -(15 + 13 )× 98
2、 107
13151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-
3、⎪⎭⎫
⎝⎛-+614121÷121 4、
9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦
⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712
6、
52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷40
1
二、分数四则运算的简便运算
引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:
① 乘法交换律:________________________ ② 乘法结合律:________________________ ③ 乘法分配律:________________________
做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。

分数简便运算常见题型
第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)26
6
831413⨯

涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅
基本方法:将分数相乘的因数互相交换,先行运算。

第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2
1
43(⨯+
涉及定律:乘法分配律 bc ac c b a ±=⨯±)(
基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

第三种:乘法分配律的逆运算 例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)75
1754⨯+⨯
涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯
基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。

第四种:添加因数“1” 例题:1)759575
⨯- 2)9216792⨯- 3)232331
17
233114+⨯+⨯
涉及定律:乘法分配律逆向运算
基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。

第五种:数字化加式或减式(拆项法) 例题:1)16317⨯ 2)19718⨯ 3)3169
67

涉及定律:乘法分配律逆向运算
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。

注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。

例如:999可化为1000-1。

其结果与原数字保持一致。

第六种:带分数化加式 例题:1)4161725⨯ 2)351213⨯ 3)13
5127⨯
涉及定律:乘法分配律
基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。

第七种:乘法交换律与乘法分配律相结合 例题:1)247174249175⨯+⨯ 2)1981361961311⨯+⨯ 3)138
1
137138137139⨯
+⨯
涉及定律:乘法交换律、乘法分配律逆向运算
基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算。

注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换。

不能分子和分母互换,也不能出现一组中的其中一个分子(或分母)和另一组乘式中的分子(或分母)进行互换。

课堂练习
1、59 × 34 +59 × 14
2、17× 916
3、( 34 +58 )×32
4、 54 × 18 ×16
5、15 + 29 × 310
6、44-72×512
7、52×214×10
8、6.8×51+51×3.2
9、)325(61-⨯ 10、46×4544 11、 (32+43-21)×12 12、 125×4
1
×24
13、42×(65-74) 14、69765⨯⨯ 15、(32+21)×76 16、53×914-94×5
3
17、2008×20062007 18、 23 +( 47 + 12 )×7
25 19、 149×14×9
2
20、47 ×1522 ×712 21、12×( 1112 - 348 ) 22、 910 ×1317 +910 × 4
17
23、36×937 24、 1113 -1113 ×1333 25、( 94 - 32 )× 83
26、( 38 -18 )×4
13 27、 43×52+43×0.6 28、 257×101-25
7
29、508310019⨯⨯ 30、9
5739574⨯+⨯
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档