汽车摇臂、配气机构的功用及组成
汽车摇臂、配气机构的功用及组成

汽车摇臂、配气机构的功用及组成气门式配气机构由气门组和气门传动组两部分组成,每组的零件组成则与气门的位置、凸轮轴的位置和气门驱动形式等有关。
现代汽车发动机均采用顶置气门,即进、排气门置于气缸盖内,倒挂在气缸顶上。
凸轮轴的位置有下置式、中置式和上置式3种。
如果不了解,可以上看看。
一、凸轮轴下置式配气机构凸轮轴置于曲轴箱内的配气机构为凸轮轴下置式配气机构。
其中气门组零件包括气门、气门座圈、气门导管、气门弹簧、气门弹簧座和气门锁夹等;气门传动组零件则包括凸轮轴、挺柱、推杆、摇臂、摇臂轴、摇臂轴座和气门间隙调整螺钉等。
下置凸轮轴由曲轴定时齿轮驱动。
发动机工作时,曲轴通过定时齿轮驱动凸轮轴旋转。
当凸轮的上升段顶起挺柱时,经推杆和气门间隙调整螺钉推动摇臂绕摇臂轴摆动,压缩气门弹簧使气门开启。
当凸轮的下降段与挺柱接触时,气门在气门弹簧力的作用下逐渐关闭。
四冲程发动机每完成一个工作循环,每个气缸进、排气一次。
这时曲轴转两周,而凸轮轴只旋转一周,所以曲轴与凸轮轴的转速比或传动比为2∶1。
二、凸轮轴中置式配气机构凸轮轴置于机体上部的配气机构被称为凸轮轴中置式配气机构。
与凸轮轴下置式配气机构的组成相比,减少了推杆,从而减轻了配气机构的往复运动质量,增大了机构的刚度,更适用于较高转速的发动机。
有些凸轮轴中置式配气机构的组成与凸轮轴下置式配气机构没有什么区别,只是推杆较短而已,如YC6105Q、6110A、依维柯8210.22S和福特2.5ID等发动机都是这种机构。
三、凸轮轴上置式配气机构凸轮轴置于气缸盖上的配气机构为凸轮轴上置式配气机构(OHC)。
其主要优点是运动件少,传动链短,整个机构的刚度大,适合于高速发动机。
由于气门排列和气门驱动形式的不同,凸轮轴上置式配气机构有多种多样的结构形式。
气门驱动形式有摇臂驱动、摆臂驱动和直接驱动三种类型。
1.摇臂驱动、单凸轮轴上置式配气机构凸轮轴推动液力挺柱,液力挺柱推动摇臂,摇臂再驱动气门;或凸轮轴直接驱动摇臂,摇臂驱动气门。
论述配气机构的功用、组成以及各组成部分的零部件

论述配气机构的功用、组成以及各组成部分的零部件配气机构是一种控制内燃机进、排气的机构,其主要功用是使内燃机按规定的运行规律吸入混合气和排出废气。
配气机构一般由进气阀、排气阀、凸轮轴、摇臂、气门和气门弹簧等组成。
进气阀:用于控制进气流量和进气时间,进气活门又分为开放式活门和闭式活门两类。
开放式进气活门一般采用蝶阀或旋转式进气活门,闭式进气活门一般采用直杆式或间接式气门。
排气活门:用来控制废气排放,排气活门分为机械活门和液压活门两种。
凸轮轴:凸轮轴是连接发动机主轴与配气机构的重要部分,它由凸轮和主轴组成,凸轮的形状可以在行程过程中控制气门的运动。
摇臂:用来转换凸轮轴上的直线运动为气门的旋转运动,其结构一般由滑块、插座和杠杆等组成。
气门:气门主要分为进气门和排气门两种,用于控制燃气进出活门,其优点在于阀门本身没有阻力,开启与关闭时间控制性好。
气门弹簧:气门弹簧用于回收气门和减轻摩擦,其设计考虑到弹性力、寿命和疲劳等因素。
总结来说,配气机构通过进气阀、排气阀、凸轮轴、摇臂、气门弹簧等组成,实现对内燃机的吸入和排出气体进行控制。
在发动机运行中,保持配气机构的灵敏度和准确性,对于提高发动机功率、节约燃料和降低排放都具有重要作用。
配气机构的组成工作原理

配气机构的组成工作原理
配气机构是内燃机的一个重要组成部分,主要用于控制和调整气缸的进、排气门的开启和关闭时间。
它由凸轮轴、凸轮、气门摇臂、气门弹簧、气门杆等部件组成。
工作原理如下:
1. 凸轮轴:凸轮轴是配气机构的核心部件,它在旋转过程中会带动凸轮的运动。
2. 凸轮:凸轮是以圆柱体为基础,外表面有凸起的凸缘构成。
在凸轮轴的转动下,凸轮会随着轴的转动而发生剧烈的旋转。
3. 气门摇臂:气门摇臂与凸轮相连,当凸轮旋转时,摇臂会受到凸轮凸起的作用而发生上下运动。
4. 气门弹簧:气门弹簧连接气门摇臂和气门杆,用于控制气门的关闭和开启。
5. 气门杆:气门杆是连接气门摇臂和气门的部分,通过气门杆的上下运动来控制气门的开启和关闭。
工作过程如下:
1. 进气过程:当凸轮轴旋转,凸轮将气门摇臂向上抬起,进而使气门杆带动进气门向上打开。
此时,气缸内的气体就可以顺利进入气缸。
2. 压缩过程:当气缸内气体被压缩后,凸轮转动使气门摇臂向下运动,带动进气门关闭。
气缸内气体被压缩,从而达到一定的压缩比。
3. 点火过程:在压缩过程完成后,点火系统将点火信号发送到火花塞,引起火花塞的火花,从而点燃压缩气体。
4. 排气过程:当气缸内气体完成燃烧后,凸轮会将气门摇臂向
上抬起,带动排气门打开。
气缸内燃烧产生的废气通过排气门排出气缸,进而完成一个工作循环。
通过配气机构的工作,可以保证气缸内的进、排气门在正确的时机进行开关,进而实现内燃机的正常运行。
简述配气机构的工作原理

简述配气机构的工作原理
配气机构是一种用于控制内燃机气门开闭的重要机构。
其工作原理主要是通过机械传动或电子控制,使气门在适当的时间内打开或关闭,从而实现气缸内气体的正常进出。
具体来说,配气机构的工作原理包括以下几个方面:
1. 凸轮轴:凸轮轴是配气机构的核心部件,其上设置有各种不同形状的凸轮,通过系统传动带动气门的开闭。
凸轮轴的旋转速度和相位是由曲轴传动来控制的,从而实现气门开闭的时序控制。
2. 摇臂:摇臂是配气机构中的重要机构,其作用是将凸轮轴上的转动转换成气门的线性运动。
摇臂通常由铸铁或铝合金制成,在工作过程中需要承受较大的载荷和冲击力。
3. 气门:气门是控制气缸内气体进出的主要机构,其开闭状态由凸轮轴和摇臂控制。
在内燃机工作过程中,气门需要承受高温高压的气体冲击,因此气门的制造材料和工艺十分重要。
4. 电子控制系统:随着电子技术的不断发展,现代内燃机中越来越多地采用了电子控制方式来控制气门的开闭。
电子控制系统通常由传感器、控制模块、执行器等多个组成部分组成,通过计算机算法来实现气门的精密控制。
总的来说,配气机构的工作原理是实现气门在适当的时刻打开或关闭,从而保证内燃机正常运转。
不同类型的内燃机采用的配气机构也会有所不同,但其基本的工作原理是相似的。
- 1 -。
配气机构的功用及组成

气门驱动 形式
摇臂驱动式 摆臂驱动式 直接驱动式 两气门式
多气门式 3气门 4气门 5气门
每缸气门 数及其排 列方式
第四章 配气机构
《汽车构造》
凸轮轴 正时齿 轮 张紧 轮 曲轴正 时齿轮 喷油泵 正时齿轮 机油泵 正时齿 轮 中间 链轮 导链 板 曲轴正 时链轮
《汽车构造》
凸轮轴 正时链 轮
部分车型配气相位(°CA)
第四章 配气机构
《汽车构造》
一、配气定时(配气相位)
配气定时:以曲轴转角表示的进、排气门 开闭时刻及其开启的持续时间 进气提前角α :从进气门开到上止点曲轴 所转过的角度 进气迟后角β :从进气行程下止点到进气 门关闭曲轴转过的角度 排气提前角γ :从排气门开启到下止点曲 轴转过的角度 排气迟后角δ :从上止点到排气门关闭曲 轴转过的角度
第三节 气门间隙
气门间隙
广州本田雅阁气门间隙
气门间隙调整块 零气门间隙
第四章 配气机构
《汽车构造》
一、气门间隙
气门间隙:冷态时,当气门处于关闭 状态时,气门与传动件之间的间隙。 气门间隙调整:节气门调整螺钉
间隙过小:漏气、气门烧坏
间隙过大:传动零件之间、气门和 气门座之间撞击严重,加速磨损。 液压挺柱长度自调:不留气门间隙
凸轮轴 正时齿 轮
凸轮轴 正时链 轮
曲轴正 时齿轮
定时 记号
齿轮 传动
第四章 配气机构
曲轴正 时链轮
《汽车构造》
链传动
凸轮轴正 时齿形带 轮
定时 记号
曲轴正 时齿形 带轮
齿形 带传 动
《汽车构造》
第四章 配气机构
(6)凸轮轴工作
第四章 配气机构
配气机构的作用及组成

1.配气机构的作用及组成一、功用:是按照发动机每一气缸内所进行的工作循环或发火次序的要求,定时开启和关闭各气缸的进、排气门,使新鲜可燃混合气或空气得以及时进入气缸,废气得以及时从气缸排出。
二、组成:气门组:气门及与之关联的零件;气门传动组:从正时齿轮到推动气门动作的所有零件。
2.为什么要预留气门间隙?什么是气门间隙?为什么要留气门相位?在气门杆尾端与摇臂端(侧置式气门机构为挺杆端)之间留有气门间隙,是为补偿气门受热后的膨胀之需的.发动机发动时,气门将因气温升高而膨胀。
如果气门以其传动件之间在冷态时无间隙或间隙过小,则在热态下,气门及其传动件的受热膨胀势必引起气门关闭不严,造成发动机在压缩和作功行程中的漏气,从而使功率下降,严重时甚至不易启动。
为了消除这种现象,通常在发动机冷态装配时,在气门与其传动机构中预留一定的间隙,以补偿气门受热后的膨胀量。
这一间隙被称为气门间隙。
但是,如果气门间隙留得太大,冷态下传动零件之间以及气门和气门座之间产生撞击,而且加速磨损,同时使得气门开启的持续时间减少,汽缸的充气情况变坏。
所以高级轿车上都采用液压挺柱,挺柱长度能自动变化,随时补偿气门的热膨胀量,故不需要预留气门间隙。
3.为什么有的配气机构中采用两个套装的气门弹簧你所指两套装置的气门弹簧我可否理解成控制气门开闭的弹簧。
所有的气门弹簧都是大簧套小簧;并且是是旋向相反。
采取这种结构的原因是防止因为气门弹簧旋向的原因产生谐振,造成气门关闭不严,所以设置成旋向相反的两个气门弹簧,让它们的谐振频率相反进行抵消,消除谐振引起的气门关闭不严的现象4.什么是点火提前角,其过大或过小有什么危害点火提前角:从点火时刻起到活塞到达压缩上止点,这段时间内曲轴转过的角度称为点火提前角。
点火过早,会造成爆震,活塞上行受阻,效率降低,磨损加剧。
点火过迟,气体做功效率低,排气声大。
不论点火过早或过迟,都会影响转速的提升。
若点火提前角过大,则活塞还在向上止点运动时,气体压力已达很大的数值,活塞受到迎面而来的反向压力的作用,压缩行程的负功增加使发动机功率下降,甚至有时造成曲轴反转使发动机不能工作。
发动机配气机构的作用及组成

发动机配气机构是内燃机中的重要部件,其作用是控制进气门和排气门的开启和关闭时间,以确保燃气进出气缸的顺序和时机,从而实现正常的燃烧过程。
以下是发动机配气机构的基本组成和作用:
凸轮轴(Camshaft):凸轮轴是配气机构的核心部件。
它通过凸轮的凸起部分,驱动气门的开启和关闭动作。
凸轮轴通常由曲轴带动,并根据发动机设计需要的气门时序和气门升程进行凸轮形状的设计。
凸轮(Cam):凸轮是安装在凸轮轴上的圆柱形或椭圆形零件。
根据凸轮的形状不同,可以控制气门的开启和关闭时间、气门升程以及气门加速度等参数。
气门(Valve):气门是控制气缸进出气体的阀门。
配气机构通过凸轮轴和凸轮的作用,使气门在正确的时机和顺序下开启和关闭,以允许新鲜的混合气进入燃烧室并排出废气。
气门弹簧(Valve Spring):气门弹簧用于控制气门的闭合力。
它使气门在凸轮轴提供的力量作用下保持闭合,同时允许气门在凸轮的作用下迅速开启。
摇臂(Rocker Arm):摇臂是连接凸轮轴和气门的杆状构件。
它将凸轮轴的旋转运动转换为气门的线性运动,并通过气门杆将动力传递给气门。
气门杆(Valve Stem):气门杆连接摇臂和气门,传递摇臂的运动给气门,使气门开启或关闭。
通过以上组成部分的协调配合,发动机配气机构能够精确控制气门的开启和关闭时间,以适应不同工况下的燃烧需求,实现高效的气缸充气和排气过程,从而提高发动机的动力性能和燃烧效率。
配气机构的功用与组成

配气机构的功用与组成第一节配气机构的功用与组成一、配气机构的功用配气机构是进、排气管道的控制机构,它按照发动机的作功次序和每一缸的工作循环的要求,适时地开闭进、排气门、向气缸供给可燃混合气(汽油机)或新鲜空气(柴油机)并及时排出废气。
二、配气机构的形式按气门布置方式不同可分为气门顶置式和侧置式两种。
汽车发动机大多采用顶置气门式配气机构。
由凸轮、挺柱、推杆、摇臂、气门和气门弹簧等组成。
顶置式配气机构按凸轮轴的布置形式可分为凸轮轴下置式、凸轮轴中置式、凸轮轴上置式;按曲轴和凸轮轴的传动方式可分为齿轮传动式、链条传动式和齿形带式。
根据每只气缸的气门数目可分为两气门式和四气门式。
(如图3.1)(相关视频:第一集)三、配气机构的组成由气门组和气门传动组组成。
(如图3.2)(相关视频:第二集)第二节配气相位定义:配气相位是用曲轴转角表示的进、排气门的开启时刻和开启延续时间,通常用环形图表示,即配气相位图。
为了使进气充足,排气干净,除了从结构上进行改进外(如增大进、排气管道),还可以从配气相位上想点办法,气门能否早开晚闭,延长进、排气时间呢?①气门早开晚闭活塞到达进气下止点时,由于进气吸力的存在,气缸内气体压力仍然低于大气压,在大气压的作用下仍能进气;另外,此时进气流还有较大的惯性。
由此可见,进气门晚关可以增加进气量。
进气门早开,可使进气一开始就有一个较大的通道面积,可增加进气量。
在作功行程快要结束时,排气门打开,可以利用作功的余压使废气高速冲出气缸,排气量约占50%。
排气门早开,势必造成功率损失,但因气压低,损失并不大,而早开可以减少排气所消耗的功,又有利于废气的排出,所以总功率仍是提高的。
由此可见,气门具有早开晚关的可能,那么气门早开晚关对发动机实际工作又有什么好处呢?进气门早开:增大了进气行程开始时气门的开启高度,减小进气阻力,增加进气量。
进气门晚关:延长了进气时间,在大气压和气体惯性力的作用下,增加进气量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车摇臂、配气机构的功用及组成
气门式配气机构由气门组和气门传动组两部分组成,每组的零件组成则与气门的位置、凸轮轴的位置和气门驱动形式等有关。
现代汽车发动机均采用顶置气门,即进、排气门置于气缸盖内,倒挂在气缸顶上。
凸轮轴的位置有下置式、中置式和上置式3种。
如果不了解,可以上看看。
一、凸轮轴下置式配气机构
凸轮轴置于曲轴箱内的配气机构为凸轮轴下置式配气机构。
其中气门组零件包括气门、气门座圈、气门导管、气门弹簧、气门弹簧座和气门锁夹等;气门传动组零件则包括凸轮轴、挺柱、推杆、摇臂、摇臂轴、摇臂轴座和气门间隙调整螺钉等。
下置凸轮轴由曲轴定时齿轮驱动。
发动机工作时,曲轴通过定时齿轮驱动凸轮轴旋转。
当凸轮的上升段顶起挺柱时,经推杆和气门间隙调整螺钉推动摇臂绕摇臂轴摆动,压缩气门弹簧使气门开启。
当凸轮的下降段与挺柱接触时,气门在气门弹簧力的作用下逐渐关闭。
四冲程发动机每完成一个工作循环,每个气缸进、排气一次。
这时曲轴转两周,而凸轮轴只旋转一周,所以曲轴与凸轮轴的转速比或传动比为2∶1。
二、凸轮轴中置式配气机构
凸轮轴置于机体上部的配气机构被称为凸轮轴中置式配气机构。
与凸轮轴下置式配气机构的组成相比,减少了推杆,从而减轻了配气机构的往复运动质量,增大了机构的刚度,更适用于较高转速的发动机。
有些凸轮轴中置式配气机构的组成与凸轮轴下置式配气机构没有什么区别,只是推杆较短而已,如YC6105Q、6110A、依维柯8210.22S和福特2.5ID等发动机都是这种机构。
三、凸轮轴上置式配气机构
凸轮轴置于气缸盖上的配气机构为凸轮轴上置式配气机构(OHC)。
其主要优点是运动件少,传动链短,整个机构的刚度大,适合于高速发动机。
由于气门排列和气门驱动形式的不同,凸轮轴上置式配气机构有
多种多样的结构形式。
气门驱动形式有摇臂驱动、摆臂驱动和直接驱动三种类型。
1.摇臂驱动、单凸轮轴上置式配气机构凸轮轴推动液力挺柱,液力挺柱推动摇臂,摇臂再驱动气门;或凸轮轴直接驱动摇臂,摇臂驱动气门。
2.摆臂驱动、凸轮轴上置式配气机构由于摆臂驱动气门的配气机构比摇臂驱动式刚度更好,更有利于高速发动机,因此在轿车发动机上的应用比较广泛。
如CA4883、SH680Q、克莱斯勒A452、奔驰QM615、奔驰M115等发动机均为单上置凸轮轴(SOHC)摆臂驱动式配气机构;而本田B20A、尼桑VH45DE、三菱3G81、富士EJ20等发动机都是双上置凸轮轴(DOHC)摆臂驱动式配气机构。
3.直接驱动、凸轮轴上置式配气机构在这种形式的配气机构中,凸轮通过吊杯形机械挺柱驱动气门;或通过吊杯形液力挺柱驱动气门。
与上述各种形式的配气机构相比,直接驱动式配气机构的刚度最大,驱动气门的能量损失最小。
因此,在高度强化的轿车发动机上得到广泛的应用。
如奥迪、捷达、桑塔纳、马自达6、欧宝V6、奔弛320E,还有依维柯8140.01、8140.21等均为直接驱动式配气机构。