2016届中考数学总复习(28)图形的相似-精练精析(1)及答案
初中数学专题复习图形的相似(含答案)

第19课时 图形的相似一、知识导航图应用:解决实际问题3.面积的比等于相似比的平方2.对应边、对应中线、对应角平分线、 对应高线、周长的比等于相似比1.对应角相等4.三边对应成比例3.两边对应成比例且夹角相等2.两角对应相等1.定义图形的运动与坐标用坐标来确定位置位似性质识别方法相似多边形的特征概念图形与坐标相似三角形相似的图形图形的相似二、中考课标要求三、中考知识梳理1.比例线段由于比例线段的实质就是四个正数组成的比例式,所以要学好本部分内容,首先要复习小学所学的有关比例的相关知识.2.相似形具有相同形状的图(大小不一定相同). 3.相似多边形的特征“对应边成比例,对应角相等”既是相似多边形的识别方法又是性质. 4.相似比相似比是把一个图形放大或缩小的倍数,其具有顺序性,全等是相似比为 1 时的特殊情况.5.相似三角形的性质(1)对应边成比例,对应角相等;(2)对应高的比、对应中线的比、对应角平分线的比都等于相似比; (3)周长的比等于相似比,面积的比等于相似比的平方. 6.相似图形的画法是新课标中新增添的内容,要求掌握用多种方法将一个图形放大或缩小. 7.图形与坐标是新课程中新增添的内容,应注意把“形”与“数”紧密地联系在一起. 四、中考题型例析1.列比例式例1 (2002·北京怀柔)已知三个数请你再添上一个(只填一个)数, 使它们能构成一个比例式,则这个数是_________.分析:这是一道开放型试题,由于题中没有告知构成比例的各数顺序, 故应考虑各种可能位置.答案2.相似三角形的识别例2 (2004·昆明)如图,在△ABC 中,AC>AB,点D 在AC 边上(点D 不与A 、C 重合),若再增加上条件就能使△ABD ∽△ACB,则这个条件可以是_______.解析:由于所识别的两三角形隐含着一个公共角∠A,因此依照识别方法,只要再附加条件∠ABD=∠C,∠ADB=∠ABC,或AD ABAB AC =即可. 答案:∠ABD=∠C,∠ADB=∠ABC,AD ABAB AC=。
九年级中考总复习(华师大版)精练精析:二十八、图形的相似1(25页)

16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=_________.
三.解答题(共8小题)
17.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(2)若∠DAB=60°,AB=2,AG=,求GD的长.
20.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.
(1)若AE=CF;
①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求AP•AF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.
(1)求证:AP=AO;
(2)求证:PE⊥AO;
(3)当AE=AC,AB=10时,求线段BO的长度.
图形的变化——图形的相似
参考答案与试题解析
一.选择题(共9小题)
1.若x:y=1:3,2y=3z,则的值是( )
A.﹣5B.﹣C.D.5
考点:比例的性质.
专题:计算题.
分析:根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.
A.1个B.2个C.3个D.4个
8.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为( )
A.1B.2C.12﹣6D.6﹣6
中考数学专项训练 图形的相似(附参考答案)

中考数学专项训练图形的相似一、选择题1.如果两个相似三角形的面积比是1∶4,那么它们的周长比是() A.1∶16 B.1∶4 C.1∶6 D.1∶22.已知△ABC∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为()A.34 B.43 C.916 D.1693.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若ABBC=12,则DEEF的值为()A.13 B.12 C.23D.1第3题图第4题图第5题图第6题图4.如图,在△ABC中,DE∥BC,ADAB=13,BC=12,则DE的长是()A.3 B.4 C.5 D.65.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有() A.0个B.1个C.2个D.3个6.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()7.如图,在平面直角坐标系中,已知点A(-3,6),B(-9,-3),以原点O为位似中心,相似比为13,把△ABO缩小,则点A的对应点A′的坐标是()A.(-1,2) B.(-9,18)C.(-9,18)或(9,-18) D.(-1,2)或(1,-2)8.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△P AD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个第8 题图第9题图第10题图9.如图,点E,F分别在菱形ABCD的边AB,AD上,AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若AFDF=2,则HFBG的值为()A.23 B.712 C.12 D.51210.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,E是AB上一点,DE⊥CE.若AD=1,BC=2,CD=3,则CE与DE的数量关系正确的是() A.CE=3DE B.CE=2DE C.CE=3DE D.CE=2DE二、填空题11.若x∶y=1∶3,2y=3z,则2x+yz-y=________.12.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是____________(只需写一个条件,不添加辅助线和字母).第12题图第14题图第15题图第16题图13.在▱ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△ODM :S△OBC=________.14.(2016·临沂中考)如图,在△ABC中,点D,E,F分别在AB,AC,BC 上,DE∥BC,EF∥AB.若AB=8,BD=3,BF=4,则FC的长为________.15.(2016·安顺中考)如图,矩形EFGH内接于△ABC,边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=23EH,那么EH的长为________.16.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为________.三、解答题17.在13×13的网格图中,已知△ABC和点M(1,2).(1)以点M为位似中心,画出△ABC的位似图形△A′B′C′,使△ABC和△A′B′C′的位似比为2;(2)写出△A′B′C′的各顶点坐标.18.(菏泽中考)如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须测量M,N两点之间的直线距离.选择测量点A,B,C,点B,C分别在AM,AN上,现测得AM=1千米,AN=1.8千米,AB=54米,BC=45米,AC=30米,求M,N两点之间的直线距离.19.★(泰安中考)如图,在△ABC中,AB=AC,点P,D分别是BC,AC 边上的点,∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.参考答案与解析1.D 2.A 3.B 4.B 5.C 6.C7.D8.C解析:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°-∠B=90°,∴∠P AD=∠PBC=90°.设AP=x,则BP=8-x.若AB边上存在点P,使△P AD 与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8-x)=3:4,解得x=247;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8-x),解得x=2或x=6.∴满足条件的点P的个数是3个.故选C.9.B解析:∵四边形ABCD是菱形,∴AB=BC=CD=AD,设DF=a,则DF=AE=a,AD=AB=3a,AF=EB=2a.∵HD∥AB,∴△HFD∽△BF A,∴HD BA=DFAF=HFBF=12,∴HD=1.5a,FHHB=13,∴HF=13HB.∵HD∥EB,∴△DGH∽△EGB,∴HGBG=HDBE=1.5a2a=34,∴BGHB=47,∴BG=47HB,∴HFBG=13HB47HB=712.故选B.10.B解析:过点D作DH⊥BC,则DH=AB,BH=AD=1.又∵BC=2,∴CH=1,∴DH=CD2-CH2=32-12=22,∴AB=2 2.∵AD∥BC,∠ABC =90°,∴∠A=90°,∴∠AED+∠ADE=90°.∵DE⊥CE,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴△ADE∽△BEC,∴ADBE=AEBC=DEEC.设BE=x,则AE=22-x,即1x=22-x2,解得x=2,∴ADBE=DECE=12,∴CE=2DE.故选B.11.-512.AB∥DE(答案不唯一)13.49或1914.12515.32解析:如图所示,设AD与EH的交点为M.∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC.∵AD⊥BC,EH∥BC,∴AM⊥EH,∴AMAD=EHBC.易证EF =MD .设EH =3x ,则EF =23EH =2x ,AM =AD -MD =AD -EF =2-2x ,∴2-2x 2=3x 3,解得x =12,则EH =32.16.45 解析:在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,∴AB =5.由翻折可得∠AEC =∠DEC =90°,∠ECF =45°,∴CE =EF ,利用Rt △AEC ∽Rt △ACB ,得AE AC =CE BC =AC AB ,解得AE =95,CE =125,∴EF =125,∴B ′F=BF =AB -AE -EF =45.17.解:(1)如图所示;(2)△A ′B ′C ′的各顶点坐标分别为A ′(3,6),B ′(5,2),C ′(11,4).18.解:连接MN .∵AC AM =301000=3100,AB AN =541800=3100,∴AC AM =AB AN .又∵∠BAC =∠NAM ,∴△BAC ∽△NAM ,∴BC MN =3100,∴MN =100×453=1500(米). 答:M ,N 两点之间的直线距离为1500米.19.(1)证明:∵AB =AC ,∴∠B =∠C .∵∠APD =∠B ,∴∠APD =∠B =∠C .∵∠APC =∠BAP +∠B ,∠APC =∠APD +∠DPC ,∴∠BAP =∠DPC ,∴△ABP ∽△PCD ,∴BP CD =AB CP ,∴AB ·CD =CP ·BP .∵AB =AC ,∴AC ·CD =CP ·BP ;(2)解:∵PD ∥AB ,∴∠APD =∠BAP .由(1)可知∠APD =∠C ,∴∠BAP =∠C .∵∠B =∠B ,∴△BAP ∽△BCA ,∴BA BC =BP BA .∵AB =10,BC =12,∴1012=BP 10,∴BP =253.。
初三数学图形的相似试题答案及解析

初三数学图形的相似试题答案及解析1.如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为 .【答案】.【解析】根据翻折的性质可得∠BAC=∠EAC,再根据矩形的对边平行可得AB∥CD,根据两直线平行,内错角相等可得∠DCA=∠BAC,从而得到∠EAC=∠DCA,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到△ACF和△EDF相似,根据相似三角形对应边成比例求出,设DF=3x,FC=5x,在Rt△ADF中,利用勾股定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解.试题解析:∵矩形沿直线AC折叠,点B落在点E处,∴∠BAC=∠EAC,AE=AB=CD,∵矩形ABCD的对边AB∥CD,∴∠DCA=∠BAC,∴∠EAC=∠DCA,设AE与CD相交于F,则AF=CF,∴AE-AF=CD-CF,即DF=EF,∴,又∵∠AFC=∠EFD,∴△ACF∽△EDF,∴,设DF=3x,FC=5x,则AF=5x,在Rt△ADF中,AD=,又∵AB=CD=DF+FC=3x+5x=8x,∴.【考点】1.翻折变换(折叠问题);2.相似三角形的判定与性质.2.如图,在四边形ABCD中,AD∥BC,∠BCD=90°,∠ABC=45°,AD=CD,CE平分∠ACB交AB于点E,在BC上截取BF=AE,连接AF交CE于点G,连接DG交AC于点H,过点A作AN⊥BC,垂足为N,AN交CE于点M.则下列结论;①CM=AF;②CE⊥AF;③△ABF∽△DAH;④GD平分∠AGC,其中正确的序号是.【答案】①②③④.【解析】如解答图所示:结论①正确:证明△ACM≌△ABF即可;结论②正确:由△ACM≌△ABF得∠2=∠4,进而得∠4+∠6=90°,即CE⊥AF;结论③正确:证法一:利用四点共圆;证法二:利用三角形全等;结论④正确:证法一:利用四点共圆;证法二:利用三角形全等.试题解析:(1)结论①正确.理由如下:∵∠1=∠2,∠1+∠CMN=90°,∠2+∠6=90°,∴∠6=∠CMN,又∵∠5=∠CMN,∴∠5=∠6,∴AM=AE=BF.易知ADCN为正方形,△ABC为等腰直角三角形,∴AB=AC.在△ACM与△ABF中,,∴△ACM≌△ABF(SAS),∴CM=AF;(2)结论②正确.理由如下:∵△ACM≌△ABF,∴∠2=∠4,∵∠2+∠6=90°,∴∠4+∠6=90°,∴CE⊥AF;(3)结论③正确.理由如下:证法一:∵CE⊥AF,∴∠ADC+∠AGC=180°,∴A、D、C、G四点共圆,∴∠7=∠2,∵∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;证法二:∵CE⊥AF,∠1=∠2,∴△ACF为等腰三角形,AC=CF,点G为AF中点.在Rt△ANF中,点G为斜边AF中点,∴NG=AG,∴∠MNG=∠3,∴∠DAG=∠CNG.在△ADG与△NCG中,,∴△ADG≌△NCG(SAS),∴∠7=∠1,又∵∠1=∠2=∠4,∴∠7=∠4,又∵∠DAH=∠B=45°,∴△ABF∽△DAH;(4)结论④正确.理由如下:证法一:∵A、D、C、G四点共圆,∴∠DGC=∠DAC=45°,∠DGA=∠DCA=45°,∴∠DGC=∠DGA,即GD平分∠AGC.证法二:∵AM=AE,CE⊥AF,∴∠3=∠4,又∠2=∠4,∴∠3=∠2则∠CGN=180°-∠1-90°-∠MNG=180°-∠1-90°-∠3=90°-∠1-∠2=45°.∵△ADG≌△NCG,∴∠DGA=∠CGN=45°=∠AGC,∴GD平分∠AGC.综上所述,正确的结论是:①②③④,共4个.【考点】1.相似三角形的判定与性质;2.全等三角形的判定与性质.3.如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米【答案】B.【解析】∵△ABP∽△CDP,∴.∴(米).故选B.【考点】相似三角形的应用.4.如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40 cm,AD=30 cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G、H分别在AC、AB上,AD与HG的交点为M. 求矩形的长与宽.【答案】24 cm和12 cm【解析】解:∵四边形EFGH为矩形,∴HG∥EF,∴△AHG∽△ABC,又∵AD⊥BC,∴AM⊥HG,∴=∵四边形HEDM为矩形,∴MD=HE,∵HG=2HE,设HE=x,则HG=2x,DM=x,∴=,解得x=12,∴HG=2×12=24,∴矩形的长和宽分别为24 cm和12 cm.5.在比例尺是1∶8 000的南京市城区地图上,太平南路的长度约为25 cm,它的实际长度约为()A.320 cm B.320 mC.2 000 cm D.2 000 m【答案】D【解析】设它的实际长度为x cm,则=,x=200 000,200 000 cm=2 000 m.故选D.6.如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.【答案】(1)= (2)△BCD∽△CFB∽△DEC,证明见解析【解析】思路分析:(1)根据S1=S矩形BDEF,S2+S3=S矩形BDEF,即可得出答案.(2)根据矩形的性质,结合图形可得:△BCD∽△CFB∽△DEC,选择一对进行证明即可.解答:(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.点评:本题考查了相似三角形的判定,注意掌握相似三角形的判定定理,最经常用的就是两角法,此题难度一般.7.如图,直线AD∥BE∥CF,BC=AC,DE=4,那么EF的值是.【答案】2.【解析】∵直线AD∥BE∥CF,BC=AC,∴EF=DF.∴EF=DF.又∵DE=4,∴EF=2.【考点】平行线分线段成比例.8.已知a:b=3:2,则(a-b):a= .【答案】.【解析】根据比例关系即可得到答案.∵a:b=3:2∴(a-b):a=(3-2):3=1:3【考点】比例关系.9.已知△如图所示,则下列4个三角形中,与△相似的是()【答案】C【解析】由对照四个选项知,C项中的三角形与△相似.10.在平行四边形中,E在DC上,若DE:EC=1:2,则BF:EF= .【答案】3:2.【解析】试题分析:∵DE:EC=1:2,∴EC:CD=2:3;∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD;∴△ABF∽△CEF;∴BF:EF=AB:EC;∵EC:CD=EC:AB=2:3,∴BF:EF=3:2.故答案是3:2.考点:相似三角形的判定与性质.11.如果=,那么的值是()A.B.C.D.【答案】B.【解析】由,根据比例的性质,即可求得的值.∵∴.故选B.考点: 比例的性质.12.在等腰梯形ABCD中,下底BC是上底AD的两倍,E为BC的中点,R为DC的中点,BR 交AE于点P,则EP:AP=A.B.C.D.【答案】A.【解析】由已知,知PE是△BCR的中位线,∴CR=2EP.如图,延长BR交AD的延长线于点F,则△BCR≌△FDR, ∴DF=BC=2AD=AF.∴由△FD∽△FAP得AP=DR.∴EP:AP=EP:DR=EP:CR=EP:EP=.故选A.【考点】1.等腰梯形的性质;2.三角形中位线的判定和性质;3.全等三角形的判定和性质;4.相似三角形的判定和性质.13.已知,求代数式的值.【答案】.【解析】根据比例的性质,设,则,代入所求代数式即可求.试题解析:∵,∴可设,则,∴【考点】分式的化简.14.为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆为3.1米,且BC=1米,CD=5米,请你根据所给出的数据求树高ED.【答案】10.6米.【解析】首先做出辅助线,得出△AHF∽△AGE,进而求出GE的长,进而求出ED的长.试题解析:如图,过点A作AG⊥DE于点G,交CF于点H.由题意可得 四边形ABCH 、ABDG 、CDGH 都是矩形,AB ∥CF ∥DE . ∴△AHF ∽△AGE .∴.由题意可得AH=BC=1,AG=BD=6,FH=FC-HC=FC-AB=3.1-1.6=1.5.∴.∴GE=9.∴ED=GE+DG=GE+AB=9+1.6=10.6. 答:树高ED 为10.6米. 【考点】相似三角形的应用.15. 如图,在平行四边形ABCD 中,E 为CD 上一点,连结AE ,BD ,且AE ,BD 交于点F ,S △DEF ∶S △ABF =4∶25,求DE ∶EC 的值.【答案】2:3.【解析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF ∽△BAF ,再根据S △DEF :S △ABF =4:10:25即可得出其相似比,由相似三角形的性质即可求出DE:AB 的值,由AB=CD 即可得出结论. 试题解析:∵四边形ABCD 是平行四边形, ∴AB ∥CD .∴△DEF ∽△BAF . ∴.∴.又∵AB=CD,∴DE ∶EC=2∶3.【考点】1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.16. 如图①,正方形ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A ⇒B ⇒C ⇒D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标;(3)如果点P 、Q 保持原速度不变,当点P 沿A ⇒B ⇒C ⇒D 匀速运动时,OP 与PQ 能否相等?若能,求出所有符合条件的t 的值;若不能,请说明理由.【答案】(1)(1,0),1;(2)10,(14,12);(3)t=或t=.【解析】(1)根据题意,易得Q (1,0),结合P 、Q 得运动方向、轨迹,分析可得答案; (2)过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF=8,OF=BE=4,在Rt △AFB 中,过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H ,易得△ABF ≌△BCH ,进而可得C 得坐标;(3)过点P作PM⊥y轴于点M,PN⊥x轴于点N,易得△APM∽△ABF,根据相似三角形的性质,有,设△OPQ的面积为S,计算可得答案.试题解析:(1)根据题意,易得Q(1,0),点P运动速度每秒钟1个单位长度.(2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF=BE=4.∴AF=10-4=6.在Rt△AFB中,过点C作CG⊥x轴于点G,与FB的延长线交于点H.∵∠ABC=90°=∠AFB=∠BHC∴∠ABF+∠CBH=90°,∠ABF=∠BCH,∠FAB=∠CBH∴△ABF≌△BCH.∴BH=AF=6,CH=BF=8.∴AB=∴OG=FH=8+6=14,CG=8+4=12.∴所求C点的坐标为(14,12).(3)当t=或t=时,OP与PQ相等.考点:相似三角形的判定与性质;二次函数的最值;全等三角形的判定与性质.17.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.(1)当点P在线段AB上时,求证:△APQ∽△ABC;(2)当△PQB为等腰三角形时,求AP的长.【答案】(1)见解析;(2)AP的长为或6.【解析】(1)由两对角相等(∠APQ=∠C,∠A=∠A),证明△APQ∽△ABC.(2)当△PQB为等腰三角形时,有两种情况,需要分类讨论.(I)当点P在线段AB上时,如题图1所示.由三角形相似(△APQ∽△ABC)关系计算AP的长;(II)当点P在线段AB的延长线上时,如题图2所示.利用角之间的关系,证明点B为线段AP 的中点,从而可以求出AP.试题解析:(1)证明:∵∠A+∠APQ=90°,∠A+∠C=90°,∴∠APQ=∠C.在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,∴△APQ∽△ABC.(2)在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠BPQ为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ.(I)当点P在线段AB上时,如题图1所示,由(1)可知,△APQ∽△ABC,∴,即,解得:.∴.(II)当点P在线段AB的延长线上时,如题图2所示,∵BP=BQ,∴∠BQP=∠P.∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A.∴BQ=AB.∴AB=BP,点B为线段AB中点.∴AP=2AB=2×3=6.综上所述,当△PQB为等腰三角形时,AP的长为或6.【考点】1.相似三角形的判定与性质;2.等腰三角形的性质;3.直角三角形斜边上的中线;4.勾股定理.18.如图,△ABC中,AB>AC,D为AB上一点,下列条件:①∠B=∠ACD,②∠ADC=∠ACB,③,④中,能判定△ABC与△ACD相似的有()A.1个B.2个C.3个D.4个【答案】C.【解析】∵∠A是公共角,∴当∠B=∠ACD时,△ABC∽△ACD(有两组角对应相等的两个三角形相似);当∠ADC=∠ACB,△ABC∽△ACD(有两组角对应相等的两个三角形相似);当时,∠A不是夹角,则不能判定△ABC与△ACD相似;当AC2=AD•AB时,即,△ABC∽△ACD(两组对应边的比相等且夹角对应相等的两个三角形相似).∴能够判定△ABC与△ACD相似的条件有三个:①②④.故选C.【考点】相似三角形的判定.19.如图,在ABCD中,E在AB上,CE、BD交于F,若AE:BE=4∶3,且BF=2,则DF=__________.【答案】.【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵AE:BE=4:3,∴BE:AB=3:7. ∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF.∴BF:DF=BE:CD=3:7,即2:DF=3:7. ∴DF=.【考点】1.平行四边形的性质;2.相似三角形的判定和性质.20..如图,正方形内接于△,已知,,那么正方形的边长是.【答案】【解析】由正方形,DF∥AC ,DF="FA" , , 设正方形的边长为x ,则有, .【考点】三角形一边平行线的性质。
中考数学《图形的相似》真题汇编含解析

图形的相似(29题)一、单选题1(2023·重庆·统考中考真题)如图,已知△ABC ∽△EDC ,AC :EC =2:3,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B【分析】根据相似三角形的性质即可求出.【详解】解:∵△ABC ∽△EDC ,∴AC :EC =AB :DE ,∵AC :EC =2:3,AB =6,∴2:3=6:DE ,∴DE =9,故选:B .【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点△ABC 、△DEF 成位似关系,则位似中心的坐标为()A.-1,0B.0,0C.0,1D.1,0【答案】A【分析】根据题意确定直线AD 的解析式为:y =x +1,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:A 1,2 ,D 3,4 ,设直线AD 的解析式为:y =kx +b ,将点代入得:2=k +b 4=3k +b ,解得:k =1b =1 ,∴直线AD 的解析式为:y =x +1,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当y =0时,x =-1,∴位似中心的坐标为-1,0 ,故选:A .【点睛】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,△ABC 的三个顶点分别为A 1,2 ,B 2,1 ,C 3,2 ,现以原点O 为位似中心,在第一象限内作与△ABC 的位似比为2的位似图形△A B C ,则顶点C 的坐标是()A.2,4B.4,2C.6,4D.5,4【答案】C【分析】直接根据位似图形的性质即可得.【详解】解:∵△ABC 的位似比为2的位似图形是△A B C ,且C 3,2 ,∴C 2×3,2×2 ,即C 6,4 ,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键.4(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已知小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,则旗杆高度为()A.6.4mB.8mC.9.6mD.12.5m【答案】B【分析】根据镜面反射性质,可求出∠ACB =∠ECD ,再利用垂直求△ABC ∽△EDC ,最后根据三角形相似的性质,即可求出答案.【详解】解:如图所示,由图可知,AB ⊥BD ,CD ⊥DE ,CF ⊥BD∴∠ABC =∠CDE =90°.∵根据镜面的反射性质,∴∠ACF =∠ECF ,∴90°-∠ACF =90°-∠ECF ,∴∠ACB =∠ECD ,∴△ABC ∽△EDC ,∴AB DE =BC CD.∵小菲的眼睛离地面高度为1.6m ,同时量得小菲与镜子的水平距离为2m ,镜子与旗杆的水平距离为10m ,∴AB =1.6m ,BC =2m ,CD =10m .∴1.6DE =210.∴DE =8m .故选:B .【点睛】本题考查了相似三角形的应用,解题的关键在于熟练掌握镜面反射的基本性质和相似三角形的性质.5(2023·安徽·统考中考真题)如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.10【答案】B 【分析】根据平行线分线段成比例得出DE EM =AF FB =2,根据△ADE ∽△CME ,得出AD CM =DE EM =2,则CM =12AD =32,进而可得MB =32,根据BC ∥AD ,得出△GMB ∽△GDA ,根据相似三角形的性质得出BG =3,进而在Rt △BGM 中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,AF =2,FB =1,∴AD =BC =AB =AF +FG =2+1=3,AD ∥CB ,AD ⊥AB ,CB ⊥AB ,∵EF ⊥AB ,∴AD ∥EF ∥BC∴DE EM =AFFB=2,△ADE∽△CME,∴AD CM =DEEM=2,则CM=12AD=32,∴MB=3-CM=32,∵BC∥AD,∴△GMB∽△GDA,∴BG AG =MBDA=323=12∴BG=AB=3,在Rt△BGM中,MG=MB2+BG2=322+32=352,故选:B.【点睛】本题考查了正方形的性质,平行线分线段成比例,相似三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.6(2023·湖北黄冈·统考中考真题)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别以点E,F为圆心,大于12EF长为半径画弧交于点P,作射线BP,过点C作BP的垂线分别交BD,AD于点M,N,则CN的长为()A.10B.11C.23D.4【答案】A【分析】由作图可知BP平分∠CBD,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,根据角平分线的性质可知RQ=RC,进而证明Rt△BCR≌Rt△BQR,推出BC=BQ=4,设RQ=RC=x,则DR=CD-CR=3-x,解Rt△DQR求出QR=CR=43.利用三角形面积法求出OC,再证△OCR∽△DCN,根据相似三角形对应边成比例即可求出CN.【详解】解:如图,设BP与CN交于点O,与CD交于点R,作RQ⊥BD于点Q,∵矩形ABCD中,AB=3,BC=4,∴CD =AB =3,∴BD =BC 2+CD 2=5.由作图过程可知,BP 平分∠CBD ,∵四边形ABCD 是矩形,∴CD ⊥BC ,又∵RQ ⊥BD ,∴RQ =RC ,在Rt △BCR 和Rt △BQR 中,RQ =RC BR =BR ,∴Rt △BCR ≌Rt △BQR HL ,∴BC =BQ =4,∴QD =BD -BQ =5-4=1,设RQ =RC =x ,则DR =CD -CR =3-x ,在Rt △DQR 中,由勾股定理得DR 2=DQ 2+RQ 2,即3-x 2=12+x 2,解得x =43,∴CR =43.∴BR =BC 2+CR 2=4310.∵S △BCR =12CR ⋅BC =12BR ⋅OC ,∴OC =CR ⋅BC BR =43×44310=2510.∵∠COR =∠CDN =90°,∠OCR =∠DCN ,∴△OCR ∽△DCN ,∴OC DC =CR CN ,即25103=43CN,解得CN =10.故选:A .【点睛】本题考查角平分线的作图方法,矩形的性质,角平分线的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等,涉及知识点较多,有一定难度,解题的关键是根据作图过程判断出BP 平分∠CBD ,通过勾股定理解直角三角形求出CR .7(2023·四川内江·统考中考真题)如图,在△ABC 中,点D 、E 为边AB 的三等分点,点F 、G 在边BC 上,AC ∥DG ∥EF ,点H 为AF 与DG 的交点.若AC =12,则DH 的长为()A.1B.32C.2D.3【答案】C 【分析】由三等分点的定义与平行线的性质得出BE =DE =AD ,BF =GF =CG ,AH =HF ,DH 是△AEF 的中位线,易证△BEF ∽△BAC ,得EF AC =BE AB,解得EF =4,则DH =12EF =2.【详解】解:∵D 、E 为边AB 的三等分点,EF ∥DG ∥AC ,∴BE =DE =AD ,BF =GF =CG ,AH =HF ,∴AB =3BE ,DH 是△AEF 的中位线,∴DH =12EF ,∵EF ∥AC ,∴∠BEF =∠BAC ,∠BFE =∠BCA ,∴△BEF ∽△BAC ,∴EF AC =BE AB,即EF 12=BE 3BE ,解得:EF =4,∴DH =12EF =12×4=2,故选:C .【点睛】本题考查了三等分点的定义、平行线的性质、相似三角形的判定与性质、三角形中位线定理等知识;熟练掌握相似三角形的判定与性质是解题的关键.8(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,O 为原点,OA =OB =35,点C 为平面内一动点,BC =32,连接AC ,点M 是线段AC 上的一点,且满足CM :MA =1:2.当线段OM 取最大值时,点M 的坐标是()A.35,65B.355,655C.65,125D.655,1255 【答案】D【分析】由题意可得点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,先证△OAM ∽△DAC ,得OM CD =OA AD =23,从而当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,然后分别证△BDO ∽△CDF ,△AEM ∽△AFC ,利用相似三角形的性质即可求解.【详解】解:∵点C 为平面内一动点,BC =32,∴点C 在以点B 为圆心,32为半径的OB 上,在x 轴的负半轴上取点D -352,0 ,连接BD ,分别过C 、M 作CF ⊥OA ,ME ⊥OA ,垂足为F 、E ,∵OA =OB =35,∴AD =OD +OA =952,∴OA AD=23,∵CM :MA =1:2,∴OA AD =23=CM AC,∵∠OAM =∠DAC ,∴△OAM ∽△DAC ,∴OM CD =OA AD=23,∴当CD 取得最大值时,OM 取得最大值,结合图形可知当D ,B ,C 三点共线,且点B 在线段DC 上时,CD 取得最大值,∵OA =OB =35,OD =352,∴BD =OB 2+OD 2=35 2+352 2=152,∴CD =BC +BD =9,∵OM CD=23,∴OM =6,∵y 轴⊥x 轴,CF ⊥OA ,∴∠DOB =∠DFC =90°,∵∠BDO =∠CDF ,∴△BDO ∽△CDF ,∴OB CF =BD CD 即35CF=1529,解得CF =1855,同理可得,△AEM ∽△AFC ,∴ME CF =AM AC =23即ME 1855=23,解得ME =1255,∴OE =OM 2-ME 2=62-1255 2=655,∴当线段OM 取最大值时,点M 的坐标是655,1255,故选:D .【点睛】本题主要考查了勾股定理、相似三角形的判定及性质、圆的一般概念以及坐标与图形,熟练掌握相似三角形的判定及性质是解题的关键.9(2023·山东东营·统考中考真题)如图,正方形ABCD 的边长为4,点E ,F 分别在边DC ,BC 上,且BF =CE ,AE 平分∠CAD ,连接DF ,分别交AE ,AC 于点G ,M ,P 是线段AG 上的一个动点,过点P 作PN ⊥AC 垂足为N ,连接PM ,有下列四个结论:①AE 垂直平分DM ;②PM +PN 的最小值为32;③CF 2=GE ⋅AE ;④S ΔADM =62.其中正确的是()A.①②B.②③④C.①③④D.①③【答案】D【分析】根据正方形的性质和三角形全等即可证明∠DAE =∠FDC ,通过等量转化即可求证AG ⊥DM ,利用角平分线的性质和公共边即可证明△ADG ≌△AMG ASA ,从而推出①的结论;利用①中的部分结果可证明△ADE ∽△DGE 推出DE 2=GE ⋅AE ,通过等量代换可推出③的结论;利用①中的部分结果和勾股定理推出AM 和CM 长度,最后通过面积法即可求证④的结论不对;结合①中的结论和③的结论可求出PM +PN 的最小值,从而证明②不对.【详解】解:∵ABCD 为正方形,∴BC =CD =AD ,∠ADE =∠DCF =90°,∵BF =CE ,∴DE =FC ,∴△ADE ≌△DCF SAS .∴∠DAE =∠FDC ,∵∠ADE =90°,∴∠ADG +∠FDC =90°,∴∠ADG +∠DAE =90°,∴∠AGD =∠AGM =90°.∵AE 平分∠CAD ,∴∠DAG =∠MAG .∵AG =AG ,∴△ADG ≌△AMG ASA .∴DG =GM ,∵∠AGD =∠AGM =90°,∴AE 垂直平分DM ,故①正确.由①可知,∠ADE =∠DGE =90°,∠DAE =∠GDE ,∴△ADE ∽△DGE ,∴DE GE=AE DE ,∴DE 2=GE ⋅AE ,由①可知DE =CF ,∴CF 2=GE ⋅AE .故③正确.∵ABCD 为正方形,且边长为4,∴AB =BC =AD =4,∴在Rt △ABC 中,AC =2AB =4 2.由①可知,△ADG ≌△AMG ASA ,∴AM =AD =4,∴CM =AC -AM =42-4.由图可知,△DMC 和△ADM 等高,设高为h ,∴S △ADM =S △ADC -S △DMC ,∴4×h 2=4×42-42-4 ⋅h 2,∴h =22,∴S △ADM =12⋅AM ⋅h =12×4×22=4 2.故④不正确.由①可知,△ADG ≌△AMG ASA ,∴DG =GM ,∴M 关于线段AG 的对称点为D ,过点D 作DN ⊥AC ,交AC 于N ,交AE 于P ,∴PM +PN 最小即为DN ,如图所示,由④可知△ADM 的高h =22即为图中的DN ,∴DN =2 2.故②不正确.综上所述,正确的是①③.故选:D .【点睛】本题考查的是正方形的综合题,涉及到三角形相似,最短路径,三角形全等,三角形面积法,解题的关键在于是否能正确找出最短路径以及运用相关知识点.10(2023·内蒙古赤峰·统考中考真题)如图,把一个边长为5的菱形ABCD 沿着直线DE 折叠,使点C 与AB 延长线上的点Q 重合.DE 交BC 于点F ,交AB 延长线于点E .DQ 交BC 于点P ,DM ⊥AB于点M ,AM =4,则下列结论,①DQ =EQ ,②BQ =3,③BP =158,④BD ∥FQ .正确的是()A.①②③B.②④C.①③④D.①②③④【答案】A【分析】由折叠性质和平行线的性质可得∠QDF =∠CDF =∠QEF ,根据等角对等边即可判断①正确;根据等腰三角形三线合一的性质求出MQ =AM =4,再求出BQ 即可判断②正确;由△CDP ∽△BQP 得CP BP =CD BQ=53,求出BP 即可判断③正确;根据EF DE ≠QE BE 即可判断④错误.【详解】由折叠性质可知:∠CDF =∠QDF ,CD =DQ =5,∵CD ∥AB ,∴∠CDF =∠QEF .∴∠QDF =∠QEF .∴DQ =EQ =5.故①正确;∵DQ =CD =AD =5,DM ⊥AB ,∴MQ =AM =4.∵MB =AB -AM =5-4=1,∴BQ =MQ -MB =4-1=3.故②正确;∵CD ∥AB ,∴△CDP ∽△BQP .∴CP BP =CD BQ=53.∵CP +BP =BC =5,∴BP =38BC =158.故③正确;∵CD ∥AB ,∴△CDF ∽△BEF .∴DF EF =CD BE =CD BQ +QE=53+5=58.∴EF DE =813.∵QE BE =58,∴EF DE ≠QE BE.∴△EFQ 与△EDB 不相似.∴∠EQF ≠∠EBD .∴BD 与FQ 不平行.故④错误;故选:A .【点睛】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11(2023·黑龙江·统考中考真题)如图,在正方形ABCD中,点E,F分别是AB,BC上的动点,且AF ⊥DE,垂足为G,将△ABF沿AF翻折,得到△AMF,AM交DE于点P,对角线BD交AF于点H,连接HM,CM,DM,BM,下列结论正确的是:①AF=DE;②BM∥DE;③若CM⊥FM,则四边形BHMF是菱形;④当点E运动到AB的中点,tan∠BHF=22;⑤EP⋅DH=2AG⋅BH.()A.①②③④⑤B.①②③⑤C.①②③D.①②⑤【答案】B【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解:∵四边形ABCD是正方形,∴∠DAE=∠ABF=90°,DA=AB,∵AF⊥DE,∴∠BAF+∠AED=90°,∵∠BAF+∠AFB=90°,∴∠AED=∠BFA,∴△ABF≌△AED AAS,∴AF=DE,故①正确,∵将△ABF沿AF翻折,得到△AMF,∴BM⊥AF,∵AF⊥DE,∴BM∥DE,故②正确,当CM⊥FM时,∠CMF=90°,∵∠AMF=∠ABF=90°,∴∠AMF+∠CMF=180°,即A,M,C在同一直线上,∴∠MCF=45°,∴∠MFC=90°-∠MCF=45°,通过翻折的性质可得∠HBF=∠HMF=45°,BF=MF,∴∠HMF=∠MFC,∠HBC=∠MFC,∴BC∥MH,HB∥MF,∴四边形BHMF是平行四边形,∵BF=MF,∴平行四边形BHMF是菱形,故③正确,当点E运动到AB的中点,如图,设正方形ABCD的边长为2a,则AE=BF=a,在Rt △AED 中,DE =AD 2+AE 2=5a =AF ,∵∠AHD =∠FHB ,∠ADH =∠FBH =45°,∴△AHD ∽△FHB ,∴FH AH =BF AD=a 2a =12,∴AH =23AF =253a ,∵∠AGE =∠ABF =90°,∴△AGF ∽△ABF ,∴AE AF =EG BF =AG AB =a 5a=55,∴EG =55BF =55a ,AG =55AB =255a ,∴DG =ED -EG =455a ,GH =AH -AG =4515a ,∵∠BHF =∠DHA ,在Rt △DGH 中,tan ∠BHF =tan ∠DHA =DG GH=3,故④错误,∵△AHD ∽△FHB ,∴BH DH=12,∴BH =13BD =13×22a =223a ,DH =23BD =23×22a =423a ,∵AF ⊥EP ,根据翻折的性质可得EP =2EG =255a ,∴EP ⋅DH =255a ⋅423a =81015a 2,2AG ⋅BH =2⋅255a ⋅223a =81015a 2,∴EP ⋅DH =2AG ⋅BH =81015a 2,故⑤正确;综上分析可知,正确的是①②③⑤.故选:B .【点睛】本题考查了正方形的性质,翻折的性质,相似三角形的判定和性质,正切的概念,熟练按照要求做出图形,利用寻找相似三角形是解题的关键.二、填空题12(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1位似,原点O 是位似中心,且AB A 1B 1=3.若A 9,3 ,则A 1点的坐标是.【答案】3,1【分析】直接利用位似图形的性质得出相似比进而得出对应线段的长.【详解】解∶设A1m,n∵△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A9,3,∴位似比为31,∴9 m =31,3n=31,解得m=3,n=1,∴A13,1故答案为:3,1.【点睛】此题主要考查了位似变换,正确得出相似比是解题关键.13(2023·吉林长春·统考中考真题)如图,△ABC和△A B C 是以点O为位似中心的位似图形,点A 在线段OA 上.若OA:AA =1:2,则△ABC和△A B C 的周长之比为.【答案】1:3【分析】根据位似图形的性质即可求出答案.【详解】解:∵OA:AA =1:2,∴OA:OA =1:3,设△ABC周长为l1,设△A B C 周长为l2,∵△ABC和△A B C 是以点O为位似中心的位似图形,∴l1l2=OAOA=13.∴l1:l2=1:3.∴△ABC和△A B C 的周长之比为1:3.故答案为:1:3.【点睛】本题考查了位似图形的性质,解题的关键在于熟练掌握位似图形性质.14(2023·四川乐山·统考中考真题)如图,在平行四边形ABCD中,E是线段AB上一点,连结AC、DE 交于点F .若AE EB =23,则S △ADF S △AEF =.【答案】52【分析】四边形ABCD 是平行四边形,则AB =CD ,AB ∥CD ,可证明△EAF ∽△DCF ,得到DF EF =CD AE =AB AE,由AE EB =23进一步即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠AEF =∠CDF ,∠EAF =∠DCF ,∴△EAF ∽△DCF ,∴DF EF =CD AE =AB AE ,∵AE EB =23,∴AB AE =52,∴S △ADF S △AEF =DF EF =AB AE=52.故答案为:52【点睛】此题考查了平行四边形的性质、相似三角形的判定和性质等知识,证明△EAF ∽△DCF 是解题的关键.15(2023·江西·统考中考真题)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC ).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度如图,点A ,B ,Q 在同一水平线上,∠ABC 和∠AQP 均为直角,AP 与BC 相交于点D .测得AB =40cm ,BD =20cm ,AQ =12m ,则树高PQ =m .【答案】6【分析】根据题意可得△ABD ∽△AQP ,然后相似三角形的性质,即可求解.【详解】解:∵∠ABC 和∠AQP 均为直角∴BD ∥PQ ,∴△ABD ∽△AQP ,∴BD PQ =AB AQ∵AB =40cm ,BD =20cm ,AQ =12m ,∴PQ =AQ ×BD AB=12×2040=6m ,故答案为:6.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键.16(2023·四川成都·统考中考真题)如图,在△ABC 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ;③以点M 为圆心,以MN 长为半径作弧,在∠BAC 内部交前面的弧于点N :④过点N 作射线DN 交BC 于点E .若△BDE 与四边形ACED 的面积比为4:21,则BE CE的值为.【答案】23【分析】根据作图可得∠BDE =∠A ,然后得出DE ∥AC ,可证明△BDE ∽△BAC ,进而根据相似三角形的性质即可求解.【详解】解:根据作图可得∠BDE =∠A ,∴DE ∥AC ,∴△BDE ∽△BAC ,∵△BDE 与四边形ACED 的面积比为4:21,∴S △BDC S △BAC =421+4=BE BC2∴BE BC =25∴BE CE =23,故答案为:23.【点睛】本题考查了作一个角等于已知角,相似三角形的性质与判定,熟练掌握基本作图与相似三角形的性质与判定是解题的关键.17(2023·内蒙古·统考中考真题)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =1,将△ABC 绕点A 逆时针方向旋转90°,得到△AB C .连接BB ,交AC 于点D ,则AD DC的值为.【答案】5【分析】过点D 作DF ⊥AB 于点F ,利用勾股定理求得AB =10,根据旋转的性质可证△ABB 、△DFB是等腰直角三角形,可得DF =BF ,再由S △ADB =12×BC ×AD =12×DF ×AB ,得AD =10DF ,证明△AFD ∼△ACB ,可得DF BC =AF AC ,即AF =3DF ,再由AF =10-DF ,求得DF =104,从而求得AD =52,CD =12,即可求解.【详解】解:过点D 作DF ⊥AB 于点F ,∵∠ACB =90°,AC =3,BC =1,∴AB =32+12=10,∵将△ABC 绕点A 逆时针方向旋转90°得到△AB C ,∴AB =AB =10,∠BAB =90°,∴△ABB 是等腰直角三角形,∴∠ABB =45°,又∵DF ⊥AB ,∴∠FDB =45°,∴△DFB 是等腰直角三角形,∴DF =BF ,∵S △ADB =12×BC ×AD =12×DF ×AB ,即AD =10DF ,∵∠C =∠AFD =90°,∠CAB =∠FAD ,∴△AFD ∼△ACB ,∴DF BC =AF AC,即AF =3DF ,又∵AF =10-DF ,∴DF =104,∴AD =10×104=52,CD =3-52=12,∴AD CD =5212=5,故答案为:5.【点睛】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且AN =AB =1.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为.【答案】2或2+1【分析】分两种情况:当∠MND =90°时和当∠NMD =90°时,分别进行讨论求解即可.【详解】解:当∠MND =90°时,∵四边形ABCD 矩形,∴∠A =90°,则MN ∥AB ,由平行线分线段成比例可得:AN ND =BM MD,又∵M 为对角线BD 的中点,∴BM =MD ,∴AN ND =BM MD=1,即:ND =AN =1,∴AD =AN +ND =2,当∠NMD =90°时,∵M 为对角线BD 的中点,∠NMD =90°∴MN 为BD 的垂直平分线,∴BN =ND ,∵四边形ABCD 矩形,AN =AB =1∴∠A =90°,则BN =AB 2+AN 2=2,∴BN =ND =2∴AD =AN +ND =2+1,综上,AD 的长为2或2+1,故答案为:2或2+1.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.19(2023·辽宁大连·统考中考真题)如图,在正方形ABCD 中,AB =3,延长BC 至E ,使CE =2,连接AE ,CF 平分∠DCE 交AE 于F ,连接DF ,则DF 的长为.【答案】3104【分析】如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,由CF 平分∠DCE ,可知∠FCM =∠FCN =45°,可得四边形CMFN 是正方形,FM ∥AB ,设FM =CM =NF =CN =a ,则ME =2-a ,证明△EFM ∽△EAB ,则FM AB=ME BE ,即a 3=2-a 3+2,解得a =34,DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2,计算求解即可.【详解】解:如图,过F 作FM ⊥BE 于M ,FN ⊥CD 于N ,则四边形CMFN 是矩形,FM ∥AB ,∵CF 平分∠DCE ,∴∠FCM =∠FCN =45°,∴CM =FM ,∴四边形CMFN 是正方形,设FM =CM =NF =CN =a ,则ME =2-a ,∵FM ∥AB ,∴△EFM ∽△EAB ,∴FM AB =ME BE ,即a 3=2-a 3+2,解得a =34,∴DN =CD -CN =94,由勾股定理得DF =DN 2+NF 2=3104,故答案为:3104.【点睛】本题考查了正方形的判定与性质,勾股定理,相似三角形的判定与性质.解题的关键在于对知识的熟练掌握与灵活运用.20(2023·广东·统考中考真题)边长分别为10,6,4的三个正方形拼接在一起,它们的底边在同一直线上(如图),则图中阴影部分的面积为.【答案】15【分析】根据正方形的性质及相似三角形的性质可进行求解.【详解】解:如图,由题意可知AD =DC =10,CG =CE =GF =6,∠CEF =∠EFG =90°,GH =4,∴CH =10=AD ,∵∠D =∠DCH =90°,∠AJD =∠HJC ,∴△ADJ ≌△HCJ AAS ,∴CJ =DJ =5,∴EJ =1,∵GI ∥CJ ,∴△HGI ∽△HCJ ,∴GI CJ =GH CH=25,∴GI =2,∴FI =4,∴S 梯形EJIF =12EJ +FI ⋅EF =15;故答案为:15.【点睛】本题主要考查正方形的性质及相似三角形的性质与判定,熟练掌握正方形的性质及相似三角形的性质与判定是解题的关键.21(2023·天津·统考中考真题)如图,在边长为3的正方形ABCD 的外侧,作等腰三角形ADE ,EA =ED =52.(1)△ADE 的面积为;(2)若F 为BE 的中点,连接AF 并延长,与CD 相交于点G ,则AG 的长为.【答案】3;13【分析】(1)过点E 作EH ⊥AD ,根据正方形和等腰三角形的性质,得到AH 的长,再利用勾股定理,求出EH 的长,即可得到△ADE 的面积;(2)延长EH 交AG 于点K ,利用正方形和平行线的性质,证明△ABF ≌△KEF ASA ,得到EK 的长,进而得到KH 的长,再证明△AHK ∽△ADG ,得到KH GD =AH AD ,进而求出GD 的长,最后利用勾股定理,即可求出AG的长.【详解】解:(1)过点E作EH⊥AD,∵正方形ABCD的边长为3,∴AD=3,∵△ADE是等腰三角形,EA=ED=52,EH⊥AD,∴AH=DH=12AD=32,在Rt△AHE中,EH=AE2-AH2=522-32 2=2,∴S△ADE=12AD⋅EH=12×3×2=3,故答案为:3;(2)延长EH交AG于点K,∵正方形ABCD的边长为3,∴∠BAD=∠ADC=90°,AB=3,∴AB⊥AD,CD⊥AD,∵EK⊥AD,∴AB∥EK∥CD,∴∠ABF=∠KEF,∵F为BE的中点,∴BF=EF,在△ABF和△KEF中,∠ABF=∠KEF BF=EF∠AFB=∠KFE,∴△ABF≌△KEF ASA,∴EK=AB=3,由(1)可知,AH=12AD,EH=2,∴KH=1,∵KH∥CD,∴△AHK∽△ADG,∴KH GD =AH AD,∴GD=2,在Rt△ADG中,AG=AD2+GD2=32+22=13,故答案为:13.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22(2023·四川泸州·统考中考真题)如图,E,F是正方形ABCD的边AB的三等分点,P是对角线AC上的动点,当PE+PF取得最小值时,APPC的值是.【答案】27【分析】作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,此时PE +PF 取得最小值,过点F 作AD 的垂线段,交AC 于点K ,根据题意可知点F 落在AD 上,设正方形的边长为a ,求得AK 的边长,证明△AEP ∽△KF P ,可得KP AP=2,即可解答.【详解】解:作点F 关于AC 的对称点F ,连接EF 交AC 于点P ,过点F 作AD 的垂线段,交AC 于点K ,由题意得:此时F 落在AD 上,且根据对称的性质,当P 点与P 重合时PE +PF 取得最小值,设正方形ABCD 的边长为a ,则AF =AF =23a ,∵四边形ABCD 是正方形,∴∠F AK =45°,∠P AE =45°,AC =2a∵F K ⊥AF ,∴∠F AK =∠F KA =45°,∴AK =223a ,∵∠F P K =∠EP A ,∴△E KP ∽△EAP ,∴F K AE =KP AP=2,∴AP =13AK =292a ,∴CP =AC -AP =792a , ∴AP CP=27,∴当PE +PF 取得最小值时,AP PC 的值是为27,故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键.23(2023·山西·统考中考真题)如图,在四边形ABCD 中,∠BCD =90°,对角线AC ,BD 相交于点O .若AB =AC =5,BC =6,∠ADB =2∠CBD ,则AD 的长为.【答案】973【分析】过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,根据等腰三角形性质得出BH =HC =12BC =3,根据勾股定理求出AH =AC 2-CH 2=4,证明∠CBD =∠CED ,得出DB =DE ,根据等腰三角形性质得出CE =BC =6,证明CD ∥AH ,得出CD AH=CE HE ,求出CD =83,根据勾股定理求出DE =CE 2+CD 2=62+83 2=2973,根据CD ∥AH ,得出DE AD =CE CH ,即2973AD=63,求出结果即可.【详解】解:过点A 作AH ⊥BC 于点H ,延长AD ,BC 交于点E ,如图所示:则∠AHC =∠AHB =90°,∵AB =AC =5,BC =6,∴BH =HC =12BC =3,∴AH =AC 2-CH 2=4,∵∠ADB =∠CBD +∠CED ,∠ADB =2∠CBD ,∴∠CBD =∠CED ,∴DB =DE ,∵∠BCD =90°,∴DC ⊥BE ,∴CE =BC =6,∴EH =CE +CH =9,∵DC ⊥BE ,AH ⊥BC ,∴CD ∥AH ,∴△ECD ~△EHA ,∴CD AH =CE HE ,即CD 4=69,解得:CD =83,∴DE =CE 2+CD 2=62+83 2=2973,∵CD ∥AH ,∴DE AD=CE CH ,即2973AD =63,解得:AD =973.故答案为:973.【点睛】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题24(2023·湖南·统考中考真题)在Rt △ABC 中,∠BAC =90°,AD 是斜边BC 上的高.(1)证明:△ABD ∽△CBA ;(2)若AB =6,BC =10,求BD 的长.【答案】(1)见解析(2)BD =185【分析】(1)根据三角形高的定义得出∠ADB =90°,根据等角的余角相等,得出∠BAD =∠C ,结合公共角∠B =∠B ,即可得证;(2)根据(1)的结论,利用相似三角形的性质即可求解.【详解】(1)证明:∵∠BAC =90°,AD 是斜边BC 上的高.∴∠ADB =90°,∠B +∠C =90°∴∠B +∠BAD =90°,∴∠BAD =∠C又∵∠B =∠B∴△ABD ∽△CBA ,(2)∵△ABD ∽△CBA∴AB CB =BD AB,又AB =6,BC =10∴BD =AB 2CB=3610=185.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.25(2023·湖南·统考中考真题)如图,CA ⊥AD ,ED ⊥AD ,点B 是线段AD 上的一点,且CB ⊥BE .已知AB =8,AC =6,DE =4.(1)证明:△ABC∽△DEB.(2)求线段BD的长.【答案】(1)见解析(2)BD=3【分析】(1)根据题意得出∠A=∠D=90°,∠C+∠ABC=90°,∠ABC+∠EBD=90°,则∠C=∠EBD,即可得证;(2)根据(1)的结论,利用相似三角形的性质列出比例式,代入数据即可求解.【详解】(1)证明:∵AC⊥AD,ED⊥AD,∴∠A=∠D=90°,∠C+∠ABC=90°,∵CE⊥BE,∴∠ABC+∠EBD=90°,∴∠C=∠EBD,∴△ABC∽△DEB;(2)∵△ABC∽△DEB,∴AB DE =AC BD,∵AB=8,AC=6,DE=4,∴8 4=6 BD,解得:BD=3.【点睛】本题考查了相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.26(2023·四川眉山·统考中考真题)如图,▱ABCD中,点E是AD的中点,连接CE并延长交BA的延长线于点F.(1)求证:AF=AB;(2)点G是线段AF上一点,满足∠FCG=∠FCD,CG交AD于点H,若AG=2,FG=6,求GH的长.【答案】(1)见解析(2)65【分析】(1)根据平行四边形的性质可得AB∥CD,AB=CD,证明△AEF≅△DEC ASA,推出AF= CD,即可解答;(2)通过平行四边形的性质证明GC=GF=6,再通过(1)中的结论得到DC=AB=AF=8,最后证明△AGH∽△DCH,利用对应线段比相等,列方程即可解答.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠EAF=∠D,∵E是AD的中点,∴AE=DE,∵∠AEF =∠CED ,∴△AEF ≅△DEC ASA ,∴AF =CD ,∴AF =AB ;(2)解:∵四边形ABCD 是平行四边形,∴DC =AB =AF =FG +GA =8,DC ∥FA ,∴∠DCF =∠F ,∠DCG =∠CGB ,∵∠FCG =∠FCD ,∴∠F =∠FCG ,∴GC =GF =6,∵∠DHC =∠AHG ,∴△AGH ∽△DCH ,∴GH CH =AG DC,设HG =x ,则CH =CG -GH =6-x ,可得方程x 6-x =28,解得x =65,即GH 的长为65.【点睛】本题考查了平行四边形的性质,等腰三角形的判定和性质,相似三角形的判定和性质,熟练运用上述性质证明三角形相似是解题的关键.27(2023·四川凉山·统考中考真题)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =10,AC =16,求OE 的长.【答案】(1)见详解(2)92【分析】(1)可证AB =CB ,从而可证四边形ABCD 是菱形,即可得证;(2)可求OB =6,再证△EBO ∽△BAO ,可得EO BO =BO AO,即可求解.【详解】(1)证明:∵∠CAB =∠ACB ,∴AB =CB ,∵四边形ABCD 是平行四边形,∴四边形ABCD 是菱形,∴AC ⊥BD .(2)解:∵四边形ABCD 是平行四边形,∴OA =12AC =8,∵AC ⊥BD ,BE ⊥AB ,∴∠AOB =∠BOE =∠ABE =90°,∴OB =AB 2-OB 2=102-82=6,∵∠EBO +∠BEO =90°,∠ABO +∠EBO =90°,∴∠BEO =∠ABO ,∴△EBO ∽△BAO ,∴EO BO =BO AO ,∴EO 6=68解得:OE =92.【点睛】本题考查了平行四边形的性质,菱形的判定及性质,勾股定理,三角形相似的判定及性质,掌握相关的判定方法及性质是解题的关键.28(2023·江苏扬州·统考中考真题)如图,点E 、F 、G 、H 分别是▱ABCD 各边的中点,连接AF 、CE 相交于点M ,连接AG 、CH 相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若▱AMCN 的面积为4,求▱ABCD 的面积.【答案】(1)见解析(2)12【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG ,四边形AFCH 均为平行四边形,进而得到:AM ∥CN ,AN ∥CM ,即可得证;(2)连接HG ,AC ,EF ,推出S △ANH S △ANC =HN CN=12,S △FMC S △AMC =12,进而得到S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,求出S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,再根据S ▱ABCD =2S ▱AFCH ,即可得解.【详解】(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,AB =CD ,AD =BC ,∵点E 、F 、G 、H 分别是▱ABCD 各边的中点,∴AE =12AB =12CD =CG ,AE ∥CG ,∴四边形AECG 为平行四边形,同理可得:四边形AFCH 为平行四边形,∴AM ∥CN ,AN ∥CM ,∴四边形AMCN 是平行四边形;(2)解:连接HG ,AC ,EF ,∵H ,G 为AD ,CD 的中点,∴HG ∥AC ,HG =12AC ,∴△HNG ∽△CNA ,∴HN CN =HG AC =12,∴S △ANH S △ANC =HN CN=12,同理可得:S △FMC S △AMC =12∴S △ANH +S △FMC =12S △ANC +S △AMC =12S ▱AMCN =2,∴S ▱AFCH =S △ANH +S △FMC +S ▱AMCN =2+4=6,∵AH =12AD ,∴S ▱ABCD =2S ▱AFCH =12.【点睛】本题考查平行四边形的判定和性质,三角形的中位线定理,相似三角形的判定和性质,熟练掌握平行四边形的性质,以及三角形的中位线定理,证明三角形相似,是解题的关键.29(2023·上海·统考中考真题)如图,在梯形ABCD 中AD ∥BC ,点F ,E 分别在线段BC ,AC 上,且∠FAC =∠ADE ,AC =AD(1)求证:DE =AF(2)若∠ABC =∠CDE ,求证:AF 2=BF ⋅CE【答案】见解析【分析】(1)先根据平行线的性质可得∠DAE =∠ACF ,再根据三角形的全等的判定可得△DAE ≅△ACF ,然后根据全等的三角形的性质即可得证;(2)先根据全等三角形的性质可得∠AFC =∠DEA ,从而可得∠AFB =∠CED ,再根据相似三角形的判定可得△ABF ∼△CDE ,然后根据相似三角形的性质即可得证.【详解】(1)证明:∵AD ∥BC ,∴∠DAE =∠ACF ,在△DAE和△ACF中,∠DAE=∠ACF AD=CA∠ADE=∠CAF,∴△DAE≅△ACF ASA,∴DE=AF.(2)证明:∵△DAE≅△ACF,∴∠AFC=∠DEA,∴180°-∠AFC=180°-∠DEA,即∠AFB=∠CED,在△ABF和△CDE中,∠AFB=∠CED ∠ABF=∠CDE,∴△ABF∼△CDE,∴AF CE =BF DE,由(1)已证:DE=AF,∴AF CE =BF AF,∴AF2=BF⋅CE.【点睛】本题考查了三角形全等的判定与性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.。
【详解版】九年级中考总复习(华师大版)精练精析:二十八、图形的相似1(25页,考点+分析+点评)

图形的变化——图形的相似1一.选择题(共9小题)1.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D.52.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A. B. C. D.3.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D.CD•AB=AC•BD5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P 所在的格点为()A.P1B.P2C.P3D.P46.如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C 为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A.1 B.2 C.3 D.47.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个8.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1 B.2 C.12﹣6 D.6﹣69.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()A.1:4 B.2:3 C.1:3 D.1:2二.填空题(共7小题)10 已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=_________.11.如图,点M是△ABC内﹣点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC的面积是_________.12.若,则=_________.13.已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是_________.14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为_________.15.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:_________.16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=_________.三.解答题(共8小题)17.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?18.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.19.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.20.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.22.如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.23.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM 交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.24.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP 交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.图形的变化——图形的相似参考答案与试题解析一.选择题(共9小题)1.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D. 5考点:比例的性质.专题:计算题.分析:根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.解答:解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.点评:本题考查了比例的性质,利用“设k法”分别表示出x、y、z可以使计算更加简便.2.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.考点:平行线分线段成比例.专题:几何图形问题.分析:根据平行线分线段成比例定理得出===2,即可得出答案.解答:解:∵DE∥BC,EF∥AB,AD=2BD,∴==2,==2,∴=,故选:A.点评:本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截得的对应线段成比例.3.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:考点:相似多边形的性质.专题:计算题.分析:根据相似多边形的面积的比等于相似比的平方解答.解答:解:∵两个相似多边形面积的比为1:5,∴它们的相似比为1:.故选:D.点评:本题考查了相似多边形的性质,熟记性质是解题的关键.4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D. CD•AB=AC•BD考点:相似三角形的判定;圆周角定理.专题:几何图形问题.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故B选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;D、∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误.故选:D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P 所在的格点为()A.P1B.P2C.P3D.P4考点:相似三角形的判定.专题:网格型.分析:由于∠BAC=∠PED=90°,而=,则当=时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABC∽△EPD,然后利用DE=4,所以EP=6,则易得点P落在P3处.解答:解:∵∠BAC=∠PED,而=,∴=时,△ABC∽△EPD,∵DE=4,∴EP=6,∴点P落在P3处.故选:C.点评:本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.6.如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C 为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A. 1 B.2 C.3 D. 4考点:相似三角形的判定;坐标与图形性质.分析:根据题意画出图形,根据相似三角形的判定定理即可得出结论.解答:解:如图①,∠OAB=∠BAC1,∠AOB=∠ABC1时,△AOB∽△ABC1.如图②,AO∥BC,BA⊥AC2,则∠ABC2=∠OAB,故△AOB∽△BAC2;如图③,AC3∥OB,∠ABC3=90°,则∠ABO=∠CAB,故△AOB∽△C3BA;如图④,∠AOB=∠BAC4=90°,∠ABO=∠ABC4,则△AOB∽△C4AB.故选D.点评:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.7.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个考点:相似三角形的判定;直角梯形.分析:由于∠PAD=∠PBC=90°,故要使△PAD与△PBC相似,分两种情况讨论:①△APD∽△BPC,②△APD∽△BCP,这两种情况都可以根据相似三角形对应边的比相等求出AP的长,即可得到P点的个数.解答:解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.∴满足条件的点P的个数是3个,故选:C.点评:本题主要考查了相似三角形的判定及性质,难度适中,进行分类讨论是解题的关键.8.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A. 1 B.2 C.12﹣6 D.6﹣6考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质.专题:几何图形问题.分析:首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AC,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选:D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()A.1:4 B.2:3 C.1:3 D.1:2考点:相似三角形的判定与性质;三角形中位线定理.专题:计算题.分析:根据三角形的中位线得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.解答:解:∵BE和CD是△ABC的中线,∴DE=BC,DE∥BC,∴=,△DOE∽△COB,∴=()2=()2=,故选:A.点评:本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.二.填空题(共7小题)10.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=2.考点:比例线段.分析:根据比例中项的定义可得b2=ac,从而易求b.解答:解:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.点评:本题考查了比例线段,解题的关键是理解比例中项的含义.11.如图,点M是△ABC内﹣点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC的面积是36.考点:相似三角形的判定与性质.分析:根据相似三角形的面积比是相似比的平方,先求出相似比.再根据平行四边形的性质及相似三角形的性质得到BC:DM=6:1,即S△ABC:S△FDM=36:1,从而得到△ABC 面积.解答:解:过M作BC的平行线交AB、AC于D、E,过M作AC的平行线交AB、BC于F、H,过M作AB的平行线交AC、BC于I、G,因为△1、△2、△3的面积比为1:4:9,所以他们对应边边长的比为1:2:3,又因为四边形BDMG与四边形CEMH为平行四边形,所以DM=BG,EM=CH,设DM为x,则ME=2x,GH=3x,所以BC=BG+GH+CH=DM+GH+ME=x+2x+3x=6x,所以BC:DM=6x:x=6:1,由面积比等于相似比的平方故可得出:S△ABC:S△FDM=36:1,所以S△ABC=36×S△FDM=36×1=36.故答案为:36.点评:本题考查了平行线的性质,平行四边形的性质及相似三角形的性质.熟悉相似三角形的性质:相似三角形的面积比是相似比的平方.12.若,则=.考点:比例的性质.分析:先用b表示出a,然后代入比例式进行计算即可得解.解答:解:∵ =,∴a=,∴=.故答案为:.点评:本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是12.考点:相似三角形的性质.专题:计算题.分析:根据相似的性质得=,即=,然后利用比例的性质计算即可.解答:解:∵△ABC∽△DEF,∴=,即=,∴△DEF的周长=12.故答案为:12.点评:本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为y=2x.考点:相似三角形的性质;反比例函数图象上点的坐标特征.专题:数形结合.分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出点B的坐标,再根据点B在反比例函数图象上表示出a、k的关系,然后用a表示出点B的坐标,再利用待定系数法求一次函数解析式解答.解答:解:设OC=a,∵点D在y=上,∴CD=,∵△OCD∽△ACO,∴=,∴AC==,∴点A(a,),∵点B是OA的中点,∴点B的坐标为(,),∵点B在反比例函数图象上,∴=,∴=2k2,∴a4=4k2,解得,a2=2k,∴点B的坐标为(,a),设直线OA的解析式为y=mx,则m•=a,解得m=2,所以,直线OA的解析式为y=2x.故答案为:y=2x.点评:本题考查了相似三角形的性质,反比例函数图象上点的坐标特征,用OC的长度表示出点B的坐标是解题的关键,也是本题的难点.15.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:△ABP∽△AED(答案不唯一).考点:相似三角形的判定;平行四边形的性质.专题:开放型.分析:可利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似判断△ABP∽△AED.解答:解:∵BP∥DF,∴△ABP∽△AED.故答案为:△ABP∽△AED(答案不唯一).点评:本题考查了相似三角形的判定与性质:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则=考点:相似三角形的判定与性质.分析:根据相似三角形的判定与性质,可得答案.解答:解:∵DE∥BC,∴△ADE∽△ABC.∵S△ADE=S四边形BCDE,∴,∴,故答案为:.点评:本题考查了相似三角形的判定与性质,平行于三角形一边截三角形另外两边所得的三角形与原三角形相似,相似三角形面积的比等于相似比的平方.三.解答题(共8小题)17.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?考点:相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.专题:压轴题;动点型.分析:(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.解答:解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得,所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10,所以AP=t,AQ=10﹣2t,①当∠APQ=∠AOB时,△APQ∽△AOB.所以=,解得t=(秒),②当∠AQP=∠AOB时,△AQP∽△AOB.所以=,解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==,在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,S△APQ=AP•QE=t•(8﹣t),=﹣t2+4t=,解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△APQ的面积为个平方单位点评:此题主要考查相似三角形的判定与性质,待定系数法求一次函数值,解直角三角形等知识点,有一定的拔高难度,属于难题.18.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.考点:相似形综合题;等腰三角形的性质;勾股定理;矩形的性质;锐角三角函数的定义.专题:综合题.分析:(1)易证△ABM∽△APB,然后根据相似三角形的性质就可得到y关于x 的函数解析式,由P是边AD上的一动点可得0≤x≤5,再由y>0就可求出该函数的定义域;(2)过点M作MH⊥BP于H,由AP=x=4可求出MP、AM、BM、BP,然后根据面积法可求出MH,从而可求出BH,就可求出∠EBP的正切值;(3)可分EB=EC和CB=CE两种情况讨论:①当EB=EC时,可证到△AMB≌△DPC,则有AM=DP,从而有x﹣y=5﹣x,即y=2x﹣5,代入(1)中函数解析式就可求出x的值;②当CB=CE时,可得到PC=EC﹣EP=BC﹣MP=5﹣y,在Rt△DPC中根据勾股定理可得到x与y的关系,然后结合y关于x的函数解析式,就可求出x的值.解答:解:(1)∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,∴∠APB=∠PBC.∵∠ABE=∠CBP,∴∠ABM=∠APB.又∵∠A=∠A,∴△ABM∽△APB,∴=,∴=,∴y=x﹣.∵P是边AD上的一动点,∴0≤x≤5.∵y>0,∴x﹣>0,∴x>2,∴函数的定义域为2<x≤5;(2)过点M作MH⊥BP于H,如图.∵AP=x=4,∴y=x﹣=3,∴MP=3,AM=1,∴BM==,BP==2.∵S△BMP=MP•AB=BP•MH,∴MH==,∴BH==,∴tan∠EBP==;(3)①若EB=EC,则有∠EBC=∠ECB.∵AD∥BC,∴∠AMB=∠EBC,∠DPC=∠ECB,∴∠AMB=∠DPC.在△AMB和△DPC中,,∴△AMB≌△DPC,∴AM=DP,∴x﹣y=5﹣x,∴y=2x﹣5,∴x﹣=2x﹣5,解得:x1=1,x2=4.∵2<x≤5,∴AP=x=4;②若CE=CB,则∠EBC=∠E.∵AD∥BC,∴∠EMP=∠EBC=∠E,∴PE=PM=y,∴PC=EC﹣EP=5﹣y,∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,∴(10﹣x﹣y)(x﹣y)=4,∴(10﹣x﹣x+)(x﹣x+)=4,整理得:3x2﹣10x﹣4=0,解得:x3=,x4=(舍负).∴AP=x=.终上所述:AP的值为4或.点评:本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、勾股定理、解一元二次方程、三角函数等知识,证到△ABM∽△APB是解决第(1)小题的关键,把∠EBP放到直角三角形中是解决第(2)小题的关键,运用勾股定理建立x 与y的等量关系是解决第(3)小题的关键.19.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.考点:相似多边形的性质;全等三角形的判定与性质;勾股定理;菱形的性质.专题:几何综合题.分析:(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到BP=AB=1,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.解答:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.点评:本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.20.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.专题:证明题;压轴题;动点型.分析:(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的长度,再用平行线分线段成比例定理或者三角形相似定理求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;解答:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P 经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径为:.所以,点P经过的路径长为或3.点评:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.考点:相似三角形的判定与性质;全等三角形的判定与性质.分析:(1)由平行线的性质可得:∠A=∠FCE,再根据对顶角相等以及全等三角形的判定方法即可证明:△ADE≌△CFE;(2)由AB∥FC,可证明△GBD∽△GCF,根据给出的已知数据可求出CF的长,即AD 的长,进而可求出AB的长.解答:(1)证明:∵AB∥FC,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS);(2)解:∵AB∥FC,∴△GBD∽△GCF,∴GB:GC=BD:CF,∵GB=2,BC=4,BD=1,∴2:6=1:CF,∴CF=3,∵AD=CF,∴AB=AD+BD=4.点评:本题考查了全等三角形的判定和性质、相似三角形的判定和性质以及平行线的性质,题目的设计很好,难度一般.22.如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE,∠DPE=90°,又由正方形ABCD的边长为1,易证得△ADP≌△QPE,然后由全等三角形的性质,求得线段PQ的长;(2)易证得△DAP∽△PBF,又由△PFD∽△BFP,根据相似三角形的对应边成比例,可得证得PA=PB,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠DPE=90°,∴∠APD+∠QPE=90°,∵四边形ABCD是正方形,∴∠A=90°,∴∠ADP+∠APD=90°,∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,在△ADP和△QPE中,,∴△ADP≌△QPE(AAS),∴PQ=AD=1;(2)∵△PFD∽△BFP,∴,∵∠ADP=∠EPB,∠CBP=∠A,∴△DAP∽△PBF,∴,∴=,∴PA=PB,∴PA=AB=∴当PA=时,△PFD∽△BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.23.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM 交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.考点:相似三角形的判定与性质;平行四边形的性质.专题:几何综合题.分析:(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB 相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到S△ABD=S△BCD=S△BCN+S△CND,最后由S四边形ABNM=S△ABD﹣S△MND求解.解答:解:(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND∽△CNB,且相似比为1:2,∴MN:CN=DN:BN=1:2,∴S△MND=S△CND=1,S△BNC=2S△CND=4.∴S△ABD=S△BCD=S△BCN+S△CND=4+2=6∴S四边形ABNM=S△ABD﹣S△MND=6﹣1=5.点评:此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP 交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt△BDO中,利用勾股定理列式求解即可.解答:(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,∴∠AOD=∠PAE,在△AOD和△PAE中,,∴△AOD≌△PAE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.点评:本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.。
中考数学复习 图形的相似 专项复习练习题 含答案与部分解析

中考数学复习 图形的相似 专项复习练习1. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 的反向延长线上,下面的比例式中,不能判断ED∥BC 的是( )A .BA BD =CA CEB .EA EC =DA DB C .ED BC =EA AC D .EA AD =AC AB 2. 矩形的两边长分别为a ,b ,下列数据能构成黄金矩形的是( ) A .a =4,b =5+2 B .a =4,b =5-1 C .a =2,b =5+2 D .a =2,b =5-1 3. 已知2x =3y(y≠0),则下面结论成立的是( ) A.x y =32 B.x 3=2y C.x y =23 D.x 2=y 34. 如图,在△ABC 中,点D 是AB 边上的一点,若∠ACD =∠B ,AD =1,AC =2,△ADC 的面积为1,则△BCD 的面积为( )A .1B .2C .3D .45. 已知△ABC 与△A 1B 1C 1相似,且相似比为1∶3,则△ABC 与△A 1B 1C 1的面积比为( )A .1∶1B .1∶3C .1∶6D .1∶96. 如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA∶OA′=2∶3,则四边形ABCD 与四边形A′B′C′D′的面积比为( )A .4∶9B .2∶5C .2∶3 D.2∶ 37. 如图,利用标杆BE 测量建筑物的高度.已知标杆BE 高1.2 m ,测得AB =1.6 m ,BC =12.4 m ,则建筑物CD 的高是( )A .9.3 mB .10.5 mC .12.4 mD .14 m 8. 若a b =23,则a +b b= .9.如图,直线l 1∥l 2∥l 3,直线AC 交l 1,l 2,l 3于点A ,B ,C ;直线DF 交l 1,l 2,l 3于点D ,E ,F ,已知AB AC =13,则EFDE= .10. 如图,已知△ABC 和△DEC 的面积相等,点E 在BC 边上,DE ∥AB 交AC 于点F ,AB =12,EF =9,则DF 的长是 .11. 如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连结BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①AF FD =12;②S △BCE =36;③S △ABE =12;④△AEF∽△ACD,其中一定正确的是12. 如图,已知直线a∥b∥c,直线m 分别交直线a ,b ,c 于点A ,B ,C ;直线n 分别交直线a ,b ,c 于点D ,E ,F.若AB BC =12,则DEEF=13. 如图,直线a∥b∥c,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.若AB∶BC=1∶2,DE=3,则EF的长为_______.14. 如图,△ABC是⊙O的内接三角形,AD⊥BC于点D,AB=8,AD=5,AC=6,则⊙O的半径长是__________.15. 如图,△ABO 三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到△A ′B ′O ,已知点B′的坐标是(3,0),则点A′的坐标是____________.16. 如图,在△ABC 中,点D ,E 分别在AB ,AC 上,∠AED =∠B,射线AG 分别交线段DE ,BC 于点F ,G ,且AD AC =DFCG.(1)求证:△ADF∽△ACG; (2)若AD AC =12,求AFFG 的值.17. 如图,△ABC 中,D ,E 分别为AB ,BC 上的点,AE ,CD 相交于点O.AD DB =23,BE EC =54,求AO OE 和DOOC的值.18. 如图,在Rt△ABC与Rt△ADC中,∠ACB=∠ADC=90°,AC=6,AD =2,问:当AB的长为多少时,这两个直角三角形相似?19. 如图,M,N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞,工程人员为计算工程量,必须计算M,N两点之间的直线距离,选择测量点A,B,C,点B,C分别在AM,AN上,现测得AM=1 km,AN=1.8 km,AB=54 m,BC=45 m,AC= 30 m,求M,N两点之间的直线距离.20. 如图,▱ABCD的对角线相交于点O,点E在BC边的延长线上,且OE=OB,连结DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD·CE=CD·DE.答案与解析: 1. C 2. D 3. A 4. C 5. D 6. A 7. B 8. 539. 210. 7 解析: ∵DE∥AB,∴△CFE ∽△CAB ,∴S △CFE S △CAB =⎝ ⎛⎭⎪⎫EF AB 2=⎝ ⎛⎭⎪⎫9122=916.∵△ABC 和△DEC 的面积相等,∴S △CFE S △CDE =916. 又△CFE,△CDE 在DE 边上的高相同,结合三角形的面积公式,得EF DE =916.∵EF=9,∴DE =16,从而DF =DE -EF =16-9=7. 11. ①②③ 12. 1213. 6 14. 4.8 15. (1,2)16. (1)证明:∵∠AED=∠B,∠DAE =∠CAB ,∴∠ADF =∠C . 又∵AD AC =DFCG,∴△ADF ∽△ACG.(2)解:∵△ADF∽△ACG,∴AD AC =AF AG =12,∴AFFG=1解析:(1)先利用∠AED=∠B 和公共角相等,由内角和可得∠ADF=∠C,再利用“两边对应成比例且夹角相等的两个三角形相似”,即可证得△ADF∽△ACG; (2)利用上面证明的△ADF∽△ACG,得到对应边成比例,于是AD AC =AF AG =12,从而有AFFG=1. 17. 解:过点E 作EG ∥CD 交AB 于点G ,则△BEG ∽△BCD ,∴BG GD =BE EC =54,∴BG +GD GD =5+44,即BD GD =94.∴AD GD =23DBGD =23×94=32.又∵△ADO ∽△AGE ,∴AO OE=ADDG=32.∴DOGE=ADAG=35,GEDC=BEBC=59,∴DOGE×GEDC=35×59=13,即DODC=13.∴DOOC=12.18. 解:在Rt△ADC中,∵AC=6,AD=2,∴CD=AC2-AD2= 2.要使这两个三角形相似,有ACAD=ABAC或ACCD=ABAC.∴AB=AC2AD=(6)22=3,或AB=AC2CD=(6)22=3 2.故当AB的长为3或32时,这两个直角三角形相似.19. 解:连结MN,1 km=1 000 m,1.8 km=1 800 m,∵ACAM=301 000=3100,ABAN=541 800=3100,∴ACAM=ABAN.又∠BAC=∠NAM,∴△BAC∽△NAM,∴BCMN=3100,即45MN=3100.∴MN=1 500,∴M ,N 两点之间的直线距离为1 500 m.解析:先根据相似三角形的判定得出△ABC 与△ANM 相似,再利用相似三角形的性质解答即可.20. (1) 证明:∵OB=OE ,∴∠OEB =∠OBE.∵四边形ABCD 是平行四边形,∴OB =OD .∴OD=OE ,∴∠OED =∠ODE.在△BED 中,∠OEB +∠OBE+∠ODE+∠OED=180°,∴2(∠OEB+∠OED)=180°,∴∠OEB +∠OED=90°,即∠BED=90°,∴DE ⊥BE.(2) 证明:如图,设OE 交CD 于点H. ∵OE⊥CD,∴∠CHE =90°,∴∠CEH +∠HCE =90°.∵∠CED =90°,∴∠CDE +∠DCE=90°,∴∠CDE =∠CEH.∵∠OEB=∠OBE,∴∠OBE =∠CDE.在△CED 与△DEB 中,∵⎩⎪⎨⎪⎧∠CED=∠DEB,∠CDE =∠DBE,∴△CED ∽△DEB .∴CE DE =CD DB,∴BD ·CE =CD·DE.。
2016年中考第一轮复习第22讲《图形的相似》专题训练含答案

第22讲图形的相似考纲要求命题趋势1.了解比例线段的有关概念及其性质,并会用比例的性质解决简单的问题.2.了解相似多边形、相似比和相似三角形的概念,掌握其性质和判定并会运用图形的相似解决一些简单的实际问题.3.了解位似变换和位似图形的概念,掌握并运用其性质.相似多边形的性质是中考考查的热点,其中以相似多边形的相似比、面积比、周长比的关系考查较多.相似三角形的判定、性质及应用是考查的重点,常与方程、圆、四边形、三角函数等相结合,进行有关计算或证明.知识梳理一、比例线段1.比例线段的定义在四条线段a,b,c,d中,如果其中两条线段的比等于另外两条线段的比,即__________________,那么这四条线段a,b,c,d叫做成比例线段,简称__________.2.比例线段的基本性质a b=cd⇔ad=bc.3.黄金分割把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的__________,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点.⎝⎛AC=5-12AB≈0.618AB,BC=⎭⎫3-52AB二、相似多边形1.定义对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做________,相似比为1的两个多边形全等.2.性质(1)相似多边形的对应角________,对应边成________;(2)相似多边形周长的比等于________;(3)相似多边形面积的比等于__________.三、相似三角形1.定义各角对应________,各边对应成________的两个三角形叫做相似三角形.2.判定(1)平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与________相似;(2)两角对应________,两三角形相似;(3)两边对应成________且夹角________,两三角形相似;(4)三边对应成________,两三角形相似;(5)斜边和一条直角边对应成比例,两直角三角形相似.3.性质(1)相似三角形的对应角________,对应边成________;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于________;(3)相似三角形周长的比等于________;(4)相似三角形面积的比等于____________.四、位似变换与位似图形1.定义取定一点O,把图形上任意一点P对应到射线OP(或它的反向延长线)上一点P′,使得线段OP ′与OP 的______等于常数k (k >0),点O 对应到它自身,这种变换叫做位似变换,点O 叫做________,常数k 叫做________,一个图形经过位似变换得到的图形叫做与原图形位似的图形.2.性质两个位似的图形上每一对对应点都与位似中心在一条直线上,并且新图形与原图形上对应点到位似中心的距离之比等于________.3.画位似图形的步骤 (1)确定位似________;(2)连接图形各顶点与位似中心的线段(或延长线); (3)按位似比进行取点;(4)顺次连接各点,所得的图形就是所求图形. 自主测试1.若相似△ABC 与△DEF 的相似比为1:3,则△ABC 与△DEF 的面积比为( ) A .1:3 B .1:9 C .3:1 D .1: 32.如图,点F 是ABCD 的边CD 上一点,直线BF 交AD 的延长线于点E ,则下列结论错误的是( )A .ED EA =DF AB B .DE BC =EF FBC .BC DE =BF BED .BF BE =BC AE3.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A ′B ′C ′D ′E ′,已知OA =10 cm ,O A ′=20cm ,则五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长的比值是__________.4.如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F .求证:(1)△ACB ∽△DCE ; (2)EF ⊥AB .考点一、相似图形的性质 【例1】如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A .2 cm 2B .4 cm 2C .8 cm 2D .16 cm 2解析:根据相似多边形面积的比等于相似比的平方,得S 阴影S 原矩形=⎝⎛⎭⎫482,S 阴影4×8=14,S 阴影=8 cm 2.答案:C方法总结 相似多边形的性质:对应边成比例,对应角相等,周长的比等于相似比,面积的比等于相似比的平方,利用相似多边形的性质可求多边形的边长、角、周长或面积.触类旁通1 如图所示的两个四边形相似,则∠α的度数是( )A .87°B .60°C .75°D .120°考点二、相似三角形的性质与判定【例2】如图,在ABCD 中,E ,F 分别是AD ,CD 边上的点,连接BE ,AF ,它们相交于点G ,延长BE 交CD 的延长线于点H ,则图中相似三角形共有( )A .2对B .3对C .4对D .5对解析:依据题中的条件,平行四边形的对边平行,由AD ∥BC ,可得△HED ∽△HBC ,由AB ∥CD ,可得△HED ∽△BEA ,△HFG ∽△BAG .根据相似的传递性,可得△HBC ∽△BEA ,一共有四对相似三角形.答案:C方法总结 判定两个三角形是否相似首先看是否存在平行线或能否作出相关的平行线,再看是否存在两组对应角相等,若只有一对对应角相等,再看夹这个角的两边是否成比例;若无内角相等,就考虑三组对应边是否成比例.触类旁通 2 已知如图(1),(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB ,CD 交于O 点,对于各图中的两个三角形而言,下列说法正确的是( )A .都相似B .都不相似C .只有(1)相似D .只有(2)相似 考点三、位似图形【例3】如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(3,2) B.(-2,-3)C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)解析:分两种情况计算,即矩形OABC和矩形OA′B′C′在原点的同侧和两侧.答案:D方法总结位似图形一定是相似图形,但相似图形不一定是位似图形,利用位似的方法,可以把一个多边形放大或缩小.位似图形所有对应点的连线相交于位似中心.触类旁通3 如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.-12a B.-12(a+1)C.-12(a-1) D.-12(a+3)考点四、相似三角形的应用【例4】问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中的一些物体进行了测量,下面是他们通过测量得到的一些信息:甲组:如图(1),测得一根直立于平地,长为80 cm的竹竿的影长为60 cm.乙组:如图(2),测得学校旗杆的影长为900 cm.丙组:如图(3),测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200 cm,影长为156 cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图(3),设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(提示:如图(3),景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)解:(1)如题图,△ABC∽△DEF,∴ABDE=AC DF.∵AB=80 cm,AC=60 cm,DF=900 cm,∴80DE=60 900.∴DE=1 200 cm,即DE=12 m.故学校旗杆的高度是12 m.(2)如题图(3),连接OM,设⊙O的半径为r cm.与(1)类似得ABGN=ACGH,即80GN=60156.∴GN=208 cm.在Rt△NGH中,根据勾股定理得NH2=1562+2082=2602,∴NH=260 cm. ∵NH切⊙O于M,∴OM⊥NH.则∠OMN=∠HGN=90°.又∠ONM=∠HNG,∴△OMN∽△HGN.∴OMHG=ONHN.又∵ON=OI+IN=OI+(GN-GI)=r+8,∴r156=r+8260,解得r=12.∴景灯灯罩的半径是12 cm.方法总结 应用相似三角形解决实际问题,首先要建立数学模型,把实际问题转化为数学问题,然后利用相似三角形对应边成比例或相似三角形的性质建立等量关系求解.触类旁通4 一个铝质三角形框架三条边长分别为24 cm,30 cm,36 cm ,要做一个与它相似的铝质三角形框架,现有长为27 cm,45 cm 的两根铝材,要求以其中的一根为一边,从另一根上截下两段(允许有余料)作为另外两边.截法有( )A .0种B .1种C .2种D .3种1.(2012贵州铜仁)如图,六边形ABCDEF ∽六边形GHIJKL ,相似比为2:1,则下列结论正确的是( )A .∠E =2∠KB .BC =2HIC .六边形ABCDEF 的周长=六边形GHIJKL 的周长D .S 六边形ABCDEF =2S 六边形GHIJKL2.(2012山东聊城)如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论不正确的是( )A .BC =2DEB .△ADE ∽△ABCC .AD AE =ABACD .S △ABC =3S △ADE3.(2012山东泰安)如图,AB ∥CD ,E ,F 分别为AC ,BD 的中点,若AB =5,CD =3,则EF 的长是( )A .4B .3C .2D .14.(2012重庆)已知,△ABC ∽△DEF ,△ABC 的周长为3,△DEF 的周长为1,则△ABC 与△DEF 的面积之比为__________.5.(2012湖南娄底)如图,在一场羽毛球比赛中,站在场内M 处的运动员林丹把球从N 点击到了对方内的B 点,已知网高OA =1.52米,OB =4米,OM =5米,则林丹起跳后击球点N 离地面的距离NM =__________米.6.(2012湖南张家界)已知△ABC与△DEF相似且面积比为4:25,则△ABC与△DEF的相似比为__________.1.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()2.如图,边长为4的等边△ABC中,DE为中位线,则四边形BCED的面积为()A.2 3 B.3 3C.4 3 D.6 33.已知△ABC与△DEF相似且对应中线的比为2:3,则△ABC与△DEF的周长比为__________.4.如图,在△ABC中,DE∥AB,CD:DA=2:3,DE=4,则AB的长为__________.(第4题图)5.如图,为了测量某棵树的高度,小明用长为2 m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距6 m,与树相距15 m,则树的高度为__________ m.(第5题图)6.如图所示,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是__________.7.如图,∠1=∠2,添加一个条件使得△ADE ∽△ACB __________.8.如图,在矩形ABCD 中,AB =6,AD =12,点E 在AD 边上且AE =8,EF ⊥BE 交CD 于点F .(1)求证:△ABE ∽△DEF . (2)求EF 的长.参考答案导学必备知识 自主测试1.B 2.C 3.1:24.证明:(1)∵AC DC =32,BC CE =64=32,∴AC DC =BCCE.又∠ACB =∠DCE =90°,∴△ACB ∽△DCE . (2)∵△ACB ∽△DCE ,∴∠ABC =∠DEC . 又∠ABC +∠A =90°,∴∠DEC +∠A =90°. ∴∠EFA =90°,∴EF ⊥AB . 探究考点方法 触类旁通1.A 触类旁通2.A 触类旁通3.D触类旁通4.B (1)假设以27 cm 为一边,把45 cm 截成两段,设这两段分别为x cm ,ycm(x <y ).则可得:24x =30y =3627①或24x =3027=36y②(注:27 cm 不可能是最小边),由①解得x =18,y =22.5,符合题意;由②解得x =1085,y =1625,x +y =1085+1625=2705=54>45,不合题意,舍去.(2)假设以45 cm 为一边,把27 cm 截成两段,设这两段分别为x cm ,y cm(x <y ).则可得:24x =30y =3645(注:只能是45是最大边),解得x =30,y =752,x +y =30+37.5=67.5>27,不合题意,舍去.综合以上可知,截法只有一种.品鉴经典考题1.B ∵六边形ABCDEF ∽六边形GHIJKL , ∴∠E =∠K ,故A 错误;∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴BC=2HI,故B正确;∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴六边形ABCDEF的周长=六边形GHI JKL的周长×2,故C错误;∵六边形ABCDEF∽六边形GHIJKL,相似比为2:1,∴S六边形ABCDEF=4S六边形GHIJKL,故D错误.故选B.2.D∵在△ABC中,点D,E分别是边AB,AC的中点,∴DE∥BC,BC=2DE,故A正确;∵DE∥BC,∴△ADE∽△ABC,故B正确;∵△ADE∽△ABC,∴ADAE=ABAC,故C正确;∵DE是△ABC的中位线,∴AD:AB=1:2,又∵△ADE∽△ABC,∴S△ABC=4S△ADE,故D错误.3.D连接DE并延长交AB于H.∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE.∵E是AC中点,∴EC=AE,∴△DCE≌△HAE,∴DE=HE,DC=AH.∵F是BD中点,∴EF是△DHB的中位线,∴EF=12BH.∵BH=AB-AH=AB-DC=2,∴EF=1.故选D.4.9:1∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,∴三角形的相似比是3:1,∴△ABC与△DEF的面积之比为9:1.5.3.42根据题意得AO⊥BM,NM⊥BM,∴AO∥NM,∴△ABO∽△NBM,∴OANM=OBBM.∵OA=1.52米,OB=4米,OM=5米,∴BM=OB+OM=4+5=9(米),∴1.52NM=49,解得NM=3.42(米),∴林丹起跳后击球点N离地面的距离NM为3.42米.故答案为3.42.6.2:5研习预测试题1.A2.B3.2:34.105.76.(1,0)或(-5,-2) 7.略.8.(1)证明:如图,∵EF⊥BE,∴∠EFB=90°,∴∠1+∠2=90°.在矩形ABCD中,∠A=90°,∠D=90°,∴∠2+∠3=90°,∴∠1=∠3. ∵∠A=∠D=90°,∴△ABE∽△DEF.(2)解:在△ABE中,∠A=90°,AB=6,AE=8,∴BE=AB2+AE2=62+82=10.又∵DE=AD-AE=12-8=4,由(1)得△ABE∽△DEF.∴BEEF=ABDE.∴EF=BE·DEAB=10×46=203.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的变化——图形的相似1一.选择题(共9小题)1.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D.52.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A. B. C. D.3.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D.CD•AB=AC•BD5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P46.如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A.1 B.2 C.3 D.47.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个8.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A.1 B.2 C.12﹣6 D.6﹣69.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()A.1:4 B.2:3 C.1:3 D.1:2二.填空题(共7小题)10 已知线段b是线段a、c的比例中项,且a=1,c=4,那么b= _________ .11.如图,点M是△ABC内﹣点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC的面积是_________ .12.若,则= _________ .13.已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是_________ .14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为_________ .15.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:_________ .16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则= _________ .三.解答题(共8小题)17.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?18.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.19.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.20.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.22.如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.23.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.24.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.图形的变化——图形的相似参考答案与试题解析一.选择题(共9小题)1.若x:y=1:3,2y=3z,则的值是()A.﹣5 B.﹣C.D.5考点:比例的性质.专题:计算题.分析:根据比例设x=k,y=3k,再用k表示出z,然后代入比例式进行计算即可得解.解答:解:∵x:y=1:3,∴设x=k,y=3k,∵2y=3z,∴z=2k,∴==﹣5.故选:A.点评:本题考查了比例的性质,利用“设k法”分别表示出x、y、z可以使计算更加简便.2.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.考点:平行线分线段成比例.专题:几何图形问题.分析:根据平行线分线段成比例定理得出===2,即可得出答案.解答:解:∵DE∥BC,EF∥AB,AD=2BD,∴==2,==2,∴=,故选:A.点评:本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截得的对应线段成比例.3.如果两个相似多边形面积的比为1:5,则它们的相似比为()A.1:25 B.1:5 C.1:2.5 D.1:考点:相似多边形的性质.专题:计算题.分析:根据相似多边形的面积的比等于相似比的平方解答.解答:解:∵两个相似多边形面积的比为1:5,∴它们的相似比为1:.故选:D.点评:本题考查了相似多边形的性质,熟记性质是解题的关键.4.如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.下列添加的条件其中错误的是()A.∠ACD=∠DAB B.AD=DE C.AD2=BD•CD D.C D•AB=AC•BD考点:相似三角形的判定;圆周角定理.专题:几何图形问题.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故A选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故B选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C选项正确;D、∵CD•AB=AC•BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是对应夹角,故D选项错误.故选:D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.5.如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P4考点:相似三角形的判定.专题:网格型.分析:由于∠BAC=∠PED=90°,而=,则当=时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABC∽△EPD,然后利用DE=4,所以EP=6,则易得点P落在P3处.解答:解:∵∠BAC=∠PED,而=,∴=时,△ABC∽△EPD,∵DE=4,∴EP=6,∴点P落在P3处.故选:C.点评:本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.6.如图,在平面直角坐标系中,A(0,4),B(2,0),点C在第一象限,若以A、B、C为顶点的三角形与△AOB相似(不包括全等),则点C的个数是()A. 1 B.2 C.3 D.4考点:相似三角形的判定;坐标与图形性质.分析:根据题意画出图形,根据相似三角形的判定定理即可得出结论.解答:解:如图①,∠OAB=∠BAC1,∠AOB=∠ABC1时,△AOB∽△ABC1.如图②,AO∥BC,BA⊥AC2,则∠ABC2=∠OAB,故△AOB∽△BAC2;如图③,AC3∥OB,∠ABC3=90°,则∠ABO=∠CAB,故△AOB∽△C3BA;如图④,∠AOB=∠BAC4=90°,∠ABO=∠ABC4,则△AOB∽△C4AB.故选D.点评:本题考查的是相似三角形的判定,熟知有两组角对应相等的两个三角形相似是解答此题的关键.7.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P的个数是()A.1个B.2个C.3个D.4个考点:相似三角形的判定;直角梯形.分析:由于∠PAD=∠PBC=90°,故要使△PAD与△PBC相似,分两种情况讨论:①△APD∽△BPC,②△APD∽△BCP,这两种情况都可以根据相似三角形对应边的比相等求出AP的长,即可得到P点的个数.解答:解:∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠PAD=∠PBC=90°.AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x.若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=;②若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x),解得x=2或x=6.∴满足条件的点P的个数是3个,故选:C.点评:本题主要考查了相似三角形的判定及性质,难度适中,进行分类讨论是解题的关键.8.如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G 分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()A. 1 B.2 C.12﹣6 D.6﹣6考点:相似三角形的判定与性质;等腰三角形的性质;勾股定理;正方形的性质.专题:几何图形问题.分析:首先过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,易证得△ADG∽△ABC,然后根据相似三角形的性质以及正方形的性质求解即可求得答案.解答:解:过点A作AM⊥BC于点M,交DG于点N,延长GF交BC于点H,∵AB=AC,AD=AG,∴AD:AB=AG:AC,∵∠BAC=∠DAG,∴△ADG∽△ABC,∴∠ADG=∠B,∴DG∥BC,∵四边形DEFG是正方形,∴FG⊥DG,∴FH⊥BC,AN⊥DG,∵AB=AC=18,BC=12,∴BM=BC=6,∴AM==12,∴,∴,∴AN=6,∴MN=AM﹣AN=6,∴FH=MN﹣GF=6﹣6.故选:D.点评:此题考查了相似三角形的判定与性质、正方形的性质、等腰三角形的性质以及勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图,在△ABC中,两条中线BE、CD相交于点O,则S△DOE:S△COB=()A.1:4 B.2:3 C.1:3 D.1:2考点:相似三角形的判定与性质;三角形中位线定理.专题:计算题.分析:根据三角形的中位线得出DE∥BC,DE=BC,根据平行线的性质得出相似,根据相似三角形的性质求出即可.解答:解:∵BE和CD是△ABC的中线,∴DE=BC,DE∥BC,∴=,△DOE∽△COB,∴=()2=()2=,故选:A.点评:本题考查了相似三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方,三角形的中位线平行于第三边,并且等于第三边的一半.二.填空题(共7小题)10.已知线段b是线段a、c的比例中项,且a=1,c=4,那么b= 2 .考点:比例线段.分析:根据比例中项的定义可得b2=ac,从而易求b.解答:解:∵b是a、c的比例中项,∴b2=ac,即b2=4,∴b=±2(负数舍去).故答案是:2.点评:本题考查了比例线段,解题的关键是理解比例中项的含义.11.如图,点M是△ABC内﹣点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC的面积是36 .考点:相似三角形的判定与性质.分析:根据相似三角形的面积比是相似比的平方,先求出相似比.再根据平行四边形的性质及相似三角形的性质得到BC:DM=6:1,即S△ABC:S△FDM=36:1,从而得到△ABC面积.解答:解:过M作BC的平行线交AB、AC于D、E,过M作AC的平行线交AB、BC于F、H,过M作AB的平行线交AC、BC于I、G,因为△1、△2、△3的面积比为1:4:9,所以他们对应边边长的比为1:2:3,又因为四边形BDMG与四边形CEMH为平行四边形,所以DM=BG,EM=CH,设DM为x,则ME=2x,GH=3x,所以BC=BG+GH+CH=DM+GH+ME=x+2x+3x=6x,所以BC:DM=6x:x=6:1,由面积比等于相似比的平方故可得出:S△ABC:S△FDM=36:1,所以S△ABC=36×S△FDM=36×1=36.故答案为:36.点评:本题考查了平行线的性质,平行四边形的性质及相似三角形的性质.熟悉相似三角形的性质:相似三角形的面积比是相似比的平方.12.若,则= .考点:比例的性质.分析:先用b表示出a,然后代入比例式进行计算即可得解.解答:解:∵ =,∴a=,∴=.故答案为:.点评:本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.已知△ABC∽△DEF,其中AB=5,BC=6,CA=9,DE=3,那么△DEF的周长是12 .考点:相似三角形的性质.专题:计算题.分析:根据相似的性质得=,即=,然后利用比例的性质计算即可.解答:解:∵△ABC∽△DEF,∴=,即=,∴△DEF的周长=12.故答案为:12.点评:本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比.14.如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为y=2x .考点:相似三角形的性质;反比例函数图象上点的坐标特征.专题:数形结合.分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出点B的坐标,再根据点B在反比例函数图象上表示出a、k的关系,然后用a表示出点B的坐标,再利用待定系数法求一次函数解析式解答.解答:解:设OC=a,∵点D在y=上,∴CD=,∵△OCD∽△ACO,∴=,∴AC==,∴点A(a,),∵点B是OA的中点,∴点B的坐标为(,),∵点B在反比例函数图象上,∴=,∴=2k2,∴a4=4k2,解得,a2=2k,∴点B的坐标为(,a),设直线OA的解析式为y=mx,则m•=a,解得m=2,所以,直线OA的解析式为y=2x.故答案为:y=2x.点评:本题考查了相似三角形的性质,反比例函数图象上点的坐标特征,用OC的长度表示出点B的坐标是解题的关键,也是本题的难点.15.如图,在▱ABCD中,F是BC上的一点,直线DF与AB的延长线相交于点E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:△ABP∽△AED(答案不唯一).考点:相似三角形的判定;平行四边形的性质.专题:开放型.分析:可利用平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似判断△ABP∽△AED.解答:解:∵BP∥DF,∴△ABP∽△AED.故答案为:△ABP∽△AED(答案不唯一).点评:本题考查了相似三角形的判定与性质:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;16.如图,平行于BC的直线DE把△ABC分成的两部分面积相等,则= .考点:相似三角形的判定与性质.分析:根据相似三角形的判定与性质,可得答案.解答:解:∵DE∥BC,∴△ADE∽△ABC.∵S△ADE=S四边形BCDE,∴,∴,故答案为:.点评:本题考查了相似三角形的判定与性质,平行于三角形一边截三角形另外两边所得的三角形与原三角形相似,相似三角形面积的比等于相似比的平方.三.解答题(共8小题)17.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?考点:相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.专题:压轴题;动点型.分析:(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.解答:解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得,所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10,所以AP=t,AQ=10﹣2t,①当∠APQ=∠AOB时,△APQ∽△AOB.所以=,解得t=(秒),②当∠AQP=∠AOB时,△AQP∽△AOB.所以=,解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==,在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,S△APQ=AP•QE=t•(8﹣t),=﹣t2+4t=,解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△AP Q的面积为个平方单位点评:此题主要考查相似三角形的判定与性质,待定系数法求一次函数值,解直角三角形等知识点,有一定的拔高难度,属于难题.18.已知在矩形ABCD中,P是边AD上的一动点,联结BP、CP,过点B作射线交线段CP的延长线于点E,交边AD于点M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y;(1)求y关于x的函数解析式,并写出它的定义域;(2)当AP=4时,求∠EBP的正切值;(3)如果△EBC是以∠EBC为底角的等腰三角形,求AP的长.考点:相似形综合题;等腰三角形的性质;勾股定理;矩形的性质;锐角三角函数的定义.专题:综合题.分析:(1)易证△ABM∽△APB,然后根据相似三角形的性质就可得到y关于x的函数解析式,由P是边AD上的一动点可得0≤x≤5,再由y>0就可求出该函数的定义域;(2)过点M作MH⊥BP于H,由AP=x=4可求出MP、AM、BM、BP,然后根据面积法可求出MH,从而可求出BH,就可求出∠EBP的正切值;(3)可分EB=EC和CB=CE两种情况讨论:①当EB=EC时,可证到△AMB≌△DPC,则有AM=DP,从而有x﹣y=5﹣x,即y=2x﹣5,代入(1)中函数解析式就可求出x的值;②当CB=CE时,可得到PC=EC﹣EP=BC﹣MP=5﹣y,在Rt△DPC中根据勾股定理可得到x与y的关系,然后结合y关于x的函数解析式,就可求出x的值.解答:解:(1)∵四边形ABCD是矩形,∴AB=CD=2,AD=BC=5,∠A=∠D=90°,AD∥BC,∴∠APB=∠PBC.∵∠ABE=∠CBP,∴∠ABM=∠APB.又∵∠A=∠A,∴△ABM∽△APB,∴=,∴=,∴y=x﹣.∵P是边AD上的一动点,∴0≤x≤5.∵y>0,∴x﹣>0,∴x>2,∴函数的定义域为2<x≤5;(2)过点M作MH⊥BP于H,如图.∵AP=x=4,∴y=x﹣=3,∴MP=3,AM=1,∴BM==,BP==2.∵S△BMP=MP•AB=BP•MH,∴MH==,∴BH==,∴tan∠EBP==;(3)①若EB=EC,则有∠EBC=∠ECB.∵AD∥BC,∴∠AMB=∠EBC,∠DPC=∠ECB,∴∠AMB=∠DPC.在△AMB和△DPC中,,∴△AMB≌△DP C,∴AM=DP,∴x﹣y=5﹣x,∴y=2x﹣5,∴x﹣=2x﹣5,解得:x1=1,x2=4.∵2<x≤5,∴AP=x=4;②若CE=CB,则∠EBC=∠E.∵AD∥BC,∴∠EMP=∠EBC=∠E,∴PE=PM=y,∴PC=EC﹣EP=5﹣y,∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,∴(10﹣x﹣y)(x﹣y)=4,∴(10﹣x﹣x+)(x﹣x+)=4,整理得:3x2﹣10x﹣4=0,解得:x3=,x4=(舍负).∴AP=x=.终上所述:AP的值为4或.点评:本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的性质、勾股定理、解一元二次方程、三角函数等知识,证到△ABM∽△APB是解决第(1)小题的关键,把∠EBP放到直角三角形中是解决第(2)小题的关键,运用勾股定理建立x 与y的等量关系是解决第(3)小题的关键.19.如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EB,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.考点:相似多边形的性质;全等三角形的判定与性质;勾股定理;菱形的性质.专题:几何综合题.分析:(1)利用相似多边形的对应角相等和菱形的四边相等证得三角形全等后即可证得两条线段相等;(2)连接BD交AC于点P,则BP⊥AC,根据∠DAB=60°得到BP=AB=1,然后求得EP=2,最后利用勾股定理求得EB的长即可求得线段GD的长即可.解答:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB=GD;(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=AB=1,AP==,AE=AG=,∴EP=2,∴EB===,∴GD=.点评:本题考查了相似多边形的性质,解题的关键是了解相似多边形的对应边的比相等,对应角相等.20.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.考点:相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.专题:证明题;压轴题;动点型.分析:(1)①证明△ABE≌△CAF,借用外角即可以得到答案;②利用勾股定理求得AF的长度,再用平行线分线段成比例定理或者三角形相似定理求得的比值,即可以得到答案.(2)当点F靠近点C的时候点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,继而求得半径和对应的圆心角的度数,求得答案.点F靠近点B时,点P的路径就是过点B向AC做的垂线段的长度;解答:(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.②∵∠C=∠APE=60°,∠PAE=∠CAF,∴△APE∽△ACF,∴,即,所以AP•AF=12(2)若AF=BE,有AE=BF或AE=CF两种情况.①当AE=CF时,点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=6,∴OA=,点P的路径是.②当AE=BF时,点P的路径就是过点C向AB作的垂线段的长度;因为等边三角形ABC的边长为6,所以点P的路径为:.所以,点P经过的路径长为或3.点评:本题考查了等边三角形性质的综合应用以及相似三角形的判定及性质的应用,解答本题的关键是注意转化思想的运用.21.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.(1)求证:△ADE≌△CFE;(2)若GB=2,BC=4,BD=1,求AB的长.考点:相似三角形的判定与性质;全等三角形的判定与性质.分析:(1)由平行线的性质可得:∠A=∠FCE,再根据对顶角相等以及全等三角形的判定方法即可证明:△ADE≌△CFE;(2)由AB∥F C,可证明△GBD∽△GCF,根据给出的已知数据可求出CF的长,即AD的长,进而可求出AB的长.解答:(1)证明:∵AB∥FC,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS);(2)解:∵AB∥FC,∴△GBD∽△GCF,∴GB:GC=BD:CF,∵GB=2,BC=4,BD=1,∴2:6=1:CF,∴CF=3,∵AD=CF,∴AB=AD+BD=4.点评:本题考查了全等三角形的判定和性质、相似三角形的判定和性质以及平行线的性质,题目的设计很好,难度一般.22.如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.(1)求线段PQ的长;(2)问:点P在何处时,△PFD∽△BFP,并说明理由.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.分析:(1)由题意得:PD=PE,∠DPE=90°,又由正方形ABCD的边长为1,易证得△ADP≌△QPE,然后由全等三角形的性质,求得线段PQ的长;(2)易证得△DAP∽△PBF,又由△PFD∽△BFP,根据相似三角形的对应边成比例,可得证得PA=PB,则可求得答案.解答:解:(1)根据题意得:PD=PE,∠DPE=90°,∴∠APD+∠QPE=90°,∵四边形ABCD是正方形,∴∠A=90°,∴∠ADP+∠APD=90°,∴∠ADP=∠QPE,∵EQ⊥AB,∴∠A=∠Q=90°,在△ADP和△QPE中,,∴△ADP≌△QPE(AAS),∴PQ=AD=1;(2)∵△PFD∽△BFP,∴,∵∠ADP=∠EPB,∠CBP=∠A,∴△DAP∽△PBF,∴,∴=,∴PA=PB,∴PA=AB=∴当PA=时,△PFD∽△BFP.点评:此题考查了相似三角形的判定与性质、正方形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.23.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.考点:相似三角形的判定与性质;平行四边形的性质.专题:几何综合题.分析:(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到S△ABD=S△BCD=S△BCN+S△CND,最后由S四边形ABNM=S△ABD﹣S△MND 求解.解答:解:(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN,设OB=OD=x,则有BD=2x,BN=OB+ON=x+1,DN=x﹣1,∴x+1=2(x﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND∽△CNB,且相似比为1:2,∴MN:CN=DN:BN=1:2,∴S△MND=S△CND=1,S△BNC=2S△CND=4.∴S△ABD=S△BCD=S△BCN+S△CND=4+2=6∴S四边形ABNM=S△ABD﹣S△MND=6﹣1=5.点评:此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.24.如图,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于点O,E为AC上一点,且AE=OC.(1)求证:AP=AO;(2)求证:PE⊥AO;(3)当AE=AC,AB=10时,求线段BO的长度.考点:相似三角形的判定与性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质.专题:几何综合题;压轴题.分析:(1)根据等角的余角相等证明即可;(2)过点O作OD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CO=DO,利用“SAS”证明△APE和△OAD全等,根据全等三角形对应角相等可得∠AEP=∠ADO=90°,从而得证;(3)设C0=3k,AC=8k,表示出AE=CO=3k,AO=AP=5k,然后利用勾股定理列式求出PE=4k,BC=BD=10﹣4k,再根据相似三角形对应边成比例列式求出k=1然后在Rt△BDO中,利用勾股定理列式求解即可.解答:(1)证明:∵∠C=90°,∠BAP=90°∴∠CBO+∠BOC=90°,∠ABP+∠APB=90°,又∵∠CBO=∠ABP,∴∠BOC=∠APB,∵∠BOC=∠AOP,∴∠AOP=∠APB,∴AP=AO;(2)证明:如图,过点O作OD⊥AB于D,∵∠CBO=∠ABP,∴CO=DO,∵AE=OC,∴AE=OD,∵∠AOD+∠OAD=90°,∠PAE+∠OAD=90°,∴∠AOD=∠PAE,在△AOD和△PAE中,,∴△AOD≌△PAE(SAS),∴∠AEP=∠ADO=90°∴PE⊥AO;(3)解:设AE=OC=3k,∵AE=AC,∴AC=8k,∴OE=AC﹣AE﹣OC=2k,∴OA=OE+AE=5k.由(1)可知,AP=AO=5k.如图,过点O作OD⊥AB于点D,∵∠CBO=∠ABP,∴OD=OC=3k.在Rt△AOD中,AD===4k.∴BD=AB﹣AD=10﹣4k.∵OD∥AP,∴,即解得k=1,∵AB=10,PE=AD,∴PE=AD=4K,BD=AB﹣AD=10﹣4k=6,OD=3在Rt△BDO中,由勾股定理得:BO===3.点评:本题考查了全等三角形的判定与性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DO并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出k=1是解题的关键.。