生物化学简答题答案

合集下载

生物化学简答题及答案

生物化学简答题及答案

1.说明动物体内氨的来源、转运和去路。

答:(一)体内氨的来源1.氨基酸脱氨氨基酸脱氨基作用产生的氨是体内氨的主要来源。

2.肠道吸收的氨一是肠道细菌通过腐败作用分解蛋白质和氨基酸产生氨,二是血中尿素扩散入肠道后经细菌尿素酶作用下水解产生氨。

3.肾小管上皮细胞分泌氨在肾小管上皮细胞内,谷氨酰胺酶催化谷氨酰胺水解生成谷氨酸和氨。

肠道和原尿中的pH对氨的来源有一定的影响,NH3易吸收入血,NH+4不易透过生物膜,在碱性环境中,NH+4易转变为NH3,所以肠道pH 偏碱时,氨的吸收增加。

(二)氨的转运1.丙氨酸一葡萄糖循环肌肉中的氨基酸经转氨基作用将氨基转给丙酮酸生成丙氨酸,丙氨酸经血液运到肝。

在肝中,丙氨酸通过联合脱氨基作用,释放出氨,用于合成尿素。

转氨基后生成的丙酮酸可经糖异生途径生成葡萄糖,葡萄糖由血液输送到肌组织,沿糖分解途径转变成丙酮酸,后者再接受氨基而生成丙氨酸。

这一途径称为丙氨酸一葡萄糖循环。

通过这个循环,即使肌肉中的氨以无毒的丙氨酸形式运输到肝。

2.谷氨酰胺的生成作用在脑、心脏及肌肉等组织中,谷氨酸与氨由谷氨酰胺合成酶催化生成谷氨酰胺。

谷氨酰胺生成后可及时经血液运向肾、小肠及肝等组织,以便利用。

在肾由谷氨酰胺酶水解为谷氨酸与氨,氨被释放到肾小管腔中和肾小管腔的H’以增进机体排泄多余的酸。

所以,谷氨酰胺是氨的解毒产物,也是氨的储存及运输的形式。

(三)氨的去路1.尿素合成这是氨的主要代谢去路。

肝是合成尿素最主要的器官,通过鸟氨酸循环过程完成的。

首先NH3和CO2在ATP、Mg2+及N\|乙酰谷氨酸存在时,合成氨基甲酰磷酸,氨基甲酰磷酸在线粒体中与鸟氨酸氨在鸟氨酸氨基甲酰基转移酶催化下,生成瓜氨酸,然后瓜氨酸与另一分子的氨结合生成精氨酸,最后在精氨酸酶的作用下,水解生成尿素和鸟氨酸。

鸟氨酸再重复上述反应。

尿素合成是一个耗能过程,每生成一分子尿素需要4个高能键,尿素中的两个氮原子,一个来自氨基酸脱氨基生成的氨,另一个则来自天冬氨酸。

生物化学简答题及论述题

生物化学简答题及论述题

试比较蛋白质的一、二、三、四级结构及维持其稳定的化学键。

答:1)蛋白质的一级结构:(protern primary structure):蛋白质分子中氨基酸的排列顺序,主要化学键是肽键,有些蛋白质还包含二硫键。

2)蛋白质二级结构:蛋白质分子中某一段肽链主链骨架原子的相对空间位置。

二级结构主要有α螺旋、β—折叠,β—转角和无规卷曲。

维系蛋白质二级结构的稳定主要靠氢键。

3)蛋白质的三级结构:是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。

三级结构主要有氢键,疏水作用,离子键和二硫键。

4)蛋白质的四级结构:蛋白质分子各个亚基的空间排布及亚基接触部位的布局和相互作用。

四级结构中的化学键主要是氢键和离子键。

什么是蛋白质的二级结构?它主要有哪几种?各有何结构特征?答案: 蛋白质二级结构是指多肽链主链原子的局部空间排布,不包括侧链的构象。

它主要有α-螺旋、β-折叠、β-转角和无规卷曲四种。

在α-螺旋结构中,多肽链主链围绕中心轴以右手螺旋方式旋转上升。

每隔3.6个氨基酸残基上升一圈。

氨基酸残基的侧链伸向螺旋外侧。

每个氨基酸残基的亚氨基上的氢与第四氨基酸残基羰基上的氧形成氢键,以维持α-螺旋稳定。

在β-折叠结构中,多肽链的肽键平面折叠成锯齿状结构,侧链交错位于锯齿状结构上下方。

两条以上肽链或一条肽链内的若干肽段平行排列,通过链间的羰基氧和亚氨基氢形成氢键。

维持β-折叠构象稳定。

在球状蛋白质分子中,肽键主链出现180º回折,回折部分称为β-转角。

β-转角通常有备无4个氨基酸残基组成。

第二个残基常为脯氨酸。

无规卷曲是知肽链中没有确定规律的结构。

Tm值:核酸在加热变性时,紫外吸收值达到最大值的50%时的温度称为核酸的解链温度,、又称溶解温度(Tm)。

简述RNA与DNA主要不同点。

生物体内核酸主要有二大类,一类脱氧核糖核酸即DNA,另一类为核糖核酸即RNA,它们的区别应从以下几个方面考虑:①存在部位:DNA主要存在于细胞核,哺乳动物细胞线粒体中也有自己的DNA,而RNA 的90%存在于细胞浆。

生物化学类试题及答案

生物化学类试题及答案

生物化学类试题及答案一、选择题(每题2分,共10分)1. 蛋白质的基本单位是什么?A. 氨基酸B. 核苷酸C. 葡萄糖D. 脂肪酸答案:A2. 下列哪种物质不是酶的辅助因子?A. 金属离子B. 辅酶C. 维生素D. 核酸答案:D3. 细胞呼吸的主要场所是?A. 细胞核B. 细胞质C. 线粒体D. 内质网答案:C4. 哪种维生素是水溶性的?A. 维生素AB. 维生素DC. 维生素ED. 维生素B群答案:D5. 以下哪种物质是DNA的组成部分?A. 核糖B. 脱氧核糖C. 核苷酸D. 氨基酸答案:B二、填空题(每空1分,共10分)1. 蛋白质的一级结构是由_________组成的。

答案:氨基酸序列2. 脂质的生物合成主要发生在细胞的_________中。

答案:内质网3. 细胞周期中,DNA复制发生在_________期。

答案:S4. 细胞膜的流动性是由_________层的脂质双层结构决定的。

答案:磷脂5. 细胞内用于储存能量的主要分子是_________。

答案:ATP三、简答题(每题5分,共20分)1. 简述酶的催化机制。

答案:酶通过降低化学反应的活化能,加速反应速率,其催化机制通常涉及酶的活性位点与底物形成临时的酶-底物复合物,通过改变底物的化学性质,促进反应进行。

2. 描述细胞凋亡与细胞坏死的区别。

答案:细胞凋亡是一种程序化的细胞死亡过程,由细胞内部的信号通路控制,通常不引起炎症反应。

而细胞坏死则是由于外界因素如物理、化学损伤导致的细胞死亡,通常伴随炎症反应。

3. 什么是基因表达调控?答案:基因表达调控是指细胞内控制基因转录、翻译等过程的机制,以确保在适当的时间和地点表达适当的基因,从而影响细胞的功能和发育。

4. 简述光合作用的过程。

答案:光合作用是植物、藻类和某些细菌利用光能将二氧化碳和水转化为葡萄糖和氧气的过程。

它主要包括光反应和暗反应两个阶段,光反应在叶绿体的类囊体膜上进行,产生ATP和NADPH;暗反应在叶绿体的基质中进行,利用ATP和NADPH将二氧化碳转化为有机物。

生物化学简答题必背分享-12

生物化学简答题必背分享-12

生物化学简答题必背分享-121、糖酵解的生理意义2、磷酸戊糖途径的生理意义3、糖异生的调节4、糖的代谢途径5、简述糖酵解、磷酸戊糖途径、糖异生途径之间是如何联系的6、请说明葡萄糖与谷氨酸在代谢上的联系答案解析1、糖酵解的生理意义【答案解析】:(1)糖酵解主要的生理意义是迅速提供能量,这对肌收缩更为重要。

(2)糖酵解可产生少量能量;1分子葡萄糖经糖酵解净生成2分子ATP,糖原中的每1分子葡萄糖残基经糖酵解净生成3分子ATP,这对某些组织及一些特殊情况下组织的供能有重要的生理意义。

(3)如成熟红细胞仅依靠糖酵解供应能量;机体在进行剧烈和长时间运动时,骨骼肌处于相对缺氧状态,糖酵解过程加强,以补充运动所需的能量;神经、白细胞、骨髓等代谢极为活跃,即使不缺氧也常由糖酵解提供能量2、磷酸戊糖途径的生理意义【答案解析】:(1)为核酸的生物合成提供核糖(2)提供NADPH作为供氢体参与多种代谢反应。

NADPH与NADH不同,它携带的氢不是通过电子传递链氧化以释放出能量,而是参与许多代谢反应,发挥出不同的功能。

(2.1)NADPH是体内许多合成代谢的供氢体(2.2)NADPH参与体内羟化反应:有些羟化反应与生物合成有关。

例如:从鲨烯合成胆固醇,从胆固醇合成胆汁酸、类固醇激素等。

(2.3)NADPH用于维持谷胱甘肽(GSH)的还原状态:谷胱甘肽是一个三肽。

(3)途径中的赤藓糖、景天酮糖等用于芳香族氨基酸的合成、碱基合成、多糖合成。

3、糖异生的调节【答案解析】:答:(1)糖异生的限速酶主要有以下4个酶:丙酮酸羧化酶、磷酸烯醇式丙酮酸羧化酶、果糖二磷酸酶和葡萄糖磷酸酶(2)激素对糖异生的调节作用对维持机体的恒稳状态十分重要,激素对糖异生调节实质是调节糖异生和糖酵解这两个途径的调节酶以及控制供应肝脏的脂肪酸,更大量的脂肪酸的获得使肝脏氧化更多的脂肪酸,也就促进葡萄糖合成,胰高血糖素促进脂肪组织分解脂肪,增加血浆脂肪酸,所以促进糖异生;而胰岛素的作用则正相反。

生化简答题与名词解释

生化简答题与名词解释

生物化学(仅供参考)简答题:一、蛋白质的二级结构,主要有哪几种?答:二级结构既肽链主链的局部构象,尤其是那些有规律的周期性的结构,其中有一些非常的稳定,而且在蛋白质中广泛存在,常见的二级结构包括α-螺旋、β–折叠、β–转折,另外把那些没有规律性的局部构象称为无规则卷曲。

二:何为蛋白质的两性电离?答:蛋白质是两性电解质,在蛋白质分子中可解离的基团除再每条肽链上的氨基末端和羧基的末端外,还有肽链侧链上那些可电离的基团。

蛋白质分子在溶液中是解离成正离子还是解离成负离子,既取决于其分子上酸性基团还是碱性基团的多少以及俩者的相对比例,同时还受该溶液PH值影响。

在酸性较强的溶液中,碱性基团被抑制,则蛋白质分子解离成正离子,带正电荷,在碱性较强的溶液中,碱性基团解离被抑制,则蛋白质分子解离成负电荷,带负电。

这种现象被称为蛋白质的俩性电离。

三、简述DNA双螺旋结构的特点?答:1、两个链平行,核苷酸绕同轴但方向相反。

2、磷酸脱氧核糖主链位于螺旋的外侧,碱基位于螺旋内侧。

3、每10个核苷酸螺旋上升一圈,螺距3.4nm直径2nm。

4、两条链之间形成氢键有碱基互补配对规律5、双螺旋稳定性氢键与碱基堆积力。

四、蛋白质的α-螺旋结构?答:是单股右手螺旋,主链由-C-Cα、-N-重复构成,在螺旋的内侧,侧链在氨基酸侧链,在螺旋外侧,每个螺距5.4nm ,含3.6个氨基酸残基。

五、生物体内RNA种类以及功能?答:RNA有rRNA、tRNA 和mRNA三种。

rRNA与蛋白质构成核蛋白体,是蛋白质合成的场所;tRNA携带、运输活化的氨基酸;mRNA是蛋白质合成的模板,三种RNA均参与蛋白质的生物合成。

六、比较DNA与RNA在分子组成和结构的异同点?答:相同点:分子组成都含有碱基、戊糖和磷酸,碱基A、G、C。

分子结构上单核苷酸是基本结构单位,并以3′5′-磷酸二脂键相连成一级结构。

不同点:比较项目DNA RNA化学组成戊糖脱氧核糖核糖碱基AGCT AGCU分子结构二级结构的双螺旋,真核生物三级结构为核小体RNA为单链发夹形结构tRNA的二级结构为三叶草型结构,三级结构为倒L型细胞内分布细胞核其次为线粒体细胞浆其次为细胞仁生理功能遗传信息的储存与传递遗传信息传递参与蛋白质合成七、底物浓度对酶促反应的影响?答:在底物浓度较低时,反应速度随着底物浓度的提高而加快,两者成正比例关系;此后,随着底物浓度继续提高,反应速度还在加快,但是变化幅度越来越小,不再成正比例关系;最后,即使底物浓度在提高,反应速度也已经基本不变。

生物化学简答题

生物化学简答题

2.简述三羧酸循环的生理意义是什么?它有哪些限速步骤?生理意义:三羧酸循环是机体获取能量的主要方式;为生物合成提供原料;影响果实品质糖;脂肪和蛋白质代谢的枢纽限速步骤:1)在柠檬酸合酶的作用下,由草酰乙酸和乙酰-CoA合成柠檬酸2)在异柠檬酸脱氢酶催化下,异柠檬酸脱氢形成草酰琥珀酸。

3)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸氧化、脱羧,生成琥珀酰-CoA、 NADH+H+和CO2。

4.什么是转氨作用?简述转氨作用的两步反应过程?为什么它在氨基酸代谢中有重要作用?概念:转氨作用是指在转氨酶催化下将α-氨基酸的氨基转给另一个α-酮酸,生成相应的α-酮酸和一种新的α-氨基酸的过程。

磷酸吡哆醛是转氨酶的辅酶,起到携带NH2基的作用。

这一过程分为两步反应:-H2O+H2O+H2O-H 2O转氨作用的生理意义:a)通过转氨作用可以调节体内非必需氨基酸的种类和数量,以满足体内蛋白质合成时对非必需氨基酸的需求。

b)转氨作用可使由糖代谢产生的丙酮酸、α-酮戊二酸、草酰乙酸变为氨基酸,因此,对糖和蛋白质代谢产物的相互转变有其重要性。

c)由于生物组织中普遍存在有转氨酶,而且转氨酶的活性又较强,故转氨作用是氨基酸脱氨的重要方式。

d)转氨作用的另一重要性是因肝炎病人血清的转氨酶活性有显著增加,测定病人血清的转氨酶含量大有助于肝炎病情的诊断。

转氨基作用还是联合脱氨基作用的重要组成部分,从而加速了体内氨的转变和运输,勾通了机体的糖代谢、脂代谢和氨基酸代谢的互相联系。

5.简述磷酸戊糖途径概念及生理意义概念:以6-磷酸葡萄糖开始,在6-磷酸葡萄糖脱氢酶催化作用下形成6-磷酸葡萄糖酸,进而代谢生成磷酸戊糖作为中间代谢产物,故将此过程称为磷酸戊糖途径。

1)产生大量的NADPH,为细胞的各种合成反应提供还原力2)途径中的中间物为许多化合物的合成提供原料:PPP途径可以产生多种磷酸单糖,如磷酸核糖、4-磷酸赤藓糖与磷酸烯醇式丙酮酸等。

生物化学全部简答题

生物化学全部简答题

1.合成的多肽多聚谷氨酸,当处在PH3.0以下时,在水溶液中形成α螺旋,而在PH5.0以上时却为伸展状态。

A.解释该现象。

B.在哪种PH条件下多聚赖氨酸会形成α-螺旋?答:(a)由可离子化侧链的氨基酸残基构成的α-螺旋对pH值的变化非常敏感,因为溶液的pH值决定了侧链是否带有电荷,由单一一种氨基酸构成的聚合物只有当侧链不带电荷时才能形成α-螺旋,相邻残基的侧链上带有同种电荷会产生静电排斥力从而阻止多肽链堆积成α-螺旋构象.Glu侧链的pKa约为4.1,当pH值远远低于4.1(大约3左右)时,几乎所有的多聚谷氨酸侧链为不带电荷的状态,多肽链能够形成α-螺旋.在pH值为5或更高时,几乎所有的侧链都带负电荷,邻近电荷之间的静电排斥力阻止螺旋的形成,因此使同聚物呈现出一种伸展的构象.(b)Lys侧链的pK为10.5,当pH值远远高于10.5时,多聚赖氨酸大多数侧链为不带电荷的状态,该多肽可能形成一种α-螺旋构象,在较低的pH值时带有许多正电荷的分子可能会呈现出一种伸展的构象.2.为什么说蛋白质水溶液是一种稳定的亲水胶体?答:①蛋白质表面带有很多极性基因,比如:-NH3,-COO-,-OH,-SH,-CONH2等,和水有高度亲和性,当蛋白质与水相遇时,水很容易被蛋白质吸引,在蛋白质外面形成一种水膜,水膜的存在使蛋白颗粒相互隔开,蛋白之间不会碰撞而聚成大颗粒,因此蛋白质在水溶液中比较稳定而不易沉淀。

②蛋白质颗粒在非等电点状态时带有相同电荷,蛋白质颗粒之间相互排斥保持一定距离,不易沉淀。

3. R侧链对α-螺旋的影响。

答:侧链大小和带电荷性决定了能否形成α-螺旋,即形成α-螺旋的稳定性,肽链上连续出现带有相同电荷的氨基酸,如赖氨酸,天冬氨酸,谷氨酸;由于静电排斥不能形成链内氢键,从而不能形成稳定的α-螺旋,R基较小且不带电荷的氨基酸有利于α-螺旋的形成,R基越大,如异亮氨酸,不易形成α-螺旋,脯氨酸终止α-螺旋。

生物化学答案

生物化学答案

生物化学答案第一章三、简答题1、写出a-氨基酸的结构通式,并根据其结构通式说明其结构上的共同特点。

组成蛋白质的氨基酸共有20种,除甘氨酸(无手性C原子)外都是L型氨基酸,就是都有一个不对称C原子,具有旋光性。

羧基和氨基连在同一个C原子上,另外两个键分别连一个H和R基团。

脯氨酸是亚氨基酸。

2、在PH6.0时,对Gly,Ala,Glu,Lys,Leu和His混合电泳,哪些氨基酸移向正极?哪些移向负极?哪些不移动或接近原点?3、什么是蛋白质的空间结构?蛋白质的空间结构与其生物功能有何关系?答:RNASE是一种水解RNA的酶,由124个氨基酸残基组成的单肽链蛋白质,其中含有4个链内二硫键。

整个分子折叠成球形的天然构象。

高浓度脲会破坏肽链中的次级键。

巯基乙醇可还原二硫键。

因此用脲和巯基乙醇处理RNaSe;蛋白质三维构象破坏,肽链去折叠成松散肽链,活性丧失。

淡一级结构并未变化。

除去脲和巯基乙醇,并经氧化形成二硫键。

RNaSe重新折叠,活性逐渐恢复。

由此看来,在一级结构未改变的状况下,其生物功能仍旧发生变化,说明是蛋白质的高级结构决定了蛋白质的功能。

(1)一级结构的变异与分子病蛋白质中的氨基酸序列与生物功能密切相关,一级结构的变化往往导致蛋白质生物功能的变化。

如镰刀型细胞贫血症,其病因是血红蛋白基因中的一个核苷酸的突变导致该蛋白分子中β-链第6位谷氨酸被缬氨酸取代。

这个一级结构上的细微差别使患者的血红蛋白分子容易发生凝聚,导致红细胞变成镰刀状,容易破裂引起贫血,即血红蛋白的功能发生了变化。

(2)一级结构与生物进化同源蛋白质中有许多位置的氨基酸是相同的,而其它氨基酸差异较大。

如比较不同生物的细胞色素C的一级结构,发现与人类亲缘关系接近,其氨基酸组成的差异越小,亲缘关系越远差异越大。

4、以细胞色素C为例简述蛋白质一级结构与生物进化的关系。

一级结构与生物进化同源蛋白质中有许多位置的氨基酸是相同的,而其它氨基酸差异较大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物化学简答题1. 产生ATP的途径有哪些试举例说明。

答:产生ATP的途径主要有氧化磷酸化和底物水平磷酸化两条途径。

氧化磷酸化是需氧生物ATP生成的主要途径,是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程。

例如三羧酸循环第4步,α-酮戊二酸在α-酮戊二酸脱氢酶系的催化下氧化脱羧生成琥珀酰CoA的反应,脱下来的氢给了NAD+而生成NADH+H+,1分子NADH+H+进入呼吸链,经过呼吸链递氢和递电子,可有个ADP磷酸化生成ATP的偶联部位,这就是通过氧化磷酸化产生了ATP。

底物水平磷酸化是指直接与代谢底物高能键水解相偶联使ADP磷酸化的过程。

例如葡萄糖无氧氧化第7步,1,3-二磷酸-甘油酸在磷酸甘油酸激酶的催化下生成3-磷酸甘油酸,在该反应中由于底物1,3-二磷酸-甘油酸分子中的高能磷酸键水解断裂能释放出大量能量,可偶联推动ADP磷酸化生成ATP,这就是通过底物水平磷酸化产生了ATP。

2.简述酶作为生物催化剂与一般化学催化剂的共性及其特性。

(1)共性:用量少而催化效率高;仅能改变化学反应速度,不能改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的活化能。

(2)特性:酶作为生物催化剂的特点是催化效率更高,具有高度专一性,容易失活,活力受条件的调节控制,活力与辅助因子有关。

3.什么是乙醛酸循环,有何生物学意义乙醛酸循环是一个有机酸代谢环,它存在于植物和微生物中,在动物组织中尚未发现。

乙醛酸循环反应分为五步(略)。

总反应说明,循环每转1圈需要消耗两分子乙酰辅酶A,同时产生一分子琥珀酸。

琥珀酸产生后,可进入三羧酸循环代谢,或者转变为葡萄糖。

乙醛酸循环的意义分为以下几点:(1)乙酰辅酶A经乙醛酸循环可生成琥珀酸等有机酸,这些有机酸可作为三羧酸循环中的基质。

(2)乙醛酸循环是微生物利用乙酸作为碳源建造自身机体的途径之一。

(3)乙醛酸循环是油料植物将脂肪酸转变为糖的途径。

4. 简述氨基酸代谢的途径。

答:氨基酸代谢的途径主要有三条,一是合成组织蛋白质进行补充和更新;二是经过脱羧后转变为胺类物质和转变为其他一些非蛋白含氮物,以及参与一碳单位代谢等;三是氨基酸脱氨基后生成相应的α-酮酸和氨。

其中α-酮酸可以走合成代谢途径,转变为糖和脂肪,也可以走分解代谢途径,氧化为CO2和H2O,并产生能量;氨能进入尿素循环生成尿素排出体外或生成其他一些含氮物和Gln。

5. 简述尿素循环的反应场所、基本过程、原料、产物、能量情况和限速酶、生理意义。

答:尿素循环是在人体肝脏细胞的线粒体和胞液中进行的一条重要的代谢途径。

在消耗ATP的情况下,在线粒体中利用CO2和游离NH3先缩合形成氨甲酰磷酸,再与鸟氨酸缩合形成瓜氨酸,瓜氨酸从线粒体中转移到胞液,与另一分子氨(贮存在天冬氨酸内)结合生成精氨酸,精氨酸再在精氨酸酶的催化下水解生成尿素和鸟氨酸,鸟氨酸又能再重复上述反应,组成一个循环途径。

因此原料主要为氨(一分子游离氨和一分子结合氨)和二氧化碳;产物为尿素;每生成一分子尿素需要消耗4个ATP,限速酶为精氨酸代琥珀酸合成酶。

尿素循环的生理意义是将有毒的氨转变为无毒的尿素,是机体对氨的一种解毒方式。

6. 简述嘌呤碱基的最终代谢产物是什么嘧啶碱基的最终代谢产物是什么答:鸟嘌呤在体内经鸟嘌呤脱氨酶催化脱氨生成黄嘌呤,再在黄嘌呤氧化酶催化下生成尿酸;人和动物体内腺嘌呤脱氨酶活性低,而腺苷脱氨酶和腺苷酸脱氨酶活性高,故多在腺苷水平进行分解,在腺苷脱氨酶催化下脱氨生成次黄嘌呤核苷,然后在核苷磷酸化酶催化下加磷酸,脱下1-磷酸核糖后生成次黄嘌呤,再在黄嘌呤氧化酶催化下生成黄嘌呤,进而生成尿酸。

因此嘌呤碱基的最终代谢产物为尿酸。

胞嘧啶在体内经胞嘧啶脱氨酶脱氨后生成尿嘧啶,在二氢尿嘧啶脱氨酶催化下加氢生成二氢尿嘧啶,再在二氢尿嘧啶酶催化下生成β-脲基丙酸,最后在β-脲基丙酸酶催化下生成CO2、NH3和β-丙氨酸;胸腺嘧啶经二氢胸腺嘧啶脱氢酶催化加氢生成二氢胸腺嘧啶,再在二氢胸腺嘧啶酶催化下生成β-脲基异丁酸,最后在β-脲基异丁酸酶催化下生成CO2、NH3和β-氨基异丁酸。

因此胞嘧啶和尿嘧啶碱基的最终代谢产物为CO2、NH3和β-丙氨酸,而胸腺嘧啶碱基的最终代谢产物为CO2、NH3和β-氨基异丁酸。

7. 磷酸戊糖途径有何生理意义答:(1)提供NADPH, 为生物合成提供还原力。

(2)NADPH使红细胞还原谷胱甘肽再生,维持红细胞正常功能及巯基酶的正常活性。

(3)NADPH参与羟化反应,从而与药物代谢、毒物代谢、激素激活或灭活等相关。

(4)联系戊糖代谢,与戊糖分解、核酸代谢及光合作用有关。

(5)为细胞提供能量,1mol6-磷酸葡萄糖通过此途径代谢,可以产生30molATP.8. 构成蛋白质的20种氨基酸通过哪几种产物进入三羧酸循环答:乙酰CoA; a-酮戊二酸;琥珀酸单酰CoA; 延胡索酸;草酰乙酸。

9.为什么说糖酵解是糖分解代谢的最普遍、最重要的一条途径答:(1)糖酵解是指葡萄糖经酶促降解成丙酮酸并伴随产生ATP的过程。

(2)该途径在无氧和有氧条件下都能进行,只是产生的丙酮酸和NADH在不同条件下的去向不同。

(3)它是生物最基本的能量供应系统,能保证生物和某些组织在缺氧下为机体提供能量。

(4)大多说单糖都可以通过该途径降解。

10.什么是蛋白质的变性作用引起蛋白质变性的因素有哪些答:蛋白质各自所特有的高级结构,是表现其物理性质和化学特性以及生物学功能的基础。

当天然蛋白质受到某些物理因素和化学因素的影响,使其分子内部原有的高级构象发生变化时,蛋白质的理化性质和生物学功能都随之改变或丧失,但并未导致其一级结构的变化,这种现象称为变性作用。

引起蛋白质变性的因素有两大类:(1)物理因素:热、紫外线、X射线、超声波、高压等等;(2)化学因素:强酸、强碱、重金属、变性剂等。

11.蛋白质溶液作为亲水胶体,其稳定性因素有哪些它们是怎样起稳定作用的答:①蛋白质分子大小已达到胶体质点范围(颗粒直径在1~100nm之间),具有较大表面积。

②蛋白质分子携带同种电荷,一种蛋白质在一定的pH环境(等点pH除外)下,带有同种电荷,因相互排斥而不易沉淀。

③球状蛋白质表面带有亲水基团,它们使蛋白质分子表面形成水化层,因而阻碍分子之间聚集形成沉淀。

12、简述酶原激活以及消化道内酶原激活的意义一些酶在细胞合成时,没有催化活性,需要经一定的加工剪切才有活性。

这类无活性的酶的前体称为酶原。

在合适的条件下和特定的部位,无活性的酶原向有活性的酶转化的过程称为酶原的激活。

酶原激活的意义:酶原形式的存在及酶原的激活有重要的生理意义。

消化道蛋白酶以酶原形式分泌,避免了胰腺细胞和细胞外间质的蛋白被蛋白酶水解而破坏,并保证酶在特定环境及部位发挥其催化作用。

13、什么是蛋白质的二级结构,主要有哪几种蛋白质的二级结构是指多肽链主链原子的局部空间排布,不包括侧链的构象。

主要有α-螺旋,β-折叠,β-转角和无规则卷曲四种。

14、什么是蛋白质一级结构为什么说蛋白质的一级结构决定其空间结构答:蛋白质的一级结构指蛋白质多肽链中氨基酸残基的排列顺序。

因为蛋白质分子的排列顺序包含了自动形成复杂的三维结构(即正确的空间构象)所需要的全部信息,所以一级结构决定其高级结构。

15、什么是蛋白质的空间结构蛋白质的空间结构与其生物功能有何关系答:蛋白质的空间结构是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链走向。

蛋白质的空间结构决定蛋白质的功能。

空间结构与蛋白质各自的功能是相适应的。

16、为什么说葡萄糖-6-磷酸是各个糖代谢途径的交叉点答:葡萄糖经过己糖激酶的催化转变成葡萄糖-6-磷酸,可进入糖酵解途径氧化,也可进入磷酸戊糖途径代谢,产生核糖-5-磷酸、赤藓糖-4-磷酸等重要中间体和生物合成所需的还原性辅酶Ⅱ;在糖的合成方面,非糖物质经一系列的转变生成葡萄糖-6-磷酸,葡萄糖-6-磷酸在葡萄糖-6-磷酸酶作用下可生成葡萄糖,葡萄糖-6-磷酸还可在磷酸葡萄糖变位酶作用下生成葡萄糖-1-磷酸,进而生成糖原。

由于葡萄糖-6-磷酸是各糖代谢途径的共同中间体,由它沟通了糖分解代谢和合成代谢的众多途径,因此葡萄糖-6-磷酸是各个糖代谢途径的交叉点。

17、指出下列物质分别是哪种维生素的前体(1)β-胡萝卜素;(2)麦角固醇;(3)7-脱氢胆钙化醇;(4)色氨酸。

答:(1)维生素A;(2)维生素D2;(3)维生素D3;(4)维生素B518、核酸酶包括哪几种类型答:(1)脱氧核糖核酸酶(DNase):作用于DNA分子。

(2)核糖核酸酶(Rnase):作用于RNA小分子。

(1)核糖外切酶:作用于多核苷酸链末端的核酸酶,包括3’-核酸外切酶和5’-核酸外切酶。

(2)核酸内切酶:作用于多核苷酸链内部磷酸二酯键的核酸酶,包括碱基专一性核酸内切酶和碱基序列专一性核酸内切酶(限制性核酸内切酶)。

19. 在磷酸戊糖途径中生成的NADPH,如果不去参加合成代谢,那么它将如何进一步氧化答:葡萄糖的磷酸戊糖途径是在胞液中进行的,生成的NADPH具有许多重要的生理功能,其中最重的是作为合成代谢的供氢体。

如果不去参加合成代谢,那么它将参加线粒体的呼吸链进行氧化,最终与氧结合生成水。

但是线粒体内膜不允许NADPH和NADH通过,胞液中NADPH所携带的氢是通过转氢酶催化过程进入线粒体的:(1)NADPH + NAD+→NADP+ + NADH(2)NADH所携带的氢通过两种穿梭作用进入线粒体进行氧化:a.α-磷酸甘油穿梭作用,进入线粒体后生成FADH2b.苹果酸穿梭作用,进入线粒体后生成NADH。

20、某些植物体内出现对氰化物呈抗性的呼吸方式,试提出一种可能的机制。

答:某些植物体内出现对氰化物呈抗性的呼吸方式,这种呼吸形式并不需要细胞色素氧化酶,而是通过其他的对氰化物不敏感的电子传递体将电子传递给氧气。

21、体内高能磷酸化合物按键型分有哪些类型请各举一例说明。

四种类型:磷氧键型、氮磷键型、硫酯键型、甲硫键型①磷氧键型:ATP②氮磷键型:磷酸肌酸③硫酯键型:酰基CoA④甲硫键型:S-腺苷甲硫氨酸22、比较三种可逆性抑制作用的特点①竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。

抑制作用大小与抑制剂和底物的浓度以及酶对它们的亲和力有关。

Km升高,Vmax不变。

②非竞争性抑制:抑制剂与底物结构不相似或完全不同,只与酶活性中心外的必需基团结合。

不影响酶在结合抑制剂后与底物的结合。

该抑制作用的强弱只与抑制剂的浓度有关。

Km不变,Vmax下降。

③反竞争抑制剂:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离出产物。

Km和Vmax均下降。

相关文档
最新文档