单晶硅太阳电池性能测试实验

合集下载

单晶太阳能电池实验室工作内容

单晶太阳能电池实验室工作内容

单晶太阳能电池实验室工作内容单晶太阳能电池,这个名字听起来好像很高大上,是吧?其实它就是一种通过太阳能来发电的“神器”,而且工作起来非常安静,不会发出半点噪音。

想想看,太阳照在它身上,就能为我们提供清洁能源,既环保又实用,简直是现代科技的魔法啊。

好了,不啰嗦,咱们今天就聊聊在实验室里做单晶太阳能电池的那些事儿。

说到单晶太阳能电池的实验室工作,大家是不是脑袋里已经冒出了无数的高大上仪器,或者一堆堆令人头疼的化学公式?放心,我可不会让你陷入那些复杂的细节。

实验室的工作更像是做一顿精致的大餐,不仅需要耐心,还得有点“心机”,但最重要的,还是得有团队合作,大家分工协作,才能保证一切顺利。

先说说准备工作吧,毕竟没有充分的准备,任何一项任务都容易陷入“半途而废”的境地。

你得先准备好单晶硅片,这玩意儿就像是太阳能电池的“主角”,没有它,电池也就成了摆设。

然后,还有一些材料需要一一摆上实验台,像是金属电极、化学溶液等等,这些东西也许在你看起来都是一堆“化学玩具”,但它们缺一不可。

这时候你可能会想,这些材料怎么搞?是不是得动用高精尖的设备?其实也不是那么复杂。

实验室里有台叫做“熔炉”的机器,它能在高温下将这些材料融合到一起。

高温过后,单晶硅片就开始慢慢“变形”,变成你需要的形状。

电极材料就得均匀地涂上去,这个过程可得小心,稍不注意,电极的分布就可能不均,影响最终的性能。

不过,别担心,实验室里的每个人都会紧紧盯着,确保每一步都做到位。

到了这一步,电池的基本结构已经初步完成了,接下来就是最重要的测试环节了。

测试环节,不得不提的就是那台专门用来测量太阳能电池效率的设备。

它就像是一个“小侦探”,通过对电池的性能进行精准的“侦测”,帮助我们找出其中的“问题”。

你可得想象一下,当电池表现出良好的效率时,大家的脸上就能挂上笑容,仿佛是在开了一场胜利的宴会。

相反,如果测试结果不太理想,大家就得集思广益,找出哪里出了岔子,重头再来。

单晶硅太阳电池性能测试实验.

单晶硅太阳电池性能测试实验.

实验一、单晶硅太阳电池特性测试一、实验目的1.了解单晶硅太阳电池的工作原理和结构。

2.了解单晶硅太阳电池的外特性。

3.了解单晶硅太阳电池外特性的影响因素。

二、实验仪器1.单晶硅太阳电池板一块2.单晶硅太阳电池阵列一块3.光源(氙灯一套4.调压器一台5.数字万用表两块6.定值变阻若干7.光辐射计一块三、实验任务1. 模拟太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。

测量记录日期、时间和地点,绘制电池的外形结构图并记录电池几何参数 (用于计算电池面积 ,并记录太阳光当时辐射强度,按照图 1所示实验原理图接线。

(1 在室内太阳光模拟器下,分别测试光强为 1 sun (1000 W/m2 、 0.5 sun (500 W/m2下的电池短路电流(I sc 和空载电压(U oc ,以及输出外特性曲线。

(2 具体测量方法:分别在上述一定光强下,逐步改变电阻箱(负载的阻值 R L ,分别测量电池两端的 I 和 U 。

根据测量结果绘制上述不同条件下的电池外特性曲线。

图 1 单晶硅电池阵列外特性测试2. 自然太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。

(1选择户外有太阳光的地方,记录天气状况,测试时间,并测试太阳光辐射强度;(2改变单晶硅电池板与地平线的夹角,分别测量在 0o 、 30o 和 45o 夹角下,电池的短路电流(I sc 和空载电压(U oc 。

(3分别在上述夹角下,逐步改变电阻箱的阻值(即负载电阻 R L ,测量不同电阻值下的电池两端的 I 和 U ,以绘制上述不同条件下的电池外特性曲线。

3. 单晶硅太阳电池电池阵列板的的输出外特性测量记录日期、时间和地点;记录太阳电池阵列的结构与几何尺寸,应于估算电池面积;记录天气状况、太阳光当时辐射强度,按照图 1所示实验原理图接线。

(1在太阳光照下,水平放置电池阵列板,先测试出在当前光照下的短路电流(I sc 和空载电压(U oc ,在逐步改变负载,测量电池阵列的输出外特性。

实验一单晶硅太阳光伏电池特性测试doc

实验一单晶硅太阳光伏电池特性测试doc

实验二、非晶硅、多晶硅太阳电池特性测试一、 实验目的1.了解非晶硅、多晶硅太阳电池的结构。

2.了解非晶硅、多晶硅太阳电池的外特性。

3.了解非晶硅、多晶硅太阳电池外特性的影响因素。

二、 主要实验仪器与材料1.非晶硅、多晶硅太阳电池板(单电池与电池阵列) 4块2.光源(氙灯) 1套3.数字万用表 2块4.电阻箱阻 1个三、 实验任务1. 多晶硅太阳电池单电池的输出外特性测量记录日期、时间和地点,并记录太阳光当时辐射强度,按照图1所示实验原理图接线。

(1) 白天有太阳光的情况下,改变多晶硅电池板与太阳光线的夹角,分别测量在0o 、45o 和90o 夹角下,电池的短路电流(I sc )和空载电压(U oc )。

(2) 改变电阻箱的阻值R L ,分别测量电阻两端的I 和U 。

测量不同条件下的电池外特性曲线。

(3) 阴天时,同样进行(1)的测量。

此时,以氙灯为光源,调整光轴线与太阳电池板的夹角,分别夹角为0o 、45o 和90o 下的电池的输出外特性。

2. 多晶硅太阳电池阵列板的输出外特性测量记录日期、时间和地点,并记录太阳光当时辐射强度,按照图1所示实验原理图接线。

(1) 白天有太阳光的情况下,改变电池阵列板与太阳光线的夹角,分别测量在0o 、45o 和90o 夹角下,电池阵列板的I sc 和U oc 。

(2) 改变电阻箱的阻值R L ,分别测量电阻两端的I 和U 。

测量不同条件下的电池阵列板的外特性曲线。

图1电池外特性测试简图(3)阴天时,同样进行(1)的测量。

此时,以氙灯为光源,调整光轴线与太阳电池板的夹角,分别夹角为0o、45o和90o下的电池阵列板的输出外特性。

3.非晶硅太阳电池单电池的输出外特性测量记录日期、时间和地点,并记录太阳光当时辐射强度,按照图1所示实验原理图接线。

(1)白天有太阳光的情况下,改变电池阵列板与太阳光线的夹角,分别测量在0o、45o和90o夹角下,电池阵列板的I sc和U oc。

单晶硅太阳能板的测试标准

单晶硅太阳能板的测试标准

单晶硅太阳能板的测试标准
单晶硅太阳能板的测试标准主要包括以下几个方面:
1. 输出功率:这是太阳能板最重要的性能指标,测试时需要确保在标准条件下(如大气质量,光照强度1000W/m²,温度25℃)进行测量。

此时太阳能电池组件所输出的最大功率称为峰值功率,通常用太阳能模拟仪测定。

2. 效率:效率是指太阳能板将光能转换为电能的效率,即每单位面积的太阳能板可以产生多少电能。

3. 抗紫外线辐射:太阳能板长期暴露在阳光下,紫外线辐射会对其造成损害,因此需要测试其抗紫外线辐射的能力。

4. 耐候性:耐候性是指太阳能板在不同环境条件下的性能稳定性,包括温度、湿度、风雨等。

5. 安全性能:太阳能板在运行过程中可能会产生高温,需要测试其安全性能,包括防火、防电击等。

6. 外观质量:太阳能板的外观质量也会影响其性能,需要对其表面质量、颜色、尺寸等进行测试。

以上是单晶硅太阳能板的测试标准,具体标准可能会因应用领域和地区而有所不同。

太阳能光伏电池实验

太阳能光伏电池实验

0
图1.单晶硅太阳能电池板(25℃)实际测量得到的暗特性I-V曲线
图2.不同温度时单晶硅太阳能电池片的输出伏安特性
亮特性
光电流IL在负载上产生电压降,这个电压降可以使pn 结正偏。如图3所示,正偏电压产生正偏电流IF。在 反偏情况下,pn结电流为:
从亮特性伏安曲线可直接读出
图5.实测单晶硅太阳能电池板输出伏安特性曲线
太阳能电池的效率图6.最大源自率矩形太阳能电池的光谱响应
【1】近代物理实验,西北大学物理学系 【2】安毓英,刘继芳光电子技术(第三版),电子 工 业出版设,北京:117-119,136-141 【3】茅倾青,潘立栋,陈骏逸等,太阳能电池基本特性测 定实验,物理实验[J],2004,24(11):6-9 【4】周孑民,太阳能光伏电池特性实验研究,能源与 环境[J],2011,4:72-73
1.光生伏特效应 2.无光情况下的电流电压关系 (暗特性) 3.光照情况下的电流电压关系 (亮特性) 4.太阳能电池的效率 5.太阳能电池的光谱响应 6.参考文献
光生福特效应
暗特性
无光照情况下的太阳能电池等价于一个理想pn结, 其电流电压关系为肖克莱方程:
pn结的单向导通性 (整流特性): 暗条件下太阳能 电池IV曲线不对称

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验

太阳能电池基本特性测定实验太阳能电池基本特性测定实验太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。

当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。

太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染。

太阳能电池根据所用材料的不同,可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池四大类,其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。

硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。

单晶硅太阳能电池转换效率最高,技术也最为成熟。

在实验室里最高的转换效率为23%,规模生产时的效率为15%。

在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成本很困难,为了节省硅材料,发展了多晶硅薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代产品。

多晶硅薄膜太阳能电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池,其实验室最高转换效率为18%,工业规模生产的转换效率为10%。

因此,多晶硅薄膜电池不久将会在太阳能电地市场上占据主导地位。

非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。

但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。

太阳能的利用和太阳能电池的特性研究是21 世纪的热门课题,许多发达国家正投入大量人力物力对太阳能接收器进行研究。

我们开设此太阳能电池的特性研究实验,通过实验了解太阳能电池的电学性质和光学性质,并对两种性质进行测量。

该实验作为一个综合设计性的物理实验,联系科技开发实际,有一定的新颖性和实用价值。

太阳能电池特性测试实验报告

太阳能电池特性测试实验报告

太阳电池特性测试实验太阳能是人类一种最重要可再生能源,地球上几乎所有能源如: 生物质能、风能、水能等都来自太阳能。

利用太阳能发电方式有两种:一种是光—热—电转换方式,另一种是光—电直接转换方式。

其中,光—电直接转换方式是利用半导体器件的光伏效应进行光电转换的,称为太阳能光伏技术,而光—电转换的基本装置就是太阳电池。

太阳电池根据所用材料的不同可分为:硅太阳电池、多元化合物薄膜太阳电池、聚合物多层修饰电极型太阳电池、纳米晶太阳电池、有机太阳电池。

其中,硅太阳电池是目前发展最成熟的,在应用中居主导地位。

硅太阳电池又分为单晶硅太阳电池、多晶硅薄膜太阳电池和非晶硅薄膜太阳电池三种。

单晶硅太阳电池转换效率最高,技术也最为成熟,在大规模应用和工业生产中仍占据主导地位,但单晶硅成本价格高。

多晶硅薄膜太阳电池与单晶硅比较,成本低廉,而效率高于非晶硅薄膜电池。

非晶硅薄膜太阳电池成本低,重量轻,转换效率较高,便于大规模生产,有极大的潜力,但稳定性不高,直接影响了实际应用。

太阳电池的应用很广,已从军事、航天领域进入了工业、商业、农业、 通信、家电以及公用设施等部门,尤其是在分散的边远地区、高山、沙漠、海岛和农村等得到广泛使用。

目前,中国已成为全球主要的太阳电池生产国,主要分布在长三角、环渤海、珠三角、中西部地区,已经形成了各具特色的太阳能产业集群。

一、 实验目的1. 熟悉太阳电池的工作原理; 2. 太阳电池光电特性测量。

二、 实验原理(1) 太阳电池板结构以硅太阳电池为例:结构示意图如图1。

硅太阳电池是以硅半导体材料制成的大面积PN 结经串联、并联构成,在N 型材料层面上制作金属栅线为面接触电极,背面也制作金属膜作为接触电极,这样就形成了太阳电池板。

为了减小光的反射损失,一般在表面覆盖一层减反射膜。

(2) 光伏效应当光照射到半导体PN 结上时,半导体PN 结吸收光能后,两端产生电动势,这种现象称为光生伏特效应。

由于P-N结耗尽区存在着较强的图1 太阳能电池板结构示意图内建静电场,因而产生在耗尽区中的电子和空穴,在内建静电场的作用下,各向相反方向运动,离开耗尽区,结果使P 区电势升高,N 区电势降低,P-N 结两端形成光生电动势,这就是P-N 结的光生伏特效应。

太阳能电池性能测试实验报告

太阳能电池性能测试实验报告

太阳能电池性能测试实验报告引言太阳能电池是一种将太阳能转化为电能的设备。

为了评估太阳能电池的性能,我们进行了一系列的实验测试。

本实验报告将介绍测试方法、测试结果以及讨论我们对于太阳能电池性能的理解。

实验目的本实验的主要目的是测试太阳能电池的性能,并且通过实验结果探讨太阳能电池的优势和限制。

实验步骤1. 准备工作在实验开始之前,我们需要准备以下材料和设备: - 太阳能电池 - 太阳能电池测试设备(例如电流计、电压计等) - 太阳能灯或其他光源 - 太阳能电池连接线2. 测试太阳能电池的开路电压首先,我们需要测量太阳能电池的开路电压。

在室内或者阳光充足的地方,连接电压计到太阳能电池的正负极,记录电压计显示的数值。

3. 测试太阳能电池的短路电流接下来,我们需要测量太阳能电池的短路电流。

同样在室内或者阳光充足的地方,将电流计连接到太阳能电池的正负极,记录电流计显示的数值。

4. 测试太阳能电池的最大功率输出为了测试太阳能电池的最大功率输出,我们需要将太阳能电池连接到一个负载电阻。

我们可以选择不同的电阻值,并记录下电压计和电流计的读数。

根据欧姆定律,可以计算出太阳能电池的输出功率。

重复这个过程,直到找到太阳能电池的最大功率输出。

实验结果与讨论开路电压和短路电流根据我们的实验数据,我们测得太阳能电池的开路电压为X伏特,短路电流为Y安培。

这些数值反映了太阳能电池的基本性能。

最大功率输出通过测试不同电阻值下的电压和电流,我们得到了太阳能电池的输出功率曲线。

根据曲线,我们可以确定太阳能电池的最大功率输出为Z瓦特。

这个数值可以帮助我们评估太阳能电池在实际应用中的性能。

讨论根据我们的实验结果,我们可以看出太阳能电池的性能受到光照强度的影响。

在光照较强的情况下,太阳能电池的输出功率会增加。

此外,太阳能电池的性能还受到温度、电阻和材料质量等因素的影响。

进一步研究这些因素对太阳能电池性能的影响,有助于我们优化太阳能电池的设计和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一、单晶硅太阳电池特性测试
一、
实验目的
1.了解单晶硅太阳电池的工作原理和结构。

2.了解单晶硅太阳电池的外特性。

3.了解单晶硅太阳电池外特性的影响因素。

二、 实验仪器
1.单晶硅太阳电池板 一块 2.单晶硅太阳电池阵列 一块 3.光源(氙灯) 一套 4.调压器 一台 5.数字万用表 两块 6.定值变阻 若干 7.光辐射计 一块
三、 实验任务
1. 模拟太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。

测量记录日期、时间和地点,绘制电池的外形结构图并记录电池几何参数(用于计算电池面积),并记录太阳光当时辐射强度,按照图1所示实验原理图接线。

(1) 在室内太阳光模拟器下,分别测试光强为1 sun (1000 W/m 2)、0.5 sun (500 W/m 2)下的电池短路电流(I sc )和空载电压(U oc ),以及输出外
特性曲线。

(2) 具体测量方法:分别在上述一定光强下,逐步改变电阻箱(负载)的阻值R L ,分别测量电池两端的I 和U 。

根据测量结果绘制上述不同条件下的电池外特性曲线。

图1 单晶硅电池阵列外特性测试
2.自然太阳光条件下,单晶硅太阳电池单电池的输出外特性曲线。

(1)选择户外有太阳光的地方,记录天气状况,测试时间,并测试太阳
光辐射强度;
(2)改变单晶硅电池板与地平线的夹角,分别测量在0o、30o和45o夹
角下,电池的短路电流(I sc)和空载电压(U oc)。

(3)分别在上述夹角下,逐步改变电阻箱的阻值(即负载电阻)R L,测
量不同电阻值下的电池两端的I和U,以绘制上述不同条件下的电
池外特性曲线。

3.单晶硅太阳电池电池阵列板的的输出外特性
测量记录日期、时间和地点;记录太阳电池阵列的结构与几何尺寸,应于估算电池面积;记录天气状况、太阳光当时辐射强度,按照图1所示实验原理图接线。

(1)在太阳光照下,水平放置电池阵列板,先测试出在当前光照下的短路电
流(I sc)和空载电压(U oc),在逐步改变负载,测量电池阵列的输出外
特性。

(2)用黑色遮光板遮住一半面积的阵列板,记录电池的短路电流(I sc)和空
载电压(U oc),进一步测量该条件下的外特性曲线。

四、实验结果
1.绘制单电池与阵列板串并联方式简图,标明单电池与电池阵列的有效面积。

单电池有效面积:10.84cm2
电池阵列有效面积:36*10.84cm2
2.整理实验数据,分别绘出单晶硅电池单电池、电池阵列板在不同测试条件下的外特性。

(1)自然光条件下:
0度
填充因子:0.45
效率:6.00%
图一:0度单电池外特性
单电池30度
填充因子:0.44
效率:6.10%
图二:30度单电池外特性
单电池45度
填充因子:0.43
效率:6.10%
图三:45度单电池外特性(2)单晶硅单电池室内
入射光强:100 mw/cm2
填充因子:0.19
效率:0.52%
图四:单晶硅单电池室内100 mw/cm2入射光强外特性
入射光强:60mw/cm2
填充因子:0.26
效率:087%
图五:单晶硅单电池室内60 mw/cm2入射光强外特性
(3)单晶硅模块在自然光条件下
填充因子:0.68
效率:10.90%
图六:单晶硅模块自然光条下的外特性
单晶硅模块遮一半
填充因子:0.23
效率:0.05%
图六:单晶硅模块遮一半自然光条下的外特性
3.根据测试数据,分析模拟光强对单电池电池I sc和U oc的的影响,并分析所测得的I sc和U oc的实验数据是否复合理论结果。

光强越大,电压和电流都增大。

符合理论结果。

因为单晶硅单电池在室内100mw/cm2下开路电压时
0.556V,短路电流时95.6mA
单晶硅单电池在室内60 mw/cm2下开路电压时0.51V,短路电流时79mA
4.分析单电池电池板的放置角度对输出特性、最大输出功率的影响特征。

放置角度影响输入光强,光强增加,电流增大,电压不变,输出功率增大,效率增大。

但实验数据表明实验设置的三个角度下测得的填充因子和效率基本一致。

分别是:
0度
填充因子:0.45
效率:6.00%
单电池30度
填充因子:0.44
效率:6.10%
单电池45度
填充因子:0.43
效率:6.10%
分析原因是由于西安的纬度决定了所设置的30度和45度刚好处于最大入射光强角度的两边,即入射光强基本一致。

猜测另一个原因是:当天测试环境下原本的太阳光就不强,即使发生电池与入射光的角度差异,带来的入射光强差基本可以忽略。

5.分析单晶硅电池板一半面积被遮挡的情况下电池输出性能变化原因,分析单晶硅光伏单电池与电池阵列板输出特性的差异及影响因素,了解串关联结构的特征。

由于本组测试时是正午,用来遮挡电池板的挡光纸不能完全遮住太阳光,电池在微弱的入射光下,产生了极小的电流。

实验结果得到单晶硅模块在遮一半时测得短路电流为1.9mA。

另一方面,被遮挡的部分变为较大的电阻,其他部位的电阻变化对内阻影响不大,可看做恒定内阻。

可以从实验结果中得到:单晶硅模块在遮一半时的电压比单晶硅单电池大得多,因为模块式单电池的串联结构,回路电压是每个单电池电压之和。

相关文档
最新文档