高密度沉淀池设计计算书
沉淀池设计计算

沉淀池设计计算沉淀池设计计算一、基本要求1、沉淀池设计工作总体指标:(1)池坝总高:H=4.00m(2)池坝总容积:V=20m32、沉淀池设计有关工作:(1)池容及池坝形状设计;(2)底部 + 池坝砼混凝土设计;(3)水力及湿度设计;(4)内外表面抹面设计。
二、池容及池坝形状设计1、池容及池坝形状:(1)池容: V=20m3(2)池坝形状:池容V=20m3,池坝总高H=4.00m,成椭圆形;(3)池容深:池坝靠底部离水面高度为0.50m,池坝靠底部离水面高度为H-0.50m=3.50m,故池容深=3.50m.2、池容宽度及池坝内砼砌筑量计算:以池容宽度δ为变量,求解池容宽度δ.椭圆形池容体积: V=πr1r2h其中,r1为长径,r2为短径,h为池容深短径取池容宽度δ,则长径可求得: r1=(Vδ)/(πh)池坝内砼砌筑量可求得:V=2πr1h+2πr2h+(r22-r12)/2其中,r2=δ即, V=2πr1h+2πδh+(δ22-r12)/2结合V=20m3 及H=4.00m,求解池容宽度δ,我们得到:δ=2.81m故,池坝总容积V=20m3,池容深=3.50m,池容宽度δ=2.81m.三、底部 + 池坝砼混凝土设计1、底部砼混凝土设计:(1)离池底高度:H1=0.50m(2)底部容积:V1=VH1/H=200.50/4.00=2.50m3(3)底部砼混凝土用量:V1/0.35=7.14m3(4)底部砼混凝土标准:C20;2、池坝内砼混凝土设计:(1)池坝容积:V=20m3(2)池坝内砼混凝土用量:V/0.35=57.14m3(3)池坝内砼混凝土标准:C25;3、池坝外砼混凝土设计:(1)池坝外砼混凝土用量:V/0.65=30.77m3(2)离池坝外砼混凝土标准:C20;四、水力及湿度设计1、底部 + 池坝砼混凝土抗渗等级设计:(1)底部砼混凝土:抗渗等级i=5,抗渗系数Ki=0.30m/d(2)池坝内砼混凝土:抗渗等级i=8,抗渗系数Ki=0.24m/d (3)池坝外砼混凝土:抗渗等级i=5,抗渗系数Ki=0.30m/d 2、湿度设计:以池坝外砼混凝土抗渗等级i=5,抗渗系数Ki=0.30m/d为标准,计算此工程的湿度。
沉淀池设计计算

主要的设计计算有:〔1〕沉淀区有效水深2h2h q t =⋅ (2-15)式中 q — 外表负荷,m 3/(m 2·h);〔单位时间内通过沉淀池单位外表积的流量〕t — 停留时间,h 。
〔2〕沉淀区总面积Amax 3600Q A q⨯= (2-16) 式中 max Q — 最大设计流量,m 3/s 。
〔3〕沉淀区有效容积V 112V A h =⋅ A 指的是沉淀区总面积,h 2指的是沉淀区有效水深或 1max V Q t =⋅ 〔2-18〕〔4〕沉淀区长度Lt L υ6.3= 〔2-19〕式中 υ— 最大设计流量时的水平流速,mm/s 。
按外表负荷设计平流池时,可按水平流速进行校核。
最大水平流速:初沉池7mm/s ,二沉池5 mm/s 。
〔5〕沉淀区总宽BL A B = 〔A 指的是沉淀区总面积,L 是沉淀区长度 〕 〔6〕沉淀池座数或分格数nbB n = 〔B 沉淀区总宽度〕 式中 b — 每座或每格沉淀池的宽度,m 。
沉淀池每格宽度〔或导流墙间距〕宜为3~8M ,〔7〕污泥区容积W污泥区容积应根据每日沉下的污泥量和污泥储存周期决定,计算公式为:T P C C Q W ⋅--=)100(100)(10γ (2-22)或 1000SNT W = (2-23) 式中 Q —设计流量, m 3/d ;C 0、C 1—进、出水中的悬浮物浓度, kg/m 3;γ—污泥密度,污泥主要为有机物且含水量水率大于95% 时,取1000 kg/m 3;P —污泥含水率,一般取95%~97%;T —两次排泥的时间间隔;S —每人每天产生的污泥量,L/(人·d);N —设计人口数。
根据污泥区容积进一步确定、核算污泥斗的尺寸。
〔8〕沉淀池总高度H4321h h h h H +++= (2-24)式中 h 1 —超高,采用;h 2—沉淀区高度,m ;h 3—缓冲高度,m ;一般取。
h 4—污泥区高度,包括池底沉积污泥的梯形部分的高度和污泥斗的高度,m 。
高密沉淀池设计计算

高密度沉淀池高密度沉淀池是一种利用物理/化学处理和特殊的絮凝和沉淀体系,达到快速沉淀的污水处理工艺。
该工艺将快速混合、絮凝反应、沉淀分离进行综合,其核心是利用池中聚集的泥渣,通过池外回流与水中的颗粒进行相互接触、吸附,加速颗粒絮凝,促进杂质颗粒的快速分离,并结合斜管或斜板加速沉淀过程,实现高效的固液分离。
高密度沉淀池布置紧凑,节约占地,同时沉淀池启动快速,在很短的时间(通常30min)内即可完成启动并进入正常运行。
高密度沉淀池可用于原水净化也可用于污水混凝沉淀去除SS,或者用于中水回用,膜浓水等工艺的软化澄清。
(1)高效沉淀池(高密度)工作原理原水投加混凝剂,在混合池内,通过搅拌器的搅拌作用,保证一定的速度梯度,使混凝剂与原水快速混合。
高效沉淀池分为絮凝与沉淀两个部分,在絮凝池,投加絮凝剂,池内的涡轮搅拌机可实现多倍循环率的搅拌,对水中悬浮固体进行剪切,重新形成大的易于沉降的絮凝体。
沉淀池由隔板分为预沉区及斜管沉淀区,在预沉区中,易于沉淀的絮体快速沉降,未来得及沉淀以及不易沉淀的微小絮体被斜管捕获,最终高质量的出水通过池顶集水槽收集排出。
(2)高密度与传统沉淀池的比较与传统沉淀池比较,高密度沉淀池技术优势如下:1、表面负荷高:利用污泥循环及斜管沉淀,大大高于传统沉淀池。
2、污泥浓度高:高密度沉淀池产生的污泥含固率高。
3、出水水质好:高密度沉淀池因其独特的工艺设计,由于形成的絮体较大,所以更能拦截胶体物质,从而可以有效降低水中的污染物,出水更有保障。
(3)设计要点高密度沉淀池表面水力负荷宜为6m³/(㎡·h)~13m³/(㎡·h){最大可达12~15m³/(㎡·h)}。
混合时间宜为0.5~2.0min(实际设计多取3.0~5.0min),絮凝时间宜为8~15min。
污泥回流量宜占进水量3~6%(设备选型可选8%)。
(4)设计计算书①设计流量Q=400t/h=0.112m3/s①混凝反应池设有效水深取6米。
T高密度澄清池设计计算

高效沉淀池池设计计算书一、设计水量Q=47250t/d=1968.75t/h=0.547m3/s二、构筑物设计1、澄清区水的有效水深:本项目的有效水深按7.8米设计。
斜管上升流速:12~25m/h,取22.5 m/h。
——斜管面积A1=1968.75/22.5=87.5m2;沉淀段入口流速取60 m/h。
——沉淀入口段面积A2=1968.75/60=32.81m2;中间总集水槽宽度:B=0.9(1.5Q)0.4=0.9×(1.5×0.547)0.4=0.832m 取B=1.4m。
从已知条件中可以列出方程:X·X1=32.81 ——①(X-2)·(X-X1-0.4)=87.5 ——②可以推出:A=X3-2.4X2-119.51X+65.62=0当X=11.9时A=-11.25<0当X=12时A=13.9>0当X=14时A=666>0所以取X=14。
即澄清池的尺寸:14m×14m×7.41m=1452.36m3原水在澄清池中的停留时间:t=1452.36/0.547=2655s=44.25min;X1=32.81/x=2.34 , 取X1=1.9m,墙厚0.4m斜管区面积:12m×11.7m=140.4m2水在斜管区的上升流速:0.547/140.4=0.0039m/s=3.9mm/s=14.04m/h从而计算出沉淀入口段的尺寸:14m×1.9m。
沉淀入口段的过堰流速取0.05m/s,则水层高度:0.547÷0.05÷14=0.78m。
另外考虑到此处设置堰的目的是使推流段经混凝的原水均匀的进入到沉淀段,流速应该比较低,应该以不破坏絮体为目的。
如果按照堰上水深的公式去计算:h=(Q/1.86b)2/3=(0.547/1.86×14)2/3=0.076m。
则流速为0.385m/s。
这么大的流速经混凝的原水从推流段进入到沉淀段,则絮体可能被破坏。
沉淀池设计计算

沉淀池设计计算1、清水区流量Q总取实际值表面负荷V(一般取12m3/(m2.h)~25 m3/(m2.h))斜管结构占用面积按4%计清水池面积F=(1+4%)Q总/V2、集水槽每个小矩形堰流量q流量系数m取0.43堰宽b取0.05m堰上水头H=(q/mb(2g)0.5)1.5集水槽宽取b’堰口负荷V 一般取7L/(m.s)进水流量Q总(单位:m3/s)单个集水槽长度L集水槽数量n=Q总/VL单个集水槽流量q=Q总/n末端临界水深h k=(q2/gb’2)^(1/3)集水槽起端水深h=1.73h k集水槽水头损失:h-h k3、池体高度⑴超高H1=0.4m 根据室外给排水设计规范⑵斜管沉淀池清水区高度H2=1.0m⑶斜管倾角α长度L 斜管高度H3=L.SINαα一般取值60°⑷斜管沉淀池布水区高度H4=1.5m⑸污泥回流比R1(0.5%~4%),污泥浓缩时间t n=8h 流量Q总清水区面积取F污泥浓缩高度H5=R1Q总t n/F(6) 贮泥区高度H6=0.95m(7) 总高H=H1+H2+H3+H4+H5+H6混合室计算1、混合室长、宽:L 混合池底面积s 水深:H+0.2(混合池高度比沉淀池高0.2m)流量Q总S=Q总/(H+0.2)L=S0.5停留时间t=S(H+0.2)/Q总2、最小水力梯度G(一般取500~1000)水温T(15℃)停留时间t水的粘度μ0.00114pa.s最小吸收功率p=μG2Q T t/1000搅拌机总机械效率η1搅拌机传动效率η2旋转轴所需电机功率N=P/η1/η23、池体边长L池体当量直径:D0=(4L.L/3.14)^(1/2)搅拌器直径D=(1/3~2/3)D0搅拌器外缘速度V(1m/s~5m/s)转速n=60v/3.14D搅拌机距池底H=(0.5~1.0)D4、搅拌器排液量Q=k q nD3(k q桨液流量准数取0.77)n:搅拌器转速D:搅拌器直径体积循环次数:Z=Qt/vt:混合时间v:混合池有效容积絮凝室面积1、絮凝渠水深H+100 流量Q总反应时间t(6min~10min)F=tQ总/(H+100)2、絮凝回流比R (一般取10)导流筒内设计流量:Qn=1/2(R+1) Q总3、导流筒内流速V取0.6m/s导流筒直径D=(4Q总/3.14V)^(1/2)4、导流筒下部喇叭口高度H 角度αα一般取60°导流筒下缘直径D’=D+2Hcotα5、导流筒上缘以上部分流速V (一般取0.25m/s)导流筒上缘距水面高度H=Qn/3.14VD’5、搅拌机功率搅拌机提升水量Qt=Qn 机械效率η(一般取0.75)提升扬程Ht (一般取0.15m)γ水的密度γ=1000kg/m3N絮=Qt.Ht. γ/102η。
大型高密度沉淀池设计计算

大型高密度沉淀池设计计算
首先,确定沉淀池的尺寸。
沉淀池的尺寸包括长、宽、深度等方面,这主要根据处理的流量和具体废水的水质来确定。
根据沉淀速度的计算公式,可以推算出沉淀池的尺寸。
沉淀速度计算公式为:V=Q/A,其中V表示沉淀速度,Q表示流量,A表示沉淀池的有效面积。
通过测量废水流量和实际的沉淀速度,可以得出所需沉淀池的尺寸。
其次,确定沉淀池的深度。
根据废水的具体水质和所需的沉淀效果,可以确定沉淀池的深度。
一般来说,沉淀池的深度应该足够大,使得废水能够充分停留在沉淀池内,使得可沉淀物质有足够的时间沉淀下来。
一般来说,沉淀池的深度一般为1米左右。
然后,计算沉淀池的沉淀效果。
沉淀效果是指废水中的悬浮物在沉淀池中的去除率。
计算沉淀效果需要根据沉淀池的水力停留时间和水力半径来计算。
水力停留时间是指水从沉淀池进入到排水口需要的时间,水力半径是指沉淀池的面积与周长之比。
通过计算水力停留时间和水力半径,可以得到废水中悬浮物的去除率。
最后,确定沉淀池的出水口和排泥口的设计。
沉淀池的出水口和排泥口的位置和尺寸的设计很重要,这直接影响着沉淀池的工作效果。
出水口应该设在沉淀池的上部,以便于清水从上部流出,排泥口应该设在沉淀池的底部,以便于排除沉淀的泥浆。
出水口和排泥口的尺寸要根据实际的流量和沉淀效果来计算,以确保顺畅的水流和有效的泥浆的排除。
总之,大型高密度沉淀池的设计计算需要综合考虑多个因素,包括沉淀池的尺寸、深度、沉淀效果等。
只有在正确的计算和设计的基础上,才能够确保沉淀池的正常运行和高效处理废水的效果。
(完整版)各种沉淀池设计计算

1、设计进水水质参数设计流量(Q)5000m3/d设计水温(T)25℃COD(C0)500mg/L SS(S0)400mg/L BOD(B0)NH3-N(N0)25mg/L TN(TN0)40mg/L TP(TP0)2、设计去除率%COD20%SS(S0)40%BOD(B0)NH3-N0%TN(TN0)5%TP(TP0)3、设计出水水质参数COD(C e)400mg/L SS(S e)240mg/L BOD(B e)NH3-N(N e)25mg/L TN(TN e)38mg/L TP(TP e)4、沉淀池相关参数及一些基本要求对于城市污水,初沉池表面负荷一般取值1.2-2.0之间,堰口负荷≤2.9l/(s.m)表面负荷(q)1.2m3/(m2.h)二次沉淀池,活性污泥法后,表面负荷一般取值0.6-1.0之间 ,堰口负荷≤1.7l/(s.m)沉淀时间(t)1.5h生物膜法后,表面负荷一般取值1.0-1.5之间,堰口负荷≤1.7l/(s.m)水平流速(v)5mm/s4.1、静压排泥管的直径不应小于200mm4.2、初次沉淀池的静压排泥水头不应小于1.5m;二次沉淀池的静压水头:生物膜法不应小于1.2m,活性污泥法不应小于0.9m。
4.3、平流沉淀池的长宽比不小于4,一般取值4-54.4、平流沉淀池的长深比不小于8,一般取值8-124.5、池底纵坡:采用机械刮泥时,不小于0.005,一般取值0.01-0.024.6、最大水平流速:初次沉淀池7mm/s,二次沉淀池5mm/s4.7、进出口处应设置挡板,高出池内水面0.1-0.15m。
挡板淹没深度:进口处不应小于0.25m,一般为0.5-1.0m;出口处一般为0.3-0.4m。
挡板位置:距进水口0.5-1.0m,距出水口0.25-0.5m。
5、沉淀池设计计算5.1、池子的表面积(A)173.61m25.2、沉淀部分有效水深(h2)1.80m5.3、沉淀部分有效容积(V´)312.50m35.4、沉淀池的池长(L´)27.00m计算堰长L 5.5、沉淀池的总宽度(B)6.43m复核长宽比:4.5四舍五入得 6.00m复核长深比:155.6、设池子个(格)数(n)2.00个(格)则每个(格)的宽度(b)3.00m5.7、污泥部分所需的总容积(V)两次清除污泥间隔时间(T)0.50d污泥密度(γ)1.00t/m3污泥含水率(ρ0)98.00%V=Q*(S0-S e)*10^(-6)*100*T/(γ(100-ρ0)) =20.00m35.8、池体总高度(H)2.72m沉淀池超高(h1)0.30m缓冲层高度(h3)0.50m一般取值0.3-0.5污泥区高度(h4)0.12m5.9、污泥斗容积(V1)设污泥斗高度(h4")0.75m7.88四舍五入得8m3300mg/L15mg/L15%7.5%255mg/L 13.875mg/L19.9620m。
沉淀池计算书

二沉池土压应力:δ=γhK α=γhtg 2(45-)=18×0.5×h 1.设计资料:t=-80C ,t R =-200C赤壁厚度=0.3m,赤壁高度H=4.3m ,池内水深4.0m,底板厚度0.3m , 池内水压力Pw=10×4.0=40KN/㎡ 地基反力=47.5Kn/㎡﹤250KN/㎡地基承载力满足要求,温度内力折减系邮:Kt=0.70,Kt R =0.20 2.①柱壳:圆形水池几何尺寸:H=4.0m,R=8.5m,h=0.3,d=2R+h=2×8.5+0.3=17.3m,0.308.33.03.17422≈=⨯=dh H ,R=8.65m 3.荷载计算 水压按满池计算γwH=1×4=4t/㎡; 1.0×4+2.5×0.3=4.75t/㎡; P=2.5×0.3×4=3t/m4.①圆柱壳(上端自由,下端固定) 表1.2.4—40:M=Eh Eh 231034.05431.03.43.0-⨯=• MEh Eh F 2231025.0734.13.43.0-⨯=•=柱δHEh Eh F 23310378.014.113.43.0-⨯=•=柱δ②底板 MEh Eh F 2310798.0559.265.83.0-⨯=•=板β5.结点刚度预算:Eh Eh Eh M 22210138.110798.01034.0---⨯-=⨯-⨯-=β6.各单元构件嵌固边缘力的计算 ①柱壳M=m m t /118.20331.0442--=⨯⨯- H m t Fp /176.444261.0-=⨯⨯-=柱②底板M 137.065.80.30172.065.875.42⨯⨯+⨯⨯=板Fp =-6.11+3.555=-2.55t-m/mH=07.结点变位计算①第一种荷载组合(水压+自重)a.∑FP M =-(-2.118)+(-2.55)=-0.432t-m/m ∑=-(-4.176)=4.176t/mb.β=-Eh Eh /103796.010138.1432.022⨯=⨯--- δ=08.各单位构件边缘力的计算 ①第一种荷载组合mm t Hmm t M /08.425.0)3796.0(176.4/98.134.0)3796.0(118.200--=⨯+-=--=⨯+-=柱柱9.柱壳各点的内力计算 ①第一种载荷组合a. =4×8.5×H xH x 34=b.mm t Hmm t M /08.4/98.100--=--=柱柱θN 1=116.63.098.1θN K Kno -=- =-1.98K=-1.98K=224.54)08.4(3.04θN K Kno -=-⨯ =4×(-4.08)K=-16.32K)(61210Mx Mx M +=柱壳各点的最终内力为No=+θN 1+Mx= +)(61210Mx Mx M +=经计算:最不利内力如下θN =123kn,外Mx=6KN ·m,Mo=1KN ·m 内Mx=19.8KN ·m ②第三种荷载组合因水压自由状态下的引起的内力、边缘力引起的二次内力,他们的组合下柱壳各点的内力中No 及Mx 变化不显著,此时省略。