《运筹学》第二章线性规划

合集下载

管理运筹学第二章 线性规划的图解法

管理运筹学第二章 线性规划的图解法

B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)

-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0

第二章线性规划

第二章线性规划



线性规划要研究的两类问题中都包含有约束条件和目 标函数。用数学的方式描述,规划的目的就是在给定 的限制条件(或称约束条件)下,求目标函数的极值 问题(包括极小值和极大值)。
2
线性规划的数学模型
3
解: 设产品 的产量为:1 , 产品 的产量为:x2 x
4
5
6
7

配料问题:由若干种不同价格、不同成分含量的原料,用 不同的配比混合调配出一些不同规格的产品,在原料的供 应量限制和保证产品成分含量的前提下,如何进行配料来 获取最大利润或使总成本最低。
15
2.2.3 线性规划求解的可能结局
1、有唯一的最优解
2、有无穷多个最优解 (将目标函数改为 z=4x1+3x2 )
x2
max z 4 x1 3 x2 x1 2 x2 5 2 x x 4 1 2 s.t. 4 x1 3 x2 9 x1 , x2 0
3x1 2 x2 4 x3 3
3x1 2 x2 4 x3 xs 3
剩余变量
变量xs实际上是原式左端减去右端的差,即 :
xs 3x1 2 x2 4 x3 3
当约束条件是“ ”型的不等式时,只要将该约 束条件左端减去一个非负的剩余变量即可化为等式。 无论是松弛变量还是剩余变量在决策中都不产生实际价 值,因此它们在目标函数中的系数都应该为零。有时也将松 29 弛变量和剩余变量统称为松弛变量。
2x1+x2=4 D C
x1+2x2=5 B 4x1+3x2=9 O A x1
16
3、无界解
指线性规划问题有可行解,但是 在可行域,目标函数值是无界的, 因而达不到有限最优值。因此线 性规划问题不存在最优解。

管理运筹学第二章线性规划的图解法

管理运筹学第二章线性规划的图解法

02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。

管理运筹学_第二章_线性规划的图解法

管理运筹学_第二章_线性规划的图解法

线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的

运筹学第二章第6节矩阵法求解线性规划问题

运筹学第二章第6节矩阵法求解线性规划问题

(3)初始单纯性表与当前单纯性表关系
单纯性法的每一步就是:令非基变量XN(XN1和 XS2)=0,则当前基本可行解X=(XB,0) =(B-1b,0)。当前的目标函数值为 Z=CBB-1b,通过刚才用矩阵法的展示,我们发现: 1)B:初始单纯性表中基。 2)BN:初始单纯性表非基变量在A中对应的矩阵。 3)B-1:初始单纯性表中单位矩阵所对应的列在当 前矩阵中所构成的矩阵。 4)CB:当前基变量的价值向量。 5)CN:当前非基变量的价值向量。
2 x1 [1] 4 0 2
3 x2 0 0 1 0
0 x3 1 0 0 0
0 x4 0 1 0 0
0 x5 0 1/4 -3/4 θ 4 -
-1/2 2
在迭代到单纯性表2时,当前的基变量为x3,x4,x2,其中 x3和x4是松弛变量。这时,松弛变量中,x5为基变量,x3和 x4为非基变量,因此:基变量XB由两部分组成,一部分是 XB1=x2,一部分是XS1=x3和x4;非基变量XN由两部分组成, 一部分是XN1=x1,另外一部分是XS2=x5。
BX X
B
B
b BN X
1
N1
S2 X
N1
S2
;
1
B b B B N1 X
1
1
1
B S 2 X s2 ;
1
目标函数: z C B B b (C N1 C B B B N1 ) X (C S 2 C B B I ) X
1 S N1
令非基变量=0,由上式得到:
x1 2 x 2 x 3 4 x1 4 x2 x
j

8
x4 0
16 x 5 12
j 1, 2 , , 5

运筹学第二章

运筹学第二章

例2.4:将以下线性规划问题转化为 标准形式
Max s.t. Z = 3 x1 - 5 x2 + 8 x3 2x1 + 2x2 - x3 = 15.7
4 x1
+ 3x3 = 8.9
x1 + x2 + x3 = 38 x2 , x3 ≥ 0
4.右端项有负值的问题:
在标准形式中,要求右端项 必须每一个分量非负。当某一个 右端项系数为负时,如 bi<0,则 把该等式约束两端同时乘以-1, 得到:
产品甲 设备A 3 产品乙 2 设备能力 (h) 65
设备B
设备C 利润(元/件)
2
0 1500
1
3 2500
40
75
问:如何安排生产计划,才能使制药厂利润最大?
解:设变量 xi为第i种(甲、乙)产品的生 产件数(i=1,2)。根据前面分析,可 以建立如下的线性规划模型: Max
z = 1500 x1 + 2500 x2
MinZ=∑xi
i=1
X6 +
x1 x1 + x2 x2 + x3 x3 + x4 x4 + x5 x5 + x6
≥ 8 ≥ 12
≥ 10
≥ 8 ≥ 6 ≥ 4
二、线性规划模型的一般形式
目标函数 s.t.
产品对资源的 单位消耗量
利润系数
Max(Min)z=c1x1+c2x2+……+cnxn
a11x1+a12x2+……+a1nxn≥(=、≤)b1 a21x1+a22x2+……+a2nxn≥(=、≤)b2 …… am1x1+am2x2+……+amnxn≥(=、≤)bm

运筹学--第二章 线性规划的对偶问题

运筹学--第二章 线性规划的对偶问题

习题二2.1 写出下列线性规划问题的对偶问题(1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤54x1+x2+x3≤20 2x1-x2+3x3=-4x j≥0 (j=1,2,3)x1-x3+x4≥1x1,x3≥0,x2,x4无约束(3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15x2+3x3+4x4≥-5 -5x1-6x2+10x3≤202x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束2.2 已知线性规划问题max z=CX,AX=b,X≥0。

分别说明发生下列情况时,其对偶问题的解的变化:(1)问题的第k个约束条件乘上常数λ(λ≠0);(2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0);'x代换。

(4)模型中全部x1用312.3 已知线性规划问题min z=8x1+6x2+3x3+6x4st. x1+2x2+x4≥33x1+x2+x3+x4≥6x3 +x4=2x1 +x3 ≥2x j≥0(j=1,2,3,4)(1) 写出其对偶问题;(2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。

2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量st. 2x1 +x3+x4≤8 y12x1+2x2+x3+2x4≤12 y2x j≥0(j=1,2,3,4)对偶问题的最优解y1*=4;y2*=1,试对偶问题的性质,求出原问题的最优解。

2.5 考虑线性规划问题max z=2x1+4x2+3x3st. 3x1+4 x2+2x3≤602x1+x2+2x3≤40x1+3x2+2x3≤80x j≥0 (j=1,2,3)4748(1)写出其对偶问题(2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解;(3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解;(4)比较(2)和(3)计算结果。

管理运筹学课件第2章线性规划

管理运筹学课件第2章线性规划

2019/7/14
课件
4
2.1.1 线性规划问题的提出
承导入案例
产品甲 产品乙 生产能力
设备A
2
1
10
设备B
1
1
8
单位利润 3
2
决策变量 (decision variable)
设两种产品产量为x1,x2,则有: 总利润表三达要式素
最大化 max z 3x1 2x2
目标函数 (objective function) 约束条件
最优值:z=18
10 2x1+x2=10
8
6
(2,6) z=3×2+2×6=18
【例2.3】用图解法求LP最优解
max z 3x1 2x2
s.t.
2xx11

x2 x2
≤10 ≤8
x1, x2 ≥ 0
可行域
o
45
令3x1+2x2=12
x1+x2=8
8
x1
2019/7/14
课件
课件
6
2.1.2 线性规划的数学模型
线性规划的一般形式:
max(min)z c1x1 c2x2 cn xn
a11x1 a12 x2 s.t.a21x1 a22 x2
am1x1 am2 x2
a1n xn ≤ (或≥, )b1 a2n xn ≤ (或≥, )b2
11
2.2.3 线性规划几何解的讨论
线性规划几何解存在四种情况:唯一最优解、无穷 多最优解、无界解、无可行解。 可行域为封闭有界区域时,可能存在唯一最优解, 无穷多最优解两种情况; 可行域为非封闭无界区域时,可能存在唯一最优解, 无穷多最优解,无界解三种情况; 可行域为空集时,没有可行解,原问题没有最优解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讨论一:模型求解时,可得到如下几种解的状况: (1)唯一最优解:只有一点为最优解点,简称唯一解; (2)无穷多最优解:有许多点为最优解点,简称无穷多解; (3)无界最优解:最优解取值无界,简称无界解; (4)无可行解:无可行域,模型约束条件矛盾。
讨论二:LP模型求解思路: (1)若LP模型可行域存在,则为一凸形集合; (2)若LP模型最优解存在,则其应在其可行域顶点上找到; (3)顶点与基本解、基本可行解的关系:
如 x1+x23 x1+x2+ x3=3
zmin
当 “”时,引进剩余(surplus)
z
变量 - xs; 如 x1+2x2 4 x1+2x2-x4=4
x
z = -
(4)约束右端项:当 bi < 0,则不等式 两端同乘(- 1)
z max z
例2-2 将以下线性规划问
题转化为标准形式
min z 2x1 3x2 x3
LP的标准化:
(1)变量:若 xj0,令 xj=-xj,xj0 若 xj无约束,则令 xj= xj-xj,xj0,xj0
(2)目标函数:若求 min z,则 即有 min z= - max (- z)
(3)约束方程:当 “”时,引进松 弛(slack)变量+xs; z
am1x1 am2x2 amjx j anmxn ()bm 称为约束条件,
x1,x2,…,xj,…,xn³0
称为变量的非负约束。
线性规划问题矩阵和向量的表达式
, ,
或 写 成
二 图解法
图解法的优点是直观性强,计算方便,但缺点是只适 用于问题中有两个变量的情况。
图解法的步骤是:建立坐标系,将约束条件在图上表 示;确立满足约束条件的解的范围;绘制出目标函数的图 形;确定最优解。
c2x2 a12x2 a22x2
cjx j a1jx j a2jx j
cn x n a1nxn a2nxn
(,)b1 (,)b2
am1x1 am2x2 amj x j amn xn (, )bm
x1
x2
xj
xn
0
线性规划模型的三要素:
(1)决策变量:指模型中要求解的未知量,简称变量。 (2)目标函数:指模型中要达到的目标的数学表达式。
目标函数 max z 2x1 3x2
2x1 2x2 12
约束条件
:
x1 2x2 8 4x1 16
4x2 12
x1 , x2 0
-4-
例2-1 美佳公司下设两个分工厂,两个仓库及一个配送中心。其中F1和 F2是两个工厂,W1和W2是两个仓库。DC是一个分销中心。由工 厂生产的产品经由图2-1所示的运输网络运往仓库。每一条路线 运输的单位成本在线段上给出,其中,F1→F2与DC→W2路线由
以如下线性规划问题为例说明如下:
max z 2x1 3x2
2 x1 2 x2 12
s.t.
x1 2 x2 8
4 x1
16
4 x2 12
x1, x2 0
a
b c d e f
图1-2
x2 2x1+2x2=12
Q4
Q3
Q2 (4,2)
max z 2x1 3x2
2x1 2x2 12
300元/单位 X7
X6
需求60 W2 单位
图2-1 美佳公司的配送网络
第二节 线性规划模型与图解法
一 线性规划问题的数学模型
数学模型就是用数学表达式和符号对研究对象数量关系所进 行的定量描述。
线性规划问题的一般形式通常表现为以下几种形式
max(min) z c1x1
s.t.
a11x1
a 21x1
---第 1 章 线性规划---
第三节 单纯形法
一、线性规划模型的标准形式
(1)变量:所有变量均xj 0 (2)目标函数:为取“max”形式 (3)约束条件:全部约束方程均为“=”连接 (4)约束右端项:bi 0
非标准形式情况有
变量: xj 0 ,或xj无约束 目标函数:min 约束条件:“”或“” 约束右端项: bi<0
第 二 章 线性规划
Linear Programming
-1-
第二章 线性规划
第一节:线性规划问题及其建模 第二节:线性规划模型与图解法 第三节:单纯形法 第四节:对偶问题 第五节:灵敏度分析 第六节:运输问题 第七节:数据包络分析 第八节:线性规划的应用
第一节 线性规划问题及其建模
某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位
产品所需的设备台时及A、B两种原材料的消耗,如表1-1所示。 每生产一件产品Ⅰ可获利2元,每生产一件产品Ⅱ可获利3元,问 应如何安排计划使该工厂获利最多?
资源 产品


拥有量
设备 A
2
2
12
设备 B
1
2
8
原材料 A
4
/
16
原材料 B
/
4
12
-3-
建立模型:
设 产品的产量 甲x1件 ,乙 x2件,则
x1 x2 2x3 3
s.t .
2x1 3x2 x1 x2
x3 5 x3 4
x1,
x3 0
解:设 z= - z, x2= x2 - x2 , x2 0 , x2 0, x40, x50, 则有
(3)约束条件:指模型中的变量取值所需要满足的一 切限制条件。
其中 max(min) z c1x1 c2x2 c jx j cn xn 称为目标函数
a11x1 a 21x1
a12x2 a22x2
a1jx j a2jx j
a1n x n a2nxn
()b1 ()b2
x1 2x2 8
4 x1
16
4x1=16
4x2 12
4x2 =12 x1, x2 0
x1+2x2=8
O
Q1
x1
唯一解 A
无界解
无穷多解 A
B
无可行解
步骤:(1)作平面直角坐标系,标上刻度; (2)做出约束方程所在直线,确定可行域; (3)做出一条目标函数等值线,判定优化方向; (4)沿优化方向移动,确定与可行域相切的点,确定最优 解,并计算最优值。
于受到路线中的桥梁承重上限的要求,因此有最大运输量限制。 其他路线有足够的运输能力来运输两个工厂生产的货物。
生产50 单位 F1
900元/单位 400元/单位
x3
W1 需求30
单位
200 x1
x2
元/
DC
单位 最多10单位
生产40 单位 F2
300元/单位 x4
200元/单位
100元/单位 最多80单位 x5
相关文档
最新文档