天体运动高考必考题

合集下载

高考物理专题练习:天体运动(含答案)

高考物理专题练习:天体运动(含答案)

高三总复习天体运动专项训练1.2018年5月9日2时28分,我国在太原卫星发射中心成功发射了高分五号卫星.该卫星绕地球作圆周运动,质量为m ,轨道半径约为地球半径R 的4倍.已知地球表面的重力加速度为g ,忽略地球自转的影响,则( )A .卫星的绕行速率大于7.9 km/sB .卫星的动能大小约为mgR 8C .卫星所在高度的重力加速度大小约为14g D .卫星的绕行周期约为4πRg2.2018年4月10日,中国北斗卫星导航系统首个海外中心举行揭牌仪式,目前北斗卫星导航系统由29颗在不同轨道上运行的卫星组成.关于北斗系统内的卫星以下说法正确的是( )A .轨道高的卫星周期短B .质量大的卫星机械能就大C .轨道高的卫星受到的万有引力小D .卫星的线速度都小于第一宇宙速度3.嫦娥三号月球探测卫星先贴近地球表面绕地球做匀速圆周运动,此时其动能为E k1,周期为T 1;再控制它进行一系列变轨,最终进入贴近月球表面的圆轨道做匀速圆周运动,此时其动能为E k2,周期为T 2,已知地球的质量为M 1,月球的质量为M 2,则动能之比为( )A. 3⎝⎛⎭⎫M 1T 2M 2T 12 B. ⎝⎛⎭⎫M 1T 2M 2T 13 C. 3⎝⎛⎭⎫M 1T 1M 2T 22 D. 3⎝⎛⎭⎫M 1T 1M 2T 2 4.冥王星绕太阳的公转轨道是个椭圆,公转周期为T 0,质量为m ,其近日点A 到太阳的距离为a ,远日点C 到太阳的距离为b ,半短轴的长度为c ,A 、C 两点的曲率半径均为ka (通过该点和曲线上紧邻该点两侧的两点作一圆,在极限情况下,这个圆就叫作该点的曲率圆,其半径叫作该点的曲率半径),如图所示.若太阳的质量为M ,万有引力常量为G ,忽略其他行星对它的影响及太阳半径的大小,则( )A .冥王星从A →B 所用的时间等于T 04B .冥王星从C →D →A 的过程中,万有引力对它做的功为12GMmk ⎝⎛⎭⎫2a -a b 2 C .冥王星从C →D →A 的过程中,万有引力对它做的功为12GMmk ⎝⎛⎭⎫1a -a b 2 D .冥王星在B 点的加速度为4GM (b +a )2+4c 25.“网易直播”播出了在国际空间站观看地球的视频,让广大网友大饱眼福.国际空间站(International Space Station)是一艘围绕地球运转的载人宇宙飞船,轨道近地点距离地球表面379.7 km ,远地点距离地球表面403.8 km.运行轨道近似圆周.网络直播画面显示了国际空间站上的摄像机拍摄到的地球实时画面.如果画面处于黑屏状态,那么说明国际空间站正处于夜晚,请问,大约最多经过多长时间后,国际空间站就会迎来日出?(已知地球半径约为R =6.4×106 m)( )A .24小时B.12小时 C .1小时 D.45分钟6.北京航天飞行控制中心对“嫦娥二号”卫星实施多次变轨控制并获得成功.首次变轨是在卫星运行到远地点时实施的,紧随其后进行的3次变轨均在近地点实施.“嫦娥二号”卫星的首次变轨之所以选择在远地点实施,是为了抬高卫星近地点的轨道高度.同样的道理,要抬高远地点的高度就需要在近地点实施变轨.图为“嫦娥二号”某次在近地点A 由轨道1变轨为轨道2的示意图,下列说法中正确的是( )A .“嫦娥二号”在轨道1的A 点处应点火加速B .“嫦娥二号”在轨道1的A 点处的速度比在轨道2的A 点处的速度大C .“嫦娥二号”在轨道1的A 点处的加速度比在轨道2的A 点处的加速度大D .“嫦娥二号”在轨道1的B 点处的机械能比在轨道2的C 点处的机械能大7.如图所示,某极地轨道卫星的运行轨道平面通过地球的南北两极,已知该卫星从北纬60°的正上方,按图示方向第一次运行到南纬60°的正上方时所用时间为1 h ,则下列说法正确的是( )A .该卫星与同步卫星的运行半径之比为1∶4B .该卫星与同步卫星的运行速度之比为1∶2C .该卫星的运行速度一定大于7.9 km/sD .该卫星的机械能一定大于同步卫星的机械能8.如图所示是“嫦娥五号”的飞行轨道示意图,其中弧形轨道为地月转移轨道,轨道Ⅰ是“嫦娥五号”绕月运行的圆形轨道.已知轨道Ⅰ到月球表面的高度为H ,月球半径为R ,月球表面的重力加速度为g ,则下列说法中正确的是( )A .“嫦娥五号”在地球表面的发射速度应大于11.2 km/sB .“嫦娥五号”在P 点被月球捕获后沿轨道Ⅲ无动力飞行运动到Q 点的过程中,月球与“嫦娥五号”所组成的系统机械能不断增大C .“嫦娥五号”在轨道Ⅰ上绕月运行的速度大小为R g (R +H )R +HD .“嫦娥五号”在从月球表面返回时的发射速度要小于gR9.1772年,法籍意大利数学家拉格朗日在论文《三体问题》中指出:两个质量相差悬殊的天体(如太阳和地球)所在的同一平面上有5个特殊点,如图中的L 1、L 2、L 3、L 4、L 5所示,人们称为拉格朗日点.若飞行器位于这些点上,会在太阳与地球共同引力作用下,可以几乎不消耗燃料而保持与地球同步绕太阳做圆周运动.若发射一颗卫星定位于拉格朗日点L 2,下列说法正确的是( )A .该卫星绕太阳运动周期和地球自转周期相等B .该卫星在点L 2处于平衡状态C .该卫星绕太阳运动的向心加速度大于地球绕太阳运动的向心加速度D .该卫星在L 2处所受太阳和地球引力的合力比在L 1处大10.假设宇宙中有一质量为M ,半径为R 的星球,由于自转角速度较大,赤道上的物体恰好处于“漂浮”状态,如图所示.为测定该星球自转的角速度ω0和自转周期T 0,某宇航员在该星球的“极点”A 测量出一质量为m的物体的“重力”为G 0,关于该星球的描述正确的是( )A .该星球的自转角速度为ω0=G 0MRB .该星球的自转角速度为ω0=G 0mRC .该星球的自转周期为T 0=2πMR G 0D .该星球的自转周期为T 0=2πmR G 0 11.近期天文学界有很多新发现,若某一新发现的星体质量为m 、半径为R 、自转周期为T ,引力常量为G .下列说法正确的是( )A .如果该星体的自转周期T <2π R 3Gm,会解体 B .如果该星体的自转周期T >2πR 3Gm ,会解体 C .该星体表面的引力加速度为Gm RD .如果有卫星靠近该星体表面飞行,其速度大小为Gm R12.我国计划在2019年发射“嫦娥五号”探测器,实现月球软着陆以及采样返回,这意味着我国探月工程“绕、落、回”三步走的最后一步即将完成.“嫦娥五号”探测器在月球表面着陆的过程可以简化如下,探测器从圆轨道1上A 点减速后变轨到椭圆轨道2,之后又在轨道2上的B 点变轨到近月圆轨道3.已知探测器在1轨道上周期为T 1,O 为月球球心,C 为轨道3上的一点,AC 与AO 最大夹角为θ,则下列说法正确的是( )A .探测器要从轨道2变轨到轨道3需要在B 点点火加速B .探测器在轨道1的速度小于在轨道2经过B 点时的速度C .探测器在轨道2上经过A 点时速度最小,加速度最大D .探测器在轨道3上运行的周期为sin 3θT 113.某行星的一颗同步卫星绕行星中心做圆周运动的周期为T ,假设该同步卫星下方行星表面站立一个观察者,在观察该同步卫星的过程中,发现有16T 时间看不到该卫星.已知当太阳光照射到该卫星表面时才可能被观察者观察到,该行星的半径为R .则下列说法中正确的是( )A .该同步卫星的轨道半径为6.6RB .该同步卫星的轨道半径为2RC .行星表面上两点与该同步卫星连线的夹角最大值为60°D .行星表面上两点与该同步卫星连线的夹角最大值为120°14.如图所示,在某行星表面上有一倾斜的匀质圆盘,盘面与水平面的夹角为30°,圆盘绕垂直于盘面的固定对称轴以恒定的角速度转动,盘面上离转轴距离L 处有一小物体与圆盘保持相对静止,当圆盘的角速度为ω时,小物块刚要滑动.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),该星球的半径为R ,引力常量为G ,下列说法正确的是( )A .这个行星的质量M =ω2R 2L GB .这个行星的第一宇宙速度v 1=2ωLRC .这个行星的同步卫星的周期是πωR LD .离行星表面距离为R 的地方的重力加速度为ω2L15、(多选)如图所示,Gliese581g 行星距离地球约20亿光年(189.21万亿公里),公转周期约为37年,该行星位于天秤座星群,它的半径大约是地球的2倍,重力加速度与地球相近.则下列说法正确的是( )A .飞船在Gliese581g 表面附近运行时的速度小于9 km/sB .该行星的平均密度约是地球平均密度的12C .该行星的质量约为地球质量的2倍D .在地球上发射航天器到达该星球,航天器的发射速度至少要达到第三宇宙速度16、某行星外围有一圈厚度为d 的发光带(发光的物质),简化为如图甲所示模型,R 为该行星除发光带以外的半径.现不知发光带是该行星的组成部分还是环绕该行星的卫星群,某科学家做了精确地观测,发现发光带绕行星中心的运行速度v 与到行星中心的距离r 的关系如图乙所示(图中所标为已知),则下列说法正确的是( )A .发光带是该行星的组成部分B .该行星的质量M =v 20R GC .行星表面的重力加速度g =v 20RD .该行星的平均密度为ρ=3v 20R 4πG (R +d )317由于行星自转的影响,行星表面的重力加速度会随纬度的变化而有所不同.宇航员在某行星的北极处从高h 处自由释放一重物,测得经过时间t 1重物下落到行星的表面,而在该行星赤道处从高h 处自由释放一重物,测得经过时间t 2重物下落到行星的表面,已知行星的半径为R ,引力常量为G ,则这个行星的平均密度是( )A .ρ=3h 2πGRt 21B.ρ=3h 4πGRt 21 C .ρ=3h 2πGRt 22 D.ρ=3h 4πGRt 2218如图所示,a 为静止在地球赤道上的物体,b 为近地卫星,c 为同步卫星,d 为高空探测卫星.a 为它们的向心加速度大小,r 为它们到地心的距离,T 为周期,l 、θ分别为它们在相同时间内转过的弧长和转过的圆心角,g 为地面重力加速度,则下列图象正确的是( )19、2018年1月19号,以周总理命名的“淮安号”恩来星在甘肃酒泉卫星发射中心,搭乘长征-11号火箭顺利发射升空.“淮安号”恩来星在距离地面高度为535 km 的极地轨道上运行.已知地球同步卫星轨道高度约36 000 km ,地球半径约6 400 km.下列说法正确的是( )A .“淮安号”恩来星的运行速度小于7.9 km/sB .“淮安号”恩来星的运行角速度小于地球自转角速度C .经估算,“淮安号”恩来星的运行周期约为1.6 hD .经估算,“淮安号”恩来星的加速度约为地球表面重力加速度的三分之二20、如图所示,卫星在半径为r1的圆轨道上运行时速度为v 1,当其运动经过A 点时点火加速,使卫星进入椭圆轨道运行,椭圆轨道的远地点B 与地心的距离为r 2,卫星经过B 点的速度为v B ,若规定无穷远处引力势能为0,则引力势能的表达式E p =-G Mm r,其中G 为引力常量,M 为中心天体质量,m 为卫星的质量,r 为两者质心间距,若卫星运动过程中仅受万有引力作用,则下列说法正确的是( )A .vB <v 1B .卫星在椭圆轨道上A 点的加速度小于B 点的加速度C .卫星在A 点加速后的速度v A =2GM ⎝⎛⎭⎫1r 1-1r 2+v 2B D .卫星从A 点运动至B 点的最短时间为πv 1(r 1+r 2)32r 1高三总复习天体运动专项训练答案1解析:选B.7.9 km/s 是第一宇宙速度,是卫星最大的环绕速度,所以该卫星的速度小于7.9 km/s.故A 错误;由万有引力提供向心力:G Mm (4R )2=m v 24R ,解得:v =GM 4R,由以上可得动能为:E k =12m v 2=18mgR ,故B 正确;卫星所在高度的重力加速度大小约为:G Mm (4R )2=ma ,根据万有引力等于重力:G Mm R 2=mg ,联立以上解得:a =g 16,故C 错误;卫星的绕行周期约为:G Mm (4R )2=m 4π2T 2×4R ,根据万有引力等于重力:G Mm R 2=mg ,联立以上解得:T =16πR g,故D 错误.所以B 正确,A 、C 、D 错误. 2、解析:选D.轨道高的卫星轨道半径大、运行的周期大,选项A 错.质量大的卫星运行轨道高度不一定大,其机械能也不一定大.选项B 错.轨道高的卫星离地心远,但其质量可能较大,受到地球的引力也不一定小,选项C 错.第一宇宙速度是发射卫星的最小速度,也等于卫星在轨运行时的最大速度,故D 对.3、解析:选A.探测卫星绕地球或者月球做匀速圆周运动,由m v 2r =4π2mr T2可知,动能表达式E k =12m v 2=2m π2r 2T 2,由GMm r 2=4π2mr T 2可知E k =2π2m T2⎝⎛⎭⎫GMT 2223,因此动能之比为3⎝⎛⎭⎫M 1T 2M 2T 12,因此A 正确. 4、解析:选C.冥王星绕太阳做变速曲线运动,选项A 错;冥王星运动到A 、C 两点可看作半径均为ka ,速度为v A 、v C 的圆周运动,则有GMm a 2=m v 2A ka ,GMm b 2=m v 2C ka,从C →D →A 由动能定理得W =12m v 2A -12m v 2C ,解以上三式得W =12GMmk ⎝⎛⎭⎫1a -a b 2,选项B 错、C 正确;在B 点时,设行星到太阳的距离为r ,由几何关系得:r 2=c 2+(b -a )24,则加速度a =GMmr 2m =4GM 4c 2+(b -a )2,选项D 错. 5、解析:选D.飞船轨道近似正圆,围绕地球做匀速圆周运动,设其周期为T ,G Mm r2=m 4π2T 2r ,得T =2πr 3GM,由于飞船距离地面大约是400 km ,属于近地卫星,轨道半径近似等于地球半径R ,又因为GM =R 2g ,T =2πR g,代入数据可得T =90分钟,由于最多经过半个周期后,国际空间站就会迎来日出,所以D 正确.6、解析:选A.卫星要由轨道1变轨为轨道2需在A 处做离心运动,应加速使其做圆周运动所需向心力m v 2r 大于地球所能提供的万有引力G Mm r 2,故A 项正确,B 项错误;由G Mm r2=ma 可知,卫星在不同轨道运行到同一点处的加速度大小相等,C 项错误;卫星由轨道1变轨到轨道2,反冲发动机的推力对卫星做正功,卫星的机械能增加,所以卫星在轨道1的B 点处的机械能比在轨道2的C 点处的机械能小,D 项错误.7、解析:选A.卫星从北纬60°的正上方,按图示方向第一次运行到南纬60°的正上方时,偏转的角度是120°,刚好为运动周期的13,所以卫星运行的周期为3 h ,同步卫星的周期是24 h ,由GMm r 2=m ·4π2r T 2得:r 31r 32=T 21T 22=32242=164,所以:r 1r 2=14,故A 正确;由GMm r 2=m v 2r 得:v 1v 2=r 2r 1=41=21,故B 错误;7.9 km/s 是卫星环绕地球做匀速圆周运动的最大速度,所以该卫星的运行速度一定小于7.9 km/s ,故C 错误;由于不知道卫星的质量关系,故D 错误.8、解析:选C.在地球表面发射“嫦娥五号”的速度大于11.2 km/s 时,“嫦娥五号”将脱离地球束缚,A 错误;“嫦娥五号”在轨道Ⅲ由P 点运动到Q 点的过程中,只有月球引力做功,将引力势能转化成动能,机械能不变,B 错误;由题中信息知“嫦娥五号”在轨道Ⅰ上运行时引力提供向心力G Mm (R +H )2=m v 2R +H ,又g =GM R 2,故有v =R g (R +H )R +H ,C 正确;当“嫦娥五号”在月球表面绕行时由G Mm R 2=m v 20R 和g =GM R2知v 0=gR ,此速度是月球的第一宇宙速度,是发射的最小速度,是绕行的最大速度,只有“嫦娥五号”的速度比v 0=gR 大,才能上高轨,D 错误.9、解析:选CD.该卫星保持与地球同步绕太阳做圆周运动,绕太阳运动周期和地球公转周期相等,选项A 错误;由于该卫星绕太阳做匀速圆周运动,合力提供向心力,选项B 错误;该卫星绕太阳运动的角速度与地球绕太阳运动的角速度相同,但运动半径较大,由a =ω2r 知该卫星的向心加速度较大,选项C 正确;该卫星在L 1点与L 2点均能与地球同步绕太阳运动,即运动的角速度相同,但在L 2处的运动半径较大,由F 合=F 向=mω2r 知该卫星在L 2处受到的合力较大,选项D 正确.10解析:选BD.赤道上的物体恰好处于“漂浮”状态,则有:G Mm R 2=mω2R ,“极点”上的物体满足:G 0=G MmR 2,联立可得:ω0=G 0mR ,该星球的自转周期:T 0=2πω0=2πmRG 0,选项A 、C 错误,B 、D 正确.11、解析:选AD.如果在该星体表面有一物质,质量为m ′,当它受到的万有引力大于跟随星体自转所需要的向心力时呈稳定状态,即G mm ′R 2>m ′R 4π2T 2,化简得T >2πR 3Gm,即T >2πR 3Gm时,星体不会解体,而该星体的自转周期T <2π R 3Gm时,会解体,A 正确,B 错误;在该星体表面,有G mm ′R 2=m ′g ,所以g =GmR 2,C 错误;如果有卫星靠近该星体表面飞行,有G mm ″R 2=m ″v 2R,解得v =GmR,D 正确. 12、解析:选BD.探测器要从轨道2变轨到轨道3需要在B 点减速,A 错误;探测器在轨道1的速度小于在轨道3的速度,探测器在轨道2经过B 点的速度大于在轨道3的速度,故探测器在轨道1的速度小于在轨道2经过B 点时的速度,B 正确;探测器在轨道2上经过A 点时速度最小,A 点是轨道2上距离月球最远的点,故由万有引力产生的加速度最小,C错误;由开普勒第三定律T 21r 31=T 23r 33,其中AC 与AO 的最大夹角为θ,则有r 3r 1=sin θ,解得T 3=sin 3θT 1,D 正确.13、解析:选BC.根据光的直线传播规律,在观察该同步卫星的过程中,发现有16T 时间看不到该卫星,同步卫星相对行星中心转动角度为θ,则有sin θ2=R r ,结合θ=ωt =2πT ×T 6=π3,解得该同步卫星的轨道半径为r =2R ,故B 正确,A 错误;行星表面上两点与该同步卫星连线的夹角最大值为α,则有r sin α2=R ,所以行星表面上两点与该同步卫星连线的夹角最大值为60°,故C 正确,D 错误;故选BC.14、解析:选BD.当物体转到圆盘的最低点,所受的静摩擦力沿斜面向上达到最大时,角速度最大,由牛顿第二定律得:μmg cos 30°-mg sin 30°=mω2L ,所以:g =ω2Lμcos 30°-sin 30°=4ω2L ,绕该行星表面做匀速圆周运动的物体受到的万有引力提供向心力,则:GMmR 2=mg ,解得:M =gR 2G =4ω2R 2LG ,故A 错误;行星的第一宇宙速度v 1=gR =2ωLR ,故B 正确;因为不知道行星的自转情况,所以不能求出同步卫星的周期,故C 错误;离行星表面距离为R 的地方的万有引力:mg ′=GMm (2R )2=14mg ;即重力加速度为g ′=ω2L ,故D 正确.故选BD.15、解析 飞船在Gliese581g 表面附近运行时,万有引力提供向心力,则mg =m v 2R ,解得v =gR ,该星球半径大约是地球的2倍,重力加速度与地球相近,所以在该星球表面运行速度约为地球表面运行速度的2倍,在地球表面附近运行时的速度为7.9 km/s ,所以在该星球表面运行速度约为11.17 km/s ,故A 错误;根据密度的定义式ρ=M V =gR 2G 43πR 3=3g4πGR ,故该行星的平均密度与地球平均密度之比等于半径的反比,即该行星的平均密度约是地球平均密度的12,故B 正确;忽略星球自转的影响,根据万有引力等于重力,则有mg =G Mm R 2,g =GMR 2,这颗行星的重力加速度与地球相近,它的半径大约是地球的2倍,所以它的质量是地球的4倍,故C 错误;由于这颗行星在太阳系外,所以航天器的发射速度至少要达到第三宇宙速度,故D 正确.16、解析:选BC.若发光带是该行星的组成部分,则其角速度与行星自转角速度相同,应有v =ωr ,v 与r 应成正比,与图象不符,因此发光带不是该行星的组成部分,故A 错误;设发光带是环绕该行星的卫星群,由万有引力提供向心力,则有:G Mmr 2=m v 2r ,得该行星的质量为:M =v 2r G ;由题图乙知,r =R 时,v =v 0,则有:M=v 20R G ,故B 正确;当r =R 时有mg =m v 20R ,得行星表面的重力加速度g =v 20R ,故C 正确;该行星的平均密度为ρ=M43πR 3=3v 204πGR 2,故D 错误. 17解析:选A.在北极,由h =12gt 21得:g =2h t 21,根据G Mm R 2=mg 得星球的质量为M =gR 2G =2hR 2Gt 21,则星球的密度为ρ=M V =M 43πR 3=3h2πGt 21R,故A 正确,B 、 C 、D 错误.18、解析:选C.设地球质量为M ,卫星质量为m .对b 、c 、d 三颗卫星有:G Mmr 2=m v 2r =mω2r =m ⎝⎛⎭⎫2πT 2r =ma ,可得:v =GMr ,ω=GMr 3,T =2πr 3GM ,a =GMr2;因c 为同步卫星,则T a =T c ,选项B 错误;a a <a c <g ,选项A 错误;由v =ωr 可知v a <v c ,由l =v t 可知,选项D 错误;由ωb >ωc =ωa >ωd 可知,选项C 正确.19、解析:选AC.由题意知“淮安号”卫星的高度小于同步卫星的高度,而同步卫星的角速度与地球自转的角速度相等,故选项A 对、B 错;由r 3T 2=k 对“淮安号”星进行周期估算,则r 3同T 2同=r 3卫T 2卫,r 同=36 000 km +6 400 km≈7R 地,T 同=24 h ,r 卫=6 400 km +h =1.1R 地,经估算可知T 卫=1.6 h ,C 项正确;地球表面的重力加速度g =GMR 2地,而“淮安号”卫星的加速度可表示为a ′=GM (R 地+h )2,比较可得a ′g =56,选项D 错. 20、解析 卫星在B 点的速度v B 小于以r 2为半径做匀速圆周运动的速度,以r 2为半径做匀速圆周运动的速度小于v 1,故v B <v 1,A 正确;G Mmr 2=ma ,可知A 点的加速度更大,B 错误;从A 点到B 点的过程由机械能守恒得-G Mm r 1+12m v 2A =-G Mm r 2+12m v 2B,解得v A =2GM ⎝⎛⎭⎫1r 1-1r 2+v 2B ,C 正确;卫星在圆轨道上的运动周期T 1=2πr 1v 1,由开普勒第三定律:r 31T 21=⎝⎛⎭⎫r 1+r 223T 22,解得T 2=2πr 1v 1(r 1+r 2)38r 31=2πv 1(r 1+r 2)38r 1,卫星从A 点运动至B 点的最短时间为T 22=πv 1(r 1+r 2)38r 1,D 错误.。

天体运动高考题精选

天体运动高考题精选

2011届物理天体专题1、如图所示,为一皮带传动装置,右轮半径为r ,a 为它边缘上一点;左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心的距离为r 。

c 点和d 点分别位于小轮和大轮的边缘上。

若传动过程中皮带不打滑,则( )①a 点和b 点的线速度大小相等②a 点和b 点的角速度大小相等③a 点和c 点的线速度大小相等④a 点和d 点的向心加速度大小相等A.①③B. ②③C. ③④D.②④2、如图所示,轻绳一端系一小球,另一端固定于O 点,在O 点正下方的P 点钉一颗钉子,使悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时( ) ①小球的瞬时速度突然变大②小球的加速度突然变大 ③小球的所受的向心力突然变大④悬线所受的拉力突然变大A. ①③④B. ②③④C. ①②④D.①②③3、如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平布做匀速圆周运动,以下说法正确的是( )A. V A >V BB. ωA >ωBC. a A >a BD.压力N A >N B4、设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆轨道运动,则与开采前相比 ( )①地球与月球间的万有引力将变大; ②地球与月球间的万有引力将变小;③月球绕地球运动的周期将变长; ④月球绕地球的周期将变短。

A. ①③B. ②③C.①④D.②④5、地球表面处的重力加速度为g ,则在距地面高度等于地球半径处的重力加速度为( )A. gB. g/2C. g/4D. 2g6.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上。

用R 表示地球的半径,g 表示地球表面处的重力加速度,g /表示宇宙飞船所在处的地球引力加速度,N 表示人对秤的压力,下面说法正确的是 ( )A .0=NB .g r R g 22='C .0='gD .g rR m N =7.一物体在地球表面上的重力为16N,它在以5m/s 2的加速度加速上升的火箭中的示重9N,则此时火箭离地面的高度是地球半径R 的( )A.2倍B.3倍C.4倍D.0.5倍8.一名宇航员来到某星球上,如果该星球的质量为地球的一半,它的直径也为地球的一半,那么这名宇航员在该星球上的重力是他在地球上重力的……………………( )A. 4倍B. 0.5倍C. 0.25倍D. 2倍9、火星与地球的质量之比为P ,半径之比为q ,则火星表面的重力加速度和地球表面的重力加速度之比为( ) A. 2q p B.2pq C.q p D.pq 10. 2010·上海月球绕地球做匀速圆周运动的向心加速度大小为a ,设月球表面的重力加速度大小为1g ,在月球绕地球运行的轨道处由地球引力产生的加速度大小为2g ,则( )(A )1g a = (B )2g a = (C )12g g a += (D )21g g a -=11.有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面上重力加速度的4倍,则该星球的质量将是地球质量的( ) A.41; B.4倍; C.16倍; D.64倍。

高考天体运动经典

高考天体运动经典

曲线运动2——万有引力与航天:开普勒三大定律1、(单选)关于行星运动的规律,下列说法符合史实的是( )A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律【答案】B 【解析】开普勒在天文观测数据的基础上,总结出了行星运动的规律,牛顿在开普勒研究基础上结合自己发现的牛顿运动定律,发现了万有引力定律,指出了行星按照这些规律运动的原因,选项B正确.2、(单选)为了探测引力波,“天琴计划”预计发射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q的轨道半径约为地球半径的4倍。

P与Q的周期之比约为()A. 2:1B. 4:1C. 8:1D. 16:1【来源】2018年全国普通高等学校招生统一考试物理(全国III卷)【答案】C3、(多选)如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T。

若只考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中()A.从P到M所用的时间等于0/4TB.从Q到N阶段,机械能逐渐变大C.从P到Q阶段,速率逐渐变小D.从M到N阶段,万有引力对它先做负功后做正功【答案】CD4、(单选)2015年12月10日,我国成功将中星1C卫星发射升空,卫星顺利进入预定转移轨道。

如图所示为该卫星沿椭圆轨道绕地球运动的示意图,已知地球半径为R,地球表面重力加速度g,卫星远地点P距地心O的距离为3R,则()A. 卫星在远地点的速度大于B. 卫星经过远地点时的速度最大C. 卫星经过远地点时的加速度小于D. 卫星经过远地点时加速,卫星可能再次经过远地点【答案】 D曲线运动2——万有引力与航天:万有引力的应用1、(单选)若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7.已知该行星质量约为地球的7倍,地球的半径为R.由此可知,该行星的半径约为( )A.12R B.72R C.2R D.72R①/②得r=2R因此A、B、D错,C对.2、(单选)据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6.4倍,半径约为地球半径的2倍.那么,一个在地球表面能举起64 kg物体的人在这个行星表面能举起的物体的质量约为多少(地球表面重力加速度g=10 m/s2)( )A.40 kg B.50 kg C.60 kg D.30 kg解析:根据万有引力等于重力G Mm R 2=mg 得g =GM R2,因为行星质量约为地球质量的6.4倍,其半径是地球半径的2倍,则行星表面重力加速度是地球表面重力加速度的1.6倍,而人的举力认为是不变的,则人在行星表面所举起的重物质量为m =m 01.6=641.6kg =40 kg ,故A 正确.答案:A 3、(多选)宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原地.若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面附近的重力加速度为g ′,空气阻力不计.则( )A .g ′∶g =1∶5B .g ′∶g =5∶2C .M 星∶M 地=1∶20D .M 星∶M 地=1∶80解析:由速度对称性知竖直上抛的小球在空中运动时间t =2v 0g ,因此得g ′g =t 5t =15,A 正确,B 错误;由G Mm R2=mg 得M =gR 2G ,因而M 星M 地=g ′R 2星gR 2地=15×(14)2=180,C 错误,D 正确.答案:AD4、(单选)已知地球赤道处的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a 。

天体运动真题

天体运动真题

天体运动(04—14北京高考真题)1.(04北京高考)1990年5月,紫金山天文台将他们发现的第2752号小行星命名为吴健雄星,该小行星的半径为r=16km 。

若将此小行星和地球均看成质量分布均匀的球体,小行星密度与地球相同。

已知地球半径R =6400km,地球表面重力加速度为g 。

这个小行星表面的重力加速度为 ( )A .400g B.g 4001 C.20g D.g 201 2.(05北京高考)20.已知地球质量大约是月球质量的81倍,地球半径大约是月球半径的4 倍。

不考虑地球、月球自转的影响,由以上数据可推算出( )A.地球的平均密度与月球的平均密度之比约为9:8B.地球表面重力加速度与月球表面重力加速度之比约为9:4C.靠近地球表面沿圆轨道运行的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9D.靠近地球表面沿圆轨道运行的航天器线速度与靠近月球表面沿圆轨道运行的航天器线速度之比约为9:43.(06北京高考)一飞船在某行星表面附近沿圆轨道绕该行星飞行。

认为行星是密度均匀的球体,要确定该行星的密度,只需要测量 ( )A.飞船的轨道半径B.飞船的运行速度C.飞船的运行周期D.行星的质量4.(07北京高考)不久前欧洲天文学就发现了一颗可能适合人类居住的行星,命名为“格利斯581c ”。

该行星的质量是地球的5倍,直径是地球的1.5倍。

设想在该行星表面附近绕行星沿圆轨道运行的人造卫星的动能为k1E ,在地球表面附近绕地球沿圆轨道运行的同质量的人造卫星的动能为k2E ,则k1k2E E 为 ( ) A 、0.13 B 、0.3 C 、3.33 D 、7.55.(08北京高考)据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高度200 km,运行周期127分钟。

若还知道引力常量和月球平均半径,仅利用以上条件不能..求出的是( ) A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月球运行的速度D.卫星绕月运行的加速度6.(09北京高考) 已知地球半径为R ,地球表面重力加速度为g ,不考虑地球自转的影响。

人教高中物理新高考考点14 天体运动与人造卫星

人教高中物理新高考考点14 天体运动与人造卫星

考点规范练14天体运动与人造卫星一、单项选择题1.已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为()A.3.5 km/sB.5.0 km/sC.17.7 km/sD.35.2 km/s答案:A解析:根据题设条件可知m地=10m火,r地=2r火,万有引力提供向心力Gmm'r2=m'v2r,得v=√Gmr,即v火v地=√m火r地m地r火=√15,因为地球的第一宇宙速度为v地=7.9km/s,所以航天器在火星表面附近绕火星做匀速圆周运动的速率v火=3.5km/s,选项A正确。

2.有a、b、c、d四颗卫星,a还未发射,在地球赤道上随地球一起转动,b在地面附近近地轨道上正常运动,c是地球同步卫星,d是高空探测卫星。

设地球自转周期为24 h,所有卫星的运动均视为匀速圆周运动,各卫星排列位置如图所示。

则下列关于卫星的说法中正确的是()A.a的向心加速度等于重力加速度gB.c在4 h内转过的圆心角为π6C.b在相同的时间内转过的弧长最长D.d的运动周期可能是23 h答案:C解析:在地球赤道表面随地球自转的卫星,其所受万有引力提供重力和做圆周运动的向心力,a的向心加速度小于重力加速度g,选项A错误;由于c为同步卫星,所以c的周期为24h,4h内转过的圆心角为θ=π3,选项B错误;由四颗卫星的运行情况可知,b运动的线速度是最大的,所以其在相同的时间内转过的弧长最长,选项C正确;d运行的周期比c要长,所以其周期应大于24h,选项D错误。

3.(2019·浙江卷)某颗北斗导航卫星属于地球静止轨道卫星(即卫星相对于地面静止)。

则此卫星的()A.线速度大于第一宇宙速度B.周期小于同步卫星的周期C.角速度大于月球绕地球运行的角速度D.向心加速度大于地面的重力加速度 答案:C解析:根据万有引力提供向心力,Gm 地m r 2=m v 2r =m ω2r=ma ,可推导出,随轨道半径r 增加,线速度、角速度、加速度会减小;月球轨道半径最大,北斗卫星次之,近地卫星最小,故A 、D 错误,C 正确。

高三一轮专题复习:天体运动题型归纳

高三一轮专题复习:天体运动题型归纳

天体运动题型归纳题型一:天体的自转【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。

已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( )A .124π3G ρ⎛⎫ ⎪⎝⎭B .1234πG ρ⎛⎫ ⎪⎝⎭C .12πG ρ⎛⎫ ⎪⎝⎭D .123πG ρ⎛⎫ ⎪⎝⎭解析:在赤道上22R m mg RMmGω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m RMmGω=②又 ②③④得:23GT πρ= ④即21)3(ρπG T =选D 练习1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布均匀的球体,半径为R 。

则地球的自转周期为( )A. 2T =B.2T =C.R N m T ∆=π2D.N m RT ∆=π22、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为:A.0203g g g GT π B. 0203g g g GT π C. 23GT π D. 023g g GTπρ 题型二:近地问题+绕行问题【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。

已知月球半径为R ,引力常量为G 。

则下列说法正确的是A .月球表面的重力加速度g 月=h v 20L2B .月球的质量m 月=hR 2v 20GL 2 C .月球的第一宇宙速度v =v 0L2h D .月球的平均密度ρ=3h v 202πGL 2R解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2,联立解得g 月=2h v 20L 2;由mg 月=G mm 月R 2,解得m 月=2hR 2v 20GT 2;由mg 月=m v 2R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3h v 202πGL 2R。

天体运动高考题精选

天体运动高考题精选

2011届物理天体专题1、如图所示,为一皮带传动装置,右轮半径为r ,a 为它边缘上一点;左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心的距离为r 。

c 点和d 点分别位于小轮和大轮的边缘上。

若传动过程中皮带不打滑,则( )①a 点和b 点的线速度大小相等②a 点和b 点的角速度大小相等③a 点和c 点的线速度大小相等④a 点和d 点的向心加速度大小相等A.①③B. ②③C. ③④D.②④2、如图所示,轻绳一端系一小球,另一端固定于O 点,在O 点正下方的P 点钉一颗钉子,使悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时( ) ①小球的瞬时速度突然变大②小球的加速度突然变大 ③小球的所受的向心力突然变大④悬线所受的拉力突然变大A. ①③④B. ②③④C. ①②④D.①②③3、如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平布做匀速圆周运动,以下说法正确的是( )A. V A >V BB. ωA >ωBC. a A >a BD.压力N A >N B4、设想人类开发月球,不断把月球上的矿藏搬运到地球上,假定经过长时间开采后,地球仍可看作是均匀的球体,月球仍沿开采前的圆轨道运动,则与开采前相比 ( )①地球与月球间的万有引力将变大; ②地球与月球间的万有引力将变小;③月球绕地球运动的周期将变长; ④月球绕地球的周期将变短。

A. ①③B. ②③C.①④D.②④5、地球表面处的重力加速度为g ,则在距地面高度等于地球半径处的重力加速度为( )A. gB. g/2C. g/4D. 2g6.一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量为m 的人站在可称体重的台秤上。

用R 表示地球的半径,g 表示地球表面处的重力加速度,g /表示宇宙飞船所在处的地球引力加速度,N 表示人对秤的压力,下面说法正确的是 ( )A .0=NB .g r R g 22='C .0='gD .g rR m N =7.一物体在地球表面上的重力为16N,它在以5m/s 2的加速度加速上升的火箭中的示重9N,则此时火箭离地面的高度是地球半径R 的( )A.2倍B.3倍C.4倍D.0.5倍8.一名宇航员来到某星球上,如果该星球的质量为地球的一半,它的直径也为地球的一半,那么这名宇航员在该星球上的重力是他在地球上重力的……………………( )A. 4倍B. 0.5倍C. 0.25倍D. 2倍9、火星与地球的质量之比为P ,半径之比为q ,则火星表面的重力加速度和地球表面的重力加速度之比为( ) A. 2q p B.2pq C.q p D.pq 10. 2010·上海月球绕地球做匀速圆周运动的向心加速度大小为a ,设月球表面的重力加速度大小为1g ,在月球绕地球运行的轨道处由地球引力产生的加速度大小为2g ,则( )(A )1g a = (B )2g a = (C )12g g a += (D )21g g a -=11.有一星球的密度与地球的密度相同,但它表面处的重力加速度是地面上重力加速度的4倍,则该星球的质量将是地球质量的( ) A.41; B.4倍; C.16倍; D.64倍。

专题10 天体运动-2023届高考物理一轮复习热点题型专练(解析版)

专题10  天体运动-2023届高考物理一轮复习热点题型专练(解析版)

专题10天体运动目录题型一开普勒定律的应用 (1)题型二万有引力定律的理解 (3)类型1万有引力定律的理解和简单计算 (3)类型2不同天体表面引力的比较与计算 (4)类型3重力和万有引力的关系 (5)类型4地球表面与地表下某处重力加速度的比较与计算 (7)题型三天体质量和密度的计算 (8)类型1利用“重力加速度法”计算天体质量和密度 (8)类型2利用“环绕法”计算天体质量和密度 (9)类型3利用椭圆轨道求质量与密度 (11)题型四卫星运行参量的分析 (13)类型1卫星运行参量与轨道半径的关系 (13)类型2同步卫星、近地卫星及赤道上物体的比较 (15)类型3宇宙速度 (17)题型五卫星的变轨和对接问题 (19)类型1卫星变轨问题中各物理量的比较 (19)类型2卫星的对接问题 (22)题型六天体的“追及”问题 (23)题型七星球稳定自转的临界问题 (25)题型八双星或多星模型 (26)类型1双星问题 (27)类型2三星问题 (29)类型4四星问题 (31)题型一开普勒定律的应用【解题指导】1.行星绕太阳运动的轨道通常按圆轨道处理.2.由开普勒第二定律可得12Δl1r1=12Δl2r2,12v1·Δt·r1=12v2·Δt·r2,解得v1v2=r2r1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小.3.开普勒第三定律a3T2=k中,k值只与中心天体的质量有关,不同的中心天体k值不同,且该定律只能用在同一中心天体的两星体之间.【例1】(2022·山东潍坊市模拟)中国首个火星探测器“天问一号”,已于2021年2月10日成功环绕火星运动。

若火星和地球可认为在同一平面内绕太阳同方向做圆周运动,运行过程中火星与地球最近时相距R0、最远时相距5R0,则两者从相距最近到相距最远需经过的最短时间约为()A.365天B.400天C.670天D.800天【答案】B【解析】设火星轨道半径为R1,公转周期为T1,地球轨道半径为R2,公转周期为T2,依题意有R1-R2=R0,R1+R2=5R0,解得R1=3R0,R2=2R0,根据开普勒第三定律有R31T21=R32T22,解得T1=278年,设从相距最近到相距最远需经过的最短时间为t,有ω2t-ω1t=π,ω=2πT,代入数据可得t=405天,故选项B正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天体运动高考必题1、如图2所示,同步卫星离地心距离为r ,运行速率为v 1,加速度为a 1,地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速度为v 2,地球的半径为R ,则下列比值正确的是( )图2A .a 1a 2=r RB .a 1a 2=⎝⎛⎭⎫R r 2C . v 1v 2=r RD . v 1v 2= Rr2、2009年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道 Ⅰ 进入椭圆轨道 Ⅱ ,B 为轨道 Ⅱ 上的一点,如图3所示.关于航天飞机的运动,下列说法中不正确的有( )A .在轨道 Ⅱ 上经过A 的速度小于经过B 的速度B .在轨道 Ⅱ 上经过A 的动能小于在轨道 Ⅰ 上经过A 的动能C .在轨道 Ⅱ 上运动的周期小于在轨道 Ⅰ 上运动的周期D .在轨道 Ⅱ 上经过A 的加速度小于在轨道 Ⅰ 上经过A 的加速度3、如图4所示,假设月球半径为R ,月球表面的重力加速度为g 0,飞船在距月球表面高度为3R 的圆形轨道Ⅰ运动,到达轨道的A 点点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 再次点火进入近月轨道Ⅲ绕月球做圆周运动.则( ) A .飞船在轨道Ⅰ上的运行速度为12g 0R B .飞船在A 点处点火时,动能增加C .飞船在轨道Ⅰ上运行时通过A 点的加速度大于在轨道Ⅱ上运行时通过A 点的加速度D .飞船在轨道Ⅲ绕月球运行一周所需的时间为2π Rg 04、随着“神七”飞船发射的圆满成功,中国航天事业下一步的进展备受关注.“神八”发射前,将首先发射试验性质的小型空间站“天宫一号”,然后才发射“神八”飞船,两个航天器将在太空实现空间交会对接.空间交会对接技术包括两部分相互衔接的空间操作,即空间交会和空间对接.所谓交会是指两个或两个以上的航天器在轨道上按预定位置和时间相会,而对接则为两个航天器相会后在结构上连成一个整体.关于“天宫一号”和“神八”交会时的情景,以下判断正确的是( )A .“神八”加速可追上在同一轨道的“天宫一号”B .“神八”减速方可与在同一轨道的“天宫一号”交会C .“天宫一号”和“神八”交会时它们具有相同的向心加速度D .“天宫一号”和“神八”交会时它们具有相同的向心力5、1970年4月24日,我国自行设计、制造的第一颗人造地球卫星“东方红一号”发射成功,开创了我国航天事业的新纪元.如图5所示,“东方红一号”的运行轨道为椭圆轨道,其近地点M 和远地点N 的高度分别为439 km 和2 384 km ,则()图5A .卫星在M 点的势能大于N 点的势能B .卫星在M 点的角速度大于N 点的角速度C .卫星在M 点的加速度小于N 点的加速度D .卫星在N 点的速度大于7.9 km /s6、原香港中文大学校长、被誉为“光纤之父”的华裔科学家高锟和另外两名美国科学家共同分享了2009年度的诺贝尔物理学奖.早在1996年中国科学院紫金山天文台就将一颗于1981年12月3日发现的国际编号为“3463”的小行星命名为“高锟星”.假设“高锟星”为均匀的球体,其质量为地球质量的1k ,半径为地球半径的1q ,则“高锟星”表面的重力加速度是地球表面的重力加速度的( C ). A.qkB.k qC.q 2kD.k 2q7、我国自行研制发射的“风云一号”“风云二号”气象卫星的飞行轨道是不同的,“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为T 1=12 h ;“风云二号”是同步卫星,其轨道平面在赤道平面内,周期为T 2=24 h ;两颗卫星相比( C ). A .“风云一号”离地面较高B .“风云一号”每个时刻可观察到的地球表面范围较大C .“风云一号”线速度较大D .若某时刻“风云一号”和“风云二号”正好同时在赤道上某个小岛的上空,那么再过12小时,它们又将同时到达该小岛的上空8、2012年11月3日,“神州八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接。

任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神州九号”交会对接。

变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为1v 、2v 。

则21v v 等于( B ) A .3231R R B .12R RC .2122R RD . 12R R9、如图4-4-3所示,A 为静止于地球赤道上的物体,B 为绕地球沿椭圆轨道运行的卫星,C为绕地球做圆周运动的卫星,P 为B 、C 两卫星轨道的交点.已知A 、B 、C 绕地心运动的周期相同,相对于地心,下列说法中正确的是( D ).图4-4-3A .物体A 和卫星C 具有相同大小的线速度B .物体A 和卫星C 具有相同大小的加速度C .卫星B 在P 点的加速度与卫星C 在该点的加速度一定相同D .卫星B 在P 点的线速度与卫星C 在该点的线速度一定相同10、“天宫一号”被长征二号火箭发射后,准确进入预定轨道,如图1所示,“天宫一号”在轨道1上运行4周后,在Q 点开启发动机短时间加速,关闭发动机后,“天宫一号”沿椭圆轨道2运行到达P 点,开启发动机再次加速,进入轨道3绕地球做圆周运动,“天宫一号”在图示轨道1、2、3上正常运行时,下列说法正确的是 ( D )图1A .“天宫一号”在轨道3上的速率大于在轨道1上的速率B .“天宫一号”在轨道3上的角速度大于在轨道1上的角速度C .“天宫一号”在轨道1上经过Q 点的加速度大于它在轨道2上经过Q 点的加速度D .“天宫一号”在轨道2上经过P 点的加速度等于它在轨道3上经过P 点的加速度 11、一行星绕恒星做圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则下列说法错误的是( B )A .恒星的质量为v 3T2πG B.行星的质量为4π2v 3GT 2C .行星运动的轨道半径为v T2πD .行星运动的加速度为2πvT12、北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星1和2均绕地心O 做匀速圆周运动,轨道半径均为r ,某时刻两颗工作卫星分别位于轨道上的A 、B 两位置,如图3所示.若卫星均顺时针运行,地球表面处的重力加速度为g ,地球半径为R ,不计卫星间的相互作用力.以下判断正确的是( )图3A .两颗卫星的向心加速度大小相等,均为r 2gR 2B .两颗卫星所受的向心力大小一定相等C .卫星1由位置A 运动到位置B 所需的时间可能为7πr 3Rr gD .如果要使卫星1追上卫星2,一定要使卫星1加速13、北京航天飞行控制中心对“嫦娥二号”卫星实施多次变轨控制并获得成功.首次变轨是在卫星运行到远地点时实施的,紧随其后进行的3次变轨均在近地点实施.“嫦娥二号”卫星的首次变轨之所以选择在远地点实施,是为了抬高卫星近地点的轨道高度.同样的道理,要抬高远地点的高度就需要在近地点实施变轨.图4为“嫦娥二号”某次在近地点A 由轨道1变轨为轨道2的示意图,下列说法中正确的是( )图4A .“嫦娥二号”在轨道1的A 点处应点火加速B .“嫦娥二号”在轨道1的A 点处的速度比在轨道2的A 点处的速度大C .“嫦娥二号”在轨道1的A 点处的加速度比在轨道2的A 点处的加速度大D .“嫦娥二号”在轨道1的B 点处的机械能比在轨道2的C 点处的机械能大 14、2011年9月29日,中国首个空间实验室“天宫一号”在酒泉卫星发射中心发射升空,由长征运载火箭将飞船送入近地点为A 、远地点为B 的椭圆轨道上,B 点距离地面高度为h ,地球的中心位于椭圆的一个焦点上.“天宫一号”飞行几周后进行变轨,进入预定圆轨道,如图5所示.已知“天宫一号”在预定圆轨道上飞行n 圈所用时间为t ,万有引力常量为G ,地球半径为R .则下列说法正确的是( )图5A .“天宫一号”在椭圆轨道的B 点的向心加速度大于在预定圆轨道的B 点的向心加速度 B .“天宫一号”从A 点开始沿椭圆轨道向B 点运行的过程中,机械能增加C .“天宫一号”从A 点开始沿椭圆轨道向B 点运行的过程中,动能先减小后增大D .由题中给出的信息可以计算出地球的质量M =(R +h )34π2n 2Gt 215、我国研制并成功发射的“嫦娥二号”探测卫星,在距月球表面高度为h 的轨道上做匀速圆周运动,运行的周期为T .若以R 表示月球的半径,则( )A .卫星运行时的向心加速度为4π2R T2B .物体在月球表面自由下落的加速度为4π2RT2C .卫星运行时的线速度为2πRTD .月球的第一宇宙速度为2πR (R +h )3TR16、我国于2013年发射“神舟十号”载人飞船与“天宫一号”目标飞行器对接.如图4所示,开始对接前,“天宫一号”在高轨道,“神舟十号”飞船在低轨道各自绕地球做匀速圆周运动,距离地面的高度分别为h 1和 h 2,地球半径为R ,“天宫一号”运行周期约为90分钟.则以下说法正确的是( )图4A .“天宫一号”跟“神舟十号”的线速度大小之比为h 2h 1B .“天宫一号”跟“神舟十号”的向心加速度大小之比(R +h 2)2(R +h 1)2C .“天宫一号”的角速度与地球同步卫星的角速度相同D .“天宫一号”的线速度大于7.9 km/s图717、假设将来人类登上了火星,考察完毕后,乘坐一艘宇宙飞船从火星返回地球时,经历了如图7所示的变轨过程,则有关这艘飞船的下列说法正确的是( ) A .飞船在轨道Ⅰ上运动时的机械能大于飞船在轨道Ⅱ上运动时的机械能 B .飞船在轨道Ⅱ上运动时,经过P 点时的速度大于经过Q 点时的速度C .飞船在轨道Ⅲ上运动到P 点时的加速度大于飞船在轨道Ⅱ上运动到P 点时的加速度D .飞船绕火星在轨道Ⅰ上运动的周期跟飞船返回地球的过程中绕地球以与轨道Ⅰ同样的轨道半径运动的周期相同18、2012年6月18日,我国“神舟九号”与“天宫一号”成功实现交会对接,如图1所示,圆形轨道Ⅰ为“天宫一号”的运行轨道,圆形轨道Ⅱ为“神舟九号”的运行轨道,在实现交会对接前,“神舟九号”要进行多次变轨,则( )图1A .“天宫一号”在轨道Ⅰ上的运行速率大于“神舟九号”在轨道Ⅱ上的运行速率B .“神舟九号”变轨前的动能比变轨后的动能要大C .“神舟九号”变轨前后机械能守恒D .“天宫一号”在轨道Ⅰ上的向心加速度大于“神舟九号”在轨道Ⅱ上的向心加速度 19、质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMmr,其中G 为引力常量,M 为地球质量,该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm ⎝⎛⎭⎫1R 2-1R 1B .GMm ⎝⎛⎭⎫1R 1-1R 2C.GMm 2⎝⎛⎭⎫1R 2-1R 1D.GMm 2⎝⎛⎭⎫1R 1-1R 2 20、物体在万有引力场中具有的势能叫做引力势能.若取两物体相距无穷远时的引力势能为零,一个质量为m 0的质点到质量为M 0的引力源中心的距离为r 0时,其万有引力势能E p =-GM 0m 0r 0(式中G 为引力常量).一颗质量为m 的人造地球卫星以半径为r 1的圆形轨道环绕地球匀速飞行,已知地球的质量为M ,要使此卫星绕地球做匀速圆周运动的轨道半径增大为r 2,则卫星上的发动机所消耗的最小能量为(假设卫星的质量始终不变,不计空气阻力及其他星体的影响)( )A .E =GMm 2(1r 1-1r 2)B .E =GMm (1r 1-1r 2)C .E =GMm 3(1r 1-1r 2)D .E =2GMm 3(1r 2-1r 1)【背诵知识点】一、卫星变轨问题的判断:(1)卫星的速度变大时,做离心运动,重新稳定时,轨道半径变大. (2)卫星的速度变小时,做近心运动,重新稳定时,轨道半径变小.(3)圆轨道与椭圆轨道相切时,切点处外面的轨道上的速度大,向心加速度相同. 二、人造天体运行参量的分析与计算方法分析与计算思路是将人造天体的运动看做绕中心天体做匀速圆周运动,它受到 的万有引力提供向心力,结合牛顿第二定律和圆周运动的规律建立动力学方程, G Mm r 2=ma =m v 2r =mω2r =m 4π2r T 2,以及利用人造天体在中心天体表面运行时, 忽略中心天体的自转的黄金代换公式GM =gR 2.三.万有引力公式:F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2(1)重力和万有引力的关系①在赤道上,有G Mm R 2-mg =mRω2=mR 4π2T 2.②在两极时,有G MmR2=mg(2)卫星的绕行速度、角速度、周期与半径的关系①由G Mm R 2=m v 2R 得v = GMR ,所以R 越大,v 越小.②由G Mm R 2=mω2R ,得ω= GM R 3,所以R 越大,ω越小.③由G Mm R 2=m 4π2T 2R 得T = 4π2R 3GM,所以R 越大,T 越大.四、环绕速度与发射速度的比较及地球同步卫星 1.环绕速度与发射速度的比较近地卫星的环绕速度v = G MR=gR =7.9 km /s ,通常称为第一宇宙速度,它是地球周围所有卫星的最大环绕速度,是在地面上发射卫星的最小发射速度.不同高度处的人造卫星在圆轨道上的运行速度v = G Mr,其大小随半径的增大而减小.但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,所以将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大.2.地球同步卫星特点(1)地球同步卫星只能在赤道上空.(2)地球同步卫星与地球自转具有相同的角速度和周期. (3)地球同步卫星相对地面静止. (4)同步卫星的高度是一定的.五.万有引力公式:F =G m 1m 2r 2,其中G =6.67×10-11 N·m 2/kg 2(1)重力和万有引力的关系①在赤道上,有G Mm R 2-mg =mRω2=mR 4π2T 2.②在两极时,有G MmR2=mg(2)卫星的绕行速度、角速度、周期与半径的关系①由G Mm R 2=m v 2R 得v = GMR ,所以R 越大,v 越小.②由G Mm R 2=mω2R ,得ω= GM R 3,所以R 越大,ω越小.③由G Mm R 2=m 4π2T 2R 得T = 4π2R 3GM,所以R 越大,T 越大.六、天体质量和密度的估算1.解决天体圆周运动问题的一般思路利用万有引力定律解决天体运动的一般步骤 (1)两条线索①万有引力提供向心力F =F n .②重力近似等于万有引力提供向心力. (2)两组公式①G Mm r 2=m v 2r =mω2r =m 4π2T2r②mg r =m v 2r =mω2r =m 4π2T2r(g r 为轨道所在处重力加速度)2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R.由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g 4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r 进行计算.①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT2;②若已知天体的半径R ,则天体的密度ρ=M V =M 43πR 3=3πr3GT 2R3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.。

相关文档
最新文档