高考冲刺 三角函数公式及应用(提高)
【高中数学】高中数学冲刺公式:三角函数公式大全

【高中数学】高中数学冲刺公式:三角函数公式大全高中数学Sprint公式:完整的三角函数公式三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:锐角三角函数公式sin=的对边/斜边Cos=相邻/斜边tan=的对边/的邻边Cot=相邻/相对侧倍角公式sin2a=2sina?科萨cos2a=cosa^2-sina^2=1-2sina^2=2cosa^2-1tan2a=(2tana)/(1-tana^2)(注:sina^2是sina的平方sin2(a))三角公式sin3=4sinsin(/3+)sin(/3-)cos3=4coscos(/3+)cos(/3-)tan3a=tanatan(/3+a)tan(/3-a)三角公式的推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式asin+bcos=(a^2+b^2)^(1/2)sin(+t),其中sint=b/(a^2+b^2)^(1/2)cost=a/(a^2+b^2)^(1/2)t=b/aasin+bcos=(a^2+b^2)^(1/2)cos(-t),tant=a/b 功率降低公式sin^2()=(1-cos(2))/2=versin(2)/2cos^2()=(1+cos(2))/2=封面(2)/2tan^2()=(1-cos(2))/(1+cos(2))推导公式tan+cot=2/sin2棕色胶辊=-2cot21+cos2=2cos^21-cos2=2sin^21+sin=(sin/2+cos/2)^2=2sina(1-sina)+(1-2sina)sina=3sina-4sinacos3a=cos(2a+a)=cos2acosa-sin2asina=(2cosa-1)cosa-2(1-sina)cosa=4cosa-3cosasin3a=3sina-4sina=4sina(3/4-sina)=4sina[(3/2)-sina]=4sina(sin60 sina)=4sina(sin60+sina)(sin60-sina)=4sina*2sin[(60+a)/2]cos[(60-a)/2]*2sin[(60-a)/2]cos[(60-a)/2] =4sinasin(60+a)sin(60-a)cos3a=4cosa-3cosa=4cosa(cosa-3/4)=4cosa[cosa-(3/2)]=4cosa(cosa-cos30)=4cosa(cosa+cos30)(cosa-cos30)=4cosa*2cos[(a+30)/2]cos[(a-30)/2]*{-2sin[(a+30)/2]sin[(a-30)/2]}=-4cosasin(a+30)sin(a-30)=-4cosasin[90-(60-a)]sin[-90+(60+a)]=-4cosacos(60-a)[-cos(60+a)]=4cosacos(60-a)cos(60+a)可以得到上述两个公式tan3a=tanatan(60-a)tan(60+a)半角公式tan(a/2)=(1-cosa)/sina=sina/(1+cosa);cot(a/2)=新浪/(1-cosa)=(1+cosa)/sina。
高中三角函数公式汇总与解析

高中三角函数公式汇总与解析【引言】三角函数是高中数学中的一大重点内容,掌握三角函数的公式是学好数学的基础。
本文将对高中三角函数的公式进行汇总与解析,以帮助读者更好地理解和运用这些公式。
【正文】一、角度与弧度的转换在三角函数中,角可以用度数表示,也可以用弧度表示。
两者之间的转换关系如下:1度=π/180弧度1弧度=180/π度二、基本三角函数公式1. 正弦函数(sin)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. sin(-x) = -sin(x)b. sin(x+π) = -sin(x)2. 余弦函数(cos)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. cos(-x) = cos(x)b. cos(x+π) = -cos(x)3. 正切函数(tan)①定义域:x≠(2k+1)π/2,其中k为整数②值域:实数集R③周期性:T=π④奇偶性:a. tan(-x) = -tan(x)b. tan(x+π) = tan(x)三、和差角公式1.正弦函数:sin(A±B) = sin(A)cos(B)±cos(A)sin(B) 2.余弦函数:cos(A±B) = cos(A)cos(B)∓sin(A)sin(B)tan(A±B) = (tan(A)±tan(B))/(1∓tan(A)tan(B))四、倍角公式1.正弦函数:sin(2A) = 2sin(A)cos(A)2.余弦函数:cos(2A) = cos²(A) - sin²(A) = 2cos²(A) - 1 = 1 - 2sin²(A) 3.正切函数:tan(2A) = (2tan(A))/(1 - tan²(A))五、半角公式1.正弦函数:sin(A/2) = ±√[(1-cos(A))/2]2.余弦函数:cos(A/2) = ±√[(1+cos(A))/2]3.正切函数:tan(A/2) = ±√[(1-cos(A))/(1+cos(A))]六、倒数公式1.正弦函数:csc(A) = 1/sin(A)sec(A) = 1/cos(A)3.正切函数:cot(A) = 1/tan(A)七、和角公式1.正弦函数:sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)2.余弦函数:cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)3.正切函数:tan(A) + tan(B) = (sin(A)+sin(B))/(cos(A)+cos(B))【结论】本文对高中三角函数的公式进行了汇总与解析,包括角度与弧度的转换、基本三角函数公式、和差角公式、倍角公式、半角公式、倒数公式和和角公式。
高中生必备实用三角函数公式总表

高中生必备实用三角函数公式总表高中数学中,三角函数是一个非常重要的概念。
通过掌握三角函数的相关公式和性质,可以解决许多与角度和三角形相关的问题。
本文将为高中生提供一个实用的三角函数公式总表,以帮助他们更好地学习和理解这一领域。
一、基本三角函数公式:1. 正弦函数(Sine function):sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinB2. 余弦函数(Cosine function):cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinB3. 正切函数(Tangent function):tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)二、和差公式:1. 正弦函数公式:sin(A + B) = sinA · cosB + cosA · sinBsin(A - B) = sinA · cosB - cosA · sinBsin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos(A + B) = cosA · cosB - sinA · sinBcos(A - B) = cosA · cosB + sinA · sinBcos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB) tan(A - B) = (tanA - tanB) / (1 + tanA · tanB)三、倍角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosAsin2A = 1 - cos2A2. 余弦函数公式:cos2A = cos2A - sin2Acos2A = 1 - sin2A3. 正切函数公式:tan2A = (2 · tanA) / (1 - tan2A)四、半角公式:1. 正弦函数公式:sin(A/2) = ±√((1 - cosA) / 2)2. 余弦函数公式:cos(A/2) = ±√((1 + cosA) / 2)3. 正切函数公式:tan(A/2) = ±√((1 - cosA) / (1 + cosA))五、和角公式:1. 正弦函数公式:sin2A = 2 · sinA · cosA2. 余弦函数公式:cos2A = cos2A - sin2A3. 正切函数公式:tan(A + B) = (tanA + tanB) / (1 - tanA · tanB)六、其他常见公式:1. 正切与余切的关系:tanA = 1 / cotAcotA = 1 / tanA2. 正弦与余弦的关系:sin2A + cos2A = 13. 正切与正弦、余弦的关系:tanA = sinA / cosA通过掌握这些三角函数的公式,高中生可以更好地解决与角度和三角形相关的问题。
高考数学常用三角函数公式总结_高考数学复习指导整理

高考数学常用三角函数公式总结_高考数学复习指导整理高考数学中涉及的三角函数公式是数学考试中经常考察的内容,弄清楚这些公式对提高解题能力非常重要。
下面是高考数学常用的三角函数公式总结:1.三角函数的定义:正弦函数:sinA = 对边/斜边 = a/c余弦函数:cosA = 邻边/斜边 = b/c正切函数:tanA = 对边/邻边 = a/b2.基本关系:余弦函数与正弦函数的关系:sin^2A + cos^2A = 1正切函数与余切函数的关系:tanA * cotA = 13.三角函数的基本性质:奇偶性:sin(-A) = -sinA,cos(-A) = cosA,tan(-A) = -tanA关于y轴对称:sin(-A) = -sinA,cot(-A) = -cotA关于x轴对称:cos(-A) = cosA,tan(-A) = -tanA周期性:sin(A + 2πn) = sinA,其中n为整数cos(A + 2πn) = cosA,其中n为整数tan(A + πn) = tanA,其中n为整数4.初等角的三角函数值:30度特殊角:sin30° = 1/2,cos30° = √3/2,tan30° = 1/√3 45度特殊角:sin45° = √2/2,cos45° = √2/2,tan45° = 1 60度特殊角:sin60° = √3/2,cos60° = 1/2,tan60° = √3 5.和差角公式:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)6.二倍角公式:sin2A = 2sinAcosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = 2tanA / (1 - tan^2A)7.半角公式:sin(A/2) = √[(1 - cosA) / 2]cos(A/2) = √[(1 + cosA) / 2]tan(A/2) = sinA / (1 + cosA) = (1 - cosA) / sinA8.三倍角公式:sin3A = 3sinA - 4sin^3Acos3A = 4cos^3A - 3cosAtan3A = (3tanA - tan^3A) / (1 - 3tan^2A)9.和角公式:sin(A + B) = sinAcosB + cosAsinBcos(A + B) = cosAcosB - sinAsinBtan(A + B) = (tanA + tanB) / (1 - tanAtanB)10.差角公式:sin(A - B) = sinAcosB - cosAsinBcos(A - B) = cosAcosB + sinAsinBtan(A - B) = (tanA - tanB) / (1 + tanAtanB)这些三角函数的常用公式总结可以帮助高中生更好地复习和理解数学知识,提高解题能力和应对高考的能力。
b06高考冲刺第6讲 三角函数公式及应用

高考冲刺第6讲 三角函数公式及应用一、知识要点1.三角函数式的变形应利用三角公式从以下三个方面入手:(1)变名:注意条件与结论中三角函数式的名称有什么差别及联系,通过同角三角函数公式,诱导公式,万能公式等,达到统一函数名称的目的.(2)变角:注意条件与结论中三角函数式的角有什么差别及联系,通过诱导公式、和、差、倍、半角的三角函数公式等,达到把三角函数中的角统一起来的目的.(3)变运算形式:根据需要,将条件与结论的运算形式化一,将等式一边的运算形式化成另一边的运算形式,通过升次与降次的转化以达到目的.2.三角形中的三角函数(内角和定理、正弦定理、余弦定理)3.应用三角变换公式,要注意公式间的联系,公式成立的条件.每个三角公式的结构特征,都决定了它的双向功能,从左到右及从右到左常常可起到不同的作用.所谓三角恒等变形是指在有意义的条件下有恒等关系,但三角变换常常会改变三角式中角的取值范围,因此在讨论由三角函数式表示的函数性质时,应首先确定其定义域,以确保变形后的函数与原函数是同一函数.二、典型例题例1.有四个关于三角函数的命题:1p :∃x ∈R, 2sin 2x +2cos 2x =12 2p : ,x y R ∃∈, sin()sin sin x y x y -=- 3p : ∀x ∈[]0,π1cos 2sin 2x x -= 4p : sin cos 2x y x y π=⇒+= 其中假命题的是(A )1p ,4p (B )2p ,4p (3)1p ,3p (4)2p ,3p例2. 在ABC ∆中,43cos sin ,tan tan 33tan tan ==++A A B A B A ,则该三角形是( ) A 、等边三角形 B 、钝角三角形C 、直角三角形D 、等边三角形或直角三角形例3.已知A ,B ,C 是三角形△ABC 三内角,向量()()13,,cos ,sin m n A A =-=,且1m n ⋅=(Ⅰ)求角A ; (Ⅱ)若22123sin cos sin B B B+=--,求tanB 。
高考冲刺-三角函数的概念图像与性质(提高)

高考冲刺 三角函数的概念图象和性质编稿:孙永钊 审稿:张林娟【高考展望】近几年高考降低了对三角变换的考查要求,而加强了对三角函数的图象与性质的考查,因为函数的性质是研究函数的一个重要内容,是学习高等数学和应用技术学科的基础,又是解决生产实际问题的工具,因此三角函数的性质是本章复习的重点。
在复习时要充分运用数形结合的思想,把图象与性质结合起来,即利用图象的直观性得出函数的性质,或由单位圆上线段表示的三角函数值来获得函数的性质,同时也要能利用函数的性质来描绘函数的图象,这样既有利于掌握函数的图象与性质,又能熟练地运用数形结合的思想方法三角函数是传统知识内容中变化最大的一部分,新教材处理这一部分内容时有明显的降调倾向,突出正、余弦函数的主体地位,加强了对三角函数的图象与性质的考查,因此三角函数的性质是本章复习的重点。
第一轮复习的重点应放在课本知识的重现上,要注重抓基本知识点的落实、基本方法的再认识和基本技能的掌握,力求系统化、条理化和网络化,使之形成比较完整的知识体系;第二、三轮复习以基本综合检测题为载体,综合试题在形式上要贴近高考试题,但不能上难度。
当然,这一部分知识最可能出现的是“结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用)来考查三角函数性质”的命题,因此,建议三角函数的复习应控制在课本知识的范围和难度上,这样就能够适应未来高考命题趋势。
从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ωϕ=+的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题等.预测今年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现. 【知识升华】 方法技巧:1.八大基本关系依据它们的结构分为倒数关系、商数关系、平方关系,用三角函数的定义反复证明强化记忆,这是最有效的记忆方法。
高考三角函数公式全面总结与典型题目应用

一、基本公式:1、同角三角函数的基本关系式: αααtan cos sin =αααc o t s i n c o s=1c o t t a n=⋅αα 1sin csc =α⋅α 1c o s s e c =α⋅α 1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα2、诱导公式:2k παα±把的三角函数化为的三角函数,概括为:“奇变偶不变,符号看象限”4、三角函数的公式:(一)基本关系公式组二 公式组三x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x c o t )c o t (t a n )t a n (c o s )c o s (s i n )s i n (-=--=-=--=-公式组四 公式组五 公式组六x x x x x x x x cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ x x x x x x x x cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ角与角之间的互换公式组一 公式组二βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin = βαβαβαsin sin cos cos )cos(+=-ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2t a n 1t a n 22t a n -=βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2c o s12c o s αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+=2tan 12tan 1cos 22ααα+-=公式组一sin x ·csc x =1tan x =xx cos sin sin 2x +cos 2x =1cos x ·sec x x =xx sin cos 1+tan 2x =sec 2xtan x ·cot x =11+cot 2x =csc 2x=1()()[]()()[]()()[]()()[]βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos 21sin sin cos cos 21cos cos sin sin 21sin cos sin sin 21cos sin 2sin2cos 2sin sin βαβαβα-+=-2cos2cos 2cos cos βαβαβα-+=+αααααααsin cos 1cos 1sin cos 1cos 12tan -=+=+-±=ααπsin )21cos(-=+ααπsin )21cos(=-ααπcos )21sin(=-ααπcot )21tan(=-42675cos 15sin -== 2tan 12tan2tan 2ααα-=42615cos 75sin +==3275cot 15tan -== .3215cot 75tan +==3、图像的平移对函数y =A sin(ωx +ϕ)+k (A .>.0, ..ω>..0, ..ϕ.≠.0,.. k .≠.0).., (1)振幅变换(纵向伸缩变换):是由A 的变化引起的.A >1,伸长;A <1,缩短. (2)周期变换(横向伸缩变换):是由ω的变化引起的.ω>1,缩短;ω<1,伸长.2cos2sin2sin sin βαβαβα-+=+2sin 2sin 2cos cos βαβαβα-+-=-ααπcos )21sin(=+ααπcot )21tan(-=+(3)相位变换(横向平移变换):是由φ的变化引起的.ϕ>0,左移;ϕ<0,右移. (4)上下平移(纵向平移变换): 是由k 的变化引起的.k >0, 上移;k <0,下移三倍角公式:θθθ3sin 4sin 33sin -=;θθθcos 3cos 43cos 3-=;。
高考冲刺 三角函数公式及应用(提高)

高考冲刺 三角函数公式及应用编稿:孙永钊 审稿:张林娟【高考展望】高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能:(1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简;(2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式; (3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力复习时,要注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率 【知识升华】1.三角函数的化简与求值、证明的难点在于众多三角公式的灵活运用和解题突破口的合理选择,要认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在(1)化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;(2)求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围(3)证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等2.对于三角变换公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+, 221cos 1cos cos ,sin 2222αααα+-==等.从而可做到:正用、逆用、变形用自如使用各公式;三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。
3.三角函数恒等变形的基本策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考冲刺 三角函数公式及应用编稿:孙永钊 审稿:张林娟【高考展望】高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能:(1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简;(2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式; (3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力复习时,要注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率 【知识升华】1.三角函数的化简与求值、证明的难点在于众多三角公式的灵活运用和解题突破口的合理选择,要认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在(1)化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来;(2)求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围(3)证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等2.对于三角变换公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+, 221cos 1cos cos ,sin 2222αααα+-==等.从而可做到:正用、逆用、变形用自如使用各公式;三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。
3.三角函数恒等变形的基本策。
①常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ²cotx=tan45°等。
②项的分拆与角的配凑。
如分拆项:222222sin 2cos (sin cos )cos 1cos x x x x x x +=++=+;配凑角(常用角变换):2()()ααβαβ=++-、2()()βαβαβ=+--、22αβαβα+-=+、22αβαββ+-=-、()ααββ=+-等.③降次与升次。
即倍角公式降次与半角公式升次④化弦(切)法。
将三角函数利用同角三角函数基本关系化成弦(切)。
⑤引入辅助角。
asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。
4. 三角恒等变换过程与方法,实际上是对三角函数式中的角、名、形的变换,即(1)找差异:角、名、形的差别;(2)建立联系:角的和差关系、倍半关系等,名、形之间可以用哪个公式联系起来;(3)变公式:在实际变换过程中,往往需要将公式加以变形后运用或逆用公式,如升、降幂公式, cos α= cos βcos (α-β)- sin βsin (α-β) ,1= sin 2α+cos 2α,0030tan 130tan 1-+=000030tan 45tan 130tan 45tan -+=tan (450+300)等。
5. 正弦定理和余弦定理注:在ΔABC 中,sinA>sinB 是A>B 的充要条件。
(∵sinA>sinB ⇔22R R>⇔a>b ⇔A>B ) 6.三角形的面积公式:(1)△=21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高); (2)△=21ab sin C =21bc sin A =21ac sin B ;(3)△=)sin(2sin sin 2C B C B a +=)sin(2sin sin 2A C A C b +=)sin(2sin sin 2B A BA c +;(4)△=2R 2sin A sin B sin C 。
(R 为外接圆半径) (5)△=Rabc 4; (6)△=))()((c s b s a s s ---;⎪⎭⎫ ⎝⎛++=)(21c b a s ; (7)△=r ²s 。
7.三角形中的三角变换三角形中的三角变换,除了应用上述公式和上述变换方法外,还要注意三角形自身的特点。
(1)角的变换因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。
2sin 2cos ,2cos 2sinCB AC B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。
r 为三角形内切圆半径,p 为周长之半(3)在△ABC 中,熟记并会证明:∠A,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列。
【典型例题】类型一、三角函数的化简与求值【例1】某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒ (4)2sin (18)cos 48sin(18)cos 48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广三角恒等式,并证明你的结论.【思路点拨】因为(2)中角为15°,二倍后为特殊角,所以本题利用由特殊到一般思想选择(2)式进行计算。
【解析】(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin 30sin )sin (cos30cos sin 30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 442αααααααα=++-22333sin cos 444αα=+= 【思路点拨】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式、考查运算能力、特殊与一般思想、化归与转化思想. 举一反三:【变式】利用和(差)角公式计算下列各式的值: (1)sin 72cos 42cos72sin 42-; (2)cos 20cos70sin 20sin 70-;(3)1tan151tan15+-. 【思路点拨】利用两角和与差的三角公式逆用可得。
【解析】(1)()1sin 72cos 42cos72sin 42sin 7242sin 302-=-==; (2)()cos 20cos 70sin 20sin 70cos 2070cos900-=+==;(3)()1tan15tan 45tan15tan 4515tan 601tan151tan 45tan15++==+==--【例2】x x【思路点拨】此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢? 【解析】)()1cos sin 30cos cos30sin 302x x x x x x x ⎫-==-=-⎪⎪⎭思考:=我们是构造一个叫使它的正、余弦分别等于12和2的.【总结升华】注意辅助角公式的灵活运用ϕ)(其中cos ϕ,sin ϕ=)的形式【例3】(1(1sin cos )(sincos ))++-<<θθθθθπ(2)求值000001cos 201sin10(tan 5)2sin 20tan 5+-- 【思路点拨】(1)从把角θ变为2θ入手,合理使用公式; (2)应用公式把非10角转化为10的角,切化弦。
【解析】(1)原式222(2sin cos 2cos )(sin cos )cos (sin cos )cos cos22222cos cos 22θθθθθθθθθθθθ+---==因为0<θ<π,所以0,22θπ<<所以cos02θ>所以原式=-cos θ(2)原式2222cos 10cos5sin 5sin10()22sin10cos10sin 5cos5cos10cos 5sin 5cos10cos10sin10sin1012sin10sin 5cos52sin10sin102=--⨯-=-=-cos10cos102sin 20cos102sin(3010)2cos102sin102sin102sin101cos102(cos10)222sin10---=-==--===【总结升华】(1)三角函数式的化简要遵循“三看”原则①一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;②二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; ③三看“结构特征”,分析结构特征,可以帮助我们打到变形的方向,常见的有“遇到分式要通分”等。
(2)根式的化简常常需要升幂去根号,在化简中注意角的范围以确定三角函数值的正负号; (3)对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有: ①化为特殊角的三角函数值; ②化为正、负相消的项,消去求值; ③化分子、分母出现公约数进行约分求值。
(4)化简的方法弦切互化,异名化同名,异角化同角;降幂或升幂,和差化积、积化和差等。
举一反三:【变式】已知3110,tan .4tan 3παπαα<<+=-,求225sin 8sincos11cos 82222)2αααααα++--的值【思路点拨】化简已知条件→化简所求式子,用已知表示所求→代入已知求解→结论。
【解析】2110tan ,3tan 10tan 30,tan 3αααα+=-∴++= 解得tan α=-3或tan α=13-.225sin 8sincos11cos 8312222,tan .43)21cos 1cos 54sin 1186ααααπαπαπαααα++-<<∴=---+++-===-又又【总结升华】对于和式,基本思想是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用。