江苏省南通市2017中考数学试卷(含答案解析版)

合集下载

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

【精品】2017年江苏省南通市中考数学试卷

【精品】2017年江苏省南通市中考数学试卷

A.(1,2) B.(﹣ 1,﹣ 2) C.(﹣ 1, 2) D.(﹣ 2,1)
6.(3 分)如图,圆锥的底面半径为 2,母线长为 6,则侧面积为(

A.4π B.6π C.12πD.16π 7.(3 分)一组数据: 1、2、2、3,若添加一个数据 2,则发生变化的统计量是 () A.平均数 B.中位数 C.众数 D.方差 8.( 3 分)一个有进水管和出水管的容器, 从某时刻开始 4min 内只进水不出水, 在随后的 8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内
第 7 页(共 33 页)
2017 年江苏省南通市中考数学试卷
参考答案与试题解析
一、选择题(每小题 3 分,共 30 分)
1.(3 分)在 0、2、﹣ 1、﹣ 2 这四个数中,最小的数为(

A.0 B.2 C.﹣ 1 D.﹣ 2
【分析】 根据正数大于 0, 0 大于负数,可得答案.
【解答】 解:∵在 0、2、﹣ 1、﹣ 2 这四个数中只有﹣ 2<﹣ 1<0,0<2
的 “內似线 ”;
( 3)在 Rt△ ABC中,∠ C=90°, AC=4,BC=3,E、 F 分别在边 AC、BC 上,且 EF
是△ ABC的 “內似线 ”,求 EF的长.
28.( 13 分)已知直线 y=kx+b 与抛物线 y=ax2( a> 0)相交于 A、B 两点(点 A
第 6 页(共 33 页)
6.(3 分)如图,圆锥的底面半径为 2,母线长为 6,则侧面积为(

第 9 页(共 33 页)
A.4π B.6π C.12πD.16π 【分析】 根据圆锥的底面半径为 2,母线长为 6,直接利用圆锥的侧面积公式求 出它的侧面积. 【解答】 解:根据圆锥的侧面积公式: πrl=×π2× 6=12π, 故选: C. 【点评】本题主要考查了圆锥侧面积公式. 熟练地应用圆锥侧面积公式求出是解 决问题的关键.

2017学年江苏省南通中考数学年试题答案

2017学年江苏省南通中考数学年试题答案

数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前山东省菏泽市2017年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.21()3-的相反数是( )A .9B .9-C .19D .19-2.生物学家发现了一种病毒,其长度约为0. 000 000 32 mm ,数据0. 000 000 32用科学记数法表示正确的是( )A .73.210⨯B .83.210⨯C .73.210-⨯D .83.210-⨯3.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是 ( )ABCD4.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):7,4,2,1,2,2----.关于这组数据,下列结论不正确的是( )A .平均数是2-B .中位数是2-C .众数是2-D .方差是75.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '''△,连接AA ',若1=25∠,则BAA '∠的度数是( )A .55B .60C .65D .706.如图,函数12y x =-与23y ax =+的图象相交于点(,2)A m ,则关于x 的不等式23x ax -+>的解集是( )A .2x >B .2x <C .1x ->D .1x ->7.如图,矩形ABOC 的顶点A 的坐标为(4,5)-,点D 是OB 的中点,点E 是OC 上的一点,当ADE △的周长最小时,点E 的坐标是( )A .4(0,)3B .5(0,)3C .(0,2)D .10(0,)38.一次函数y ax b =+和反比例函数cy x =在同一平面直角坐标系中的图象如图所示,则是二次函数2y ax bx c =++的图象可能是( )A B C D毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第Ⅱ卷(非选择题 共96分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 9.分解因式:3x x -= .10.关于x 的一元二次方程22(1)6+0k x x k k -+-=的一个根是0,则k 的值是 .11.在菱形ABCD 中,60A =∠,其周长为24 cm ,则菱形的面积为 2cm . 12.一个扇形的圆心角为100,面积为215π cm ,则此扇形的半径长为 cm .13.直线(0)y kx k =>与双曲线6y x=交于11(,y )A x 和22(,y )B x 两点,则122139x y x y -的值为 . 14.如图,AB y ⊥轴,垂足为点B ,将ABO △绕点A 逆时针旋转到11AB O △的位置,使点B 的对应点1B 落在直线y =上,再将11AB O △绕点1B 逆时针旋转到111A B O △的位置,使点1O 的对应点2O落在直线y x =上,依次进行下去,……若点B 的坐标是(0,1),则点12O 的纵坐标为 .三、解答题(本大题共10小题,共78分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分6计算:221|345(21)--+-.16.(本小题满分6分)先化简,再求值:231(1)11x x x x -+÷+-,其中x 是不等式组11,210x x x --⎧-⎪⎨⎪-⎩>>的整数解.17.(本小题满分6分)如图,E 是□ABCD 的边AD 的中点.连接CE 并延长交BA 的延长线于F ,若6CD =,求BF 的长.18.(本小题满分6分)如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量.他先在点B 测得C 点的仰角为60,然后到42m 高的楼顶A 处,测得C 点的仰角为30,请你帮助李明计算⑪号楼的高度CD .19.(本小题满分7分) 列方程解应用题.某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出.据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问:这种玩具的销售单价为多少元时,厂家每天可获利润20 000元?20.(本小题满分7分)如图,一次函数y kx b =+与反比例函数ay x=的图象在第一象限交于,A B 两点,B 点的坐标为(3,2)连接,OA OB ,过B 作BD y ⊥轴,垂足为D ,交OA 于C ,若OC CA =.(1)求一次函数和反比例函数的表达式; (2)求AOB △的面积.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)21.(本小题满分10分)今年5月,某大型商业集团随机抽取所属的部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了A,B,C,D 四个等级,并绘制了如图不完整的扇形统计图和条形统计图.根据以上信息,解答下列问题:(1)本次评估随机抽取了多少家商业连锁店?(2)请补充完整扇形统计图和条形统计图,并在图中标注相应数据.(3)从A,B 两个等级的商业连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.22.(本小题满分10分)如图,AB 是O 的直径,PB 与O 相切于点B ,连接PA 交O 于点C ,连接BC . (1)求证:BAC CBP ∠=∠. (2)求证:2 PB PC PA =.(3)当6AC =,3CP =时,求sin PAB ∠的值.23.(本小题满分10分)正方形ABCD 的边长为6 cm ,点,E M 分别是线段,BD AD 上的动点,连接AE 并延长,交边BC 于F ,过点M 作MN AF ⊥,垂足为点H ,交边AB 于点N . (1)如图1,若点M 与D 重合,求证:AF MN =.(2)如图2,若点M 从点D 出发,以1 cm 的速度沿DA 向点A 运动,同时点E 从点B 出发,cm 的速度沿BD 向点D 运动,运动时间为 s t . ①设 cm BF y =,求y 关于t 的函数表达式. ②当2BN AN =时,连接FN ,求FN 的长.24.(本小题满分10分)如图,在平面直角坐标系中,抛物线2+1y ax bx =+交y 轴于点A ,交x 轴正半轴于点(4,0)B ,与过A 点的直线相交于另一点5(3,)2D ,过点D 作DC x ⊥轴,垂足为点C .(1)求抛物线的表达式.(2)点P 在线段OC 上(不与点,O C 重合),过点P 作PN x ⊥轴,交直线AD 于点M ,交抛物线于点N ,连接CM ,求PCM △面积的最大值;(3)若P 是x 轴正半轴上的一动点,设OP 的长为t ,是否存在t ,使以点,,,M C D N 为顶点的四边形是平行四边形?若存在,请求出t 的值;若不存在,请说明理由.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

2017年江苏省各市中考数学试题汇总(13套)

2017年江苏省各市中考数学试题汇总(13套)

文件清单:2017年中考真题精品解析数学(江苏无锡卷)(含答案)2017年中考真题精品解析数学(江苏连云港卷)(含答案)2017年江苏省徐州市中考数学试卷(含答案)2017年江苏省淮安市中考数学试卷(含答案)2017年江苏省盐城市中考数学试卷(含答案)2017年苏州市初中毕业暨升学考试试卷(含答案)2017年南京市初中毕业生学业考试(含答案)2017年江苏省南通市中考数学试题(含答案)2017年江苏省常州市中考数学试题及答案(含答案)2017年江苏省扬州市中考数学试题(含答案)2017年江苏省泰州市中考数学试题(含答案)2017年江苏省镇江市中考数学试题(含答案)2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣152.函数=2-xy x 中自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .x >23.下列运算正确的是( )A .(a 2)3=a 5B .(ab )2=ab 2C .a 6÷a 3=a 2D .a 2•a 3=a 54.下列图形中,是中心对称图形的是( )A .B .C .D .5.若a ﹣b=2,b ﹣c=﹣3,则a ﹣c 等于( )A .1B .﹣1C .5D .﹣56.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是( )成绩(分) 70 80 90男生(人) 5 10 7女生(人) 4 13 4A .男生的平均成绩大于女生的平均成绩B .男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.3210.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A.2 B.54C.53D.75二、填空题(本大题共8小题,每小题2分,共16分)11.计算123的值是.12.分解因式:3a2﹣6a+3=.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.若反比例函数y=kx的图象经过点(﹣1,﹣2),则k的值为.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由»AE,EF,»FB,AB所围成图形(图中阴影部分)的面积等于.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x =+21.已知,如图,平行四边形ABCD 中,E 是BC 边的中点,连DE 并延长交AB 的延长线于点F ,求证:AB=BF .22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(63,则点M的坐标为.x图象上异于原点O的任意一点,经过T变换后得到点B.(2)A是函数y=32①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号A型B型处理污水能力(吨/月)240 180已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.一、选择题(本大题共10小题,每小题3分,共30分)1.﹣5的倒数是( )A .15B .±5C .5D .﹣15【答案】D .【解析】试题解析:∵﹣5×(﹣15)=1,∴﹣5的倒数是﹣15.故选D .考点:倒数2.函数=2-xy x 中自变量x 的取值范围是()A .x ≠2B .x ≥2C .x ≤2D .x >2【答案】A .考点:函数自变量的取值范围.3.下列运算正确的是( )A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【答案】D.【解析】试题解析:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方.4.下列图形中,是中心对称图形的是()A.B.C.D.【答案】C.考点:中心对称图形.5.若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【答案】B【解析】试题解析:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B考点:整式的加减.6.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()成绩(分)70 80 90男生(人) 5 10 7女生(人) 4 13 4A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【答案】A.考点:1.中位数;2.算术平均数.7.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【答案】C.【解析】试题解析:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,=0.5=50%,x2=﹣2.5(不合题意舍去),解得:x1答即该店销售额平均每月的增长率为50%;故选C.考点:一元二次方程的应用.8.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【答案】B.故选B.考点:命题与定理.9.如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.25D.32【答案】C.【解析】试题解析:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH=22AD DH-=12,∴HB=AB﹣AH=8,在Rt△BDH中,BD=2285DH BH+=,设⊙O与AB相切于F,连接AF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,考点:1.切线的性质;2.菱形的性质.10.如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD 翻折得到△AED,连CE,则线段CE的长等于()A .2B .54C .53D .75【答案】D .【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴BC=2234+=5,∵CD=DB ,∴AD=DC=DB=52,∵12•BC•AH=12•AB•A C ,∴AH=125,在Rt △BCE 中,22222475()55BC BE -=-= .故选D.考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.二、填空题(本大题共8小题,每小题2分,共16分)11.计算123⨯的值是.【答案】6.【解析】试题解析:123⨯==6.⨯=12336考点:二次根式的乘除法.12.分解因式:3a2﹣6a+3=.【答案】3(a﹣1)2.考点:提公因式法与公式法的综合运用.13.贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.【答案】2.5×105.【解析】试题解析:将250000用科学记数法表示为:2.5×105.考点:科学记数法—表示较大的数.14.如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.【答案】11.【解析】试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.考点:1.有理数大小比较;2.有理数的减法.的图象经过点(﹣1,﹣2),则k的值为.15.若反比例函数y=kx【答案】2.【解析】试题解析:把点(﹣1,﹣2)代入解析式可得k=2.考点:待定系数法求反比例函数解析式.16.若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为c m2.【答案】15π.考点:圆锥的计算.17.如图,已知矩形ABCD 中,AB=3,AD=2,分别以边AD ,BC 为直径在矩形ABCD 的内部作半圆O 1和半圆O 2,一平行于AB 的直线EF 与这两个半圆分别交于点E 、点F ,且EF=2(EF 与AB 在圆心O 1和O 2的同侧),则由»AE,EF ,»FB ,AB 所围成图形(图中阴影部分)的面积等于 .【答案】534﹣6.【解析】试题解析:连接O 1O 2,O 1E ,O 2F ,则四边形O 1O 2FE 是等腰梯形,过E 作EG ⊥O 1O 2,过F ⊥O 1O 2,∴四边形EGHF 是矩形, ∴GH=EF=2, ∴O 1G=12, ∵O 1E=1,∴GE=32,∴1112O G O E =; ∴∠O 1EG=30°, ∴∠AO 1E=30°, 同理∠BO 2F=30°,∴阴影部分的面积=S 矩形ABO2O1﹣2S 扇形AO1E ﹣S 梯形EFO2O1=3×1﹣2×2301360π⨯⨯=12(2+3)×32=3﹣534﹣6π. 考点:1.扇形面积的计算;2.矩形的性质.18.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .【答案】3. 【解析】试题解析:平移CD 到C ′D ′交AB 于O ′,如图所示,则∠BO ′D ′=∠BOD , ∴tan ∠BOD=tan ∠BO ′D ′, 设每个小正方形的边长为a ,则O ′B=22(2)5a a a +=,O ′D ′=22(2a)(2)22a a +=,BD ′=3a , 作BE ⊥O ′D ′于点E , 则BE=3a 232222BD O F a aO D a''==''g , ∴O ′E=2222322(5)()22a a O B BE a '-=-=, ∴tanBO ′E=32a2322BE O E a==',∴tan ∠BOD=3.考点:解直角三角形.三、解答题(本大题共10小题,共84分) 19.计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b )(a ﹣b )﹣a (a ﹣b ) 【答案】(1)-1;(2)ab ﹣b 2考点:1.平方差公式;2.实数的运算;3.单项式乘多项式;4.零指数幂.20.(1)解不等式组:11x-2(+2)22x3①x②+>≤⎧⎪⎨⎪⎩(2)解方程:532x-12x=+【答案】(1)﹣1<x≤6;(2)x=13.(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.考点:1.解分式方程;3.解一元一次不等式组.21.已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB 的延长线于点F,求证:AB=BF.【答案】证明见解析.【解析】试题分析:根据线段中点的定义可得CE=BE ,根据平行四边形的对边平行且相等可得AB ∥CD ,AB=CD ,再根据两直线平行,内错角相等可得∠DCB=∠FBE ,然后利用“角边角”证明△CED 和△BEF 全等,根据全等三角形对应边相等可得CD=BF ,从而得证.学科网 试题解析:∵E 是BC 的中点, ∴CE=BE ,∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD , ∴∠DCB=∠FBE , 在△CED 和△BEF 中,DCA=FBE CE=BECED=BEF ⎧∠∠⎪⎨⎪∠∠⎩, ∴△CED ≌△BEF (ASA ), ∴CD=BF , ∴AB=BF .考点:1.平行四边形的性质;2.全等三角形的判定与性质.22.甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】1.3考点:列表法与树状图法.23.某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:时间第1天第2天第3天第4天第5天新加入人数(人)153 550 653 b 725累计总人数(人)3353 3903 a 5156 5881(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【答案】(1)4556;600;(2)补图见解析;(3)①(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.考点:条形统计图.24.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.25.操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(6,﹣3),则点M的坐标为.(2)A是函数y=32x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【答案】(1)Q(a+32b,12b);M(9,﹣23);(2)①y=37x;②34试题解析:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=12PC=12b,DQ=32PQ=32b,∴Q(a+32b,12b);(2)①∵A是函数y=32x图象上异于原点O的任意一点,∴可取A(2,3),∴2+32×3=72,12×3=32,∴B (72,2),设直线OB 的函数表达式为y=kx ,则72k=2,解得k=7,∴直线OB 的函数表达式为y=7x ;②设直线AB 解析式为y=k ′x+b ,把A 、B坐标代入可得2+722k b k b ⎧'⎪⎨'+=⎪⎩,解得3k b ⎧'=-⎪⎪⎨⎪=⎪⎩,∴直线AB 解析式为y=﹣3x+3,∴D (0,3),且A (2,B (72,2),∴,,∴OAB OAD S AB 3===S AD 4V V . 考点:一次函数综合题.26.某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:污水处理器型号 A 型 B 型 处理污水能力(吨/月)240180已知商家售出的2台A 型、3台B 型污水处理器的总价为44万元,售出的1台A 型、4台B 型污水处理器的总价为42万元. (1)求每台A 型、B 型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【答案】(1) 设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;(2)(2)由于求至少要支付的钱数,可知购买6台A 型污水处理器、3台B 型污水处理器,费用最少,进而求解即可.试题解析:(1)可设每台A 型污水处理器的价格是x 万元,每台B 型污水处理器的价格是y 万元,依题意有2+3=44+4=42x y x y ⎧⎨⎩,解得=10=8x y ⎧⎨⎩.答:设每台A 型污水处理器的价格是10万元,每台B 型污水处理器的价格是8万元;考点:1.一元一次不等式的应用;2.二元一次方程组的应用.27.如图,以原点O 为圆心,3为半径的圆与x 轴分别交于A ,B 两点(点B 在点A 的右边),P 是半径OB 上一点,过P 且垂直于AB 的直线与⊙O 分别交于C ,D 两点(点C 在点D 的上方),直线AC ,DB 交于点E .若AC :CE=1:2. (1)求点P 的坐标;(2)求过点A 和点E ,且顶点在直线CD 上的抛物线的函数表达式.【答案】(1) P (1,0).(2) y=28x 2﹣24x ﹣1528.【解析】试题分析:(1)如图,作EF ⊥y 轴于F ,DC 的延长线交EF 于H .设H (m ,n ),则P (m ,0),PA=m+3,PB=3﹣m .首先证明△ACP ∽△ECH ,推出12AC PC AP CE CH HE ===,推出CH=2n ,EH=2m=6,再证明△DPB ∽△DHE ,推出144PB DP n EH DH n ===,可得3-1264m m =+,求出m 即可解决问题;(2)由题意设抛物线的解析式为y=a (x+3)(x ﹣5),求出E 点坐标代入即可解决问题.∴12AC PC AP CE CH HE ===, ∴CH=2n ,EH=2m=6, ∵CD ⊥AB , ∴PC=PD=n , ∵PB ∥HE ,∴△DPB ∽△DHE , ∴144PB DP n EH DH n ===, ∴3-1264m m =+,∴m=1, ∴P (1,0).(2)由(1)可知,PA=4,HE=8,EF=9, 连接OP ,在Rt △OCP 中,PC=2222OC OP -=∴2,2∴E(9,62),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,62)代入得到a=28,∴抛物线的解析式为y=28(x+3)(x﹣5),即y=28x2﹣24x﹣1528.考点:圆的综合题.28.如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【答案】(1) 83;(2) 477≤m<47.【解析】试题分析:(1)只要证明△ABD∽△DPC,可得AD ABCD PD,由此求出PD即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3试题解析:(1)如图1中,∵四边形ABCD是矩形,∴∠ADC=∠A=90°,∴∠DCP+∠CPD=90°,∵∠CPD+∠ADB=90°,∴∠ADB=∠PCD,(2)如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.作EQ ⊥BC 于Q ,EM ⊥DC 于M .则EQ=3,CE=DC=4易证四边形EMCQ 是矩形, ∴CM=EQ=3,∠M=90°, ∴EM=2222437EC CM -=-=,∵∠DAC=∠EDM ,∠ADC=∠M , ∴△ADC ∽△DME ,AD DGDM EM=, ∴77AD =,∴AD=47,由△DME ∽△CDA , ∴DM EM =CD AD, ∴71=4AD,∴AD=47,综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,这样的m 的取值范围477≤m <47.考点:四边形综合题.2017年江苏省连云港市中考数学试题数学试题一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2的绝对值是( ) A.2-B.2C.12-D.122.计算2a a ×的结果是( ) A.aB.2aC.22aD.3a3.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数4.如图,已知ABC DEF △∽△,:1:2AB DE =,则下列等式一定成立的是( )A.12BC DF=B.12A D =∠的度数∠的度数C.12ABC DEF =△的面积△的面积D.12ABC DEF =△的周长△的周长5.由6个大小相同的正方体塔成的几何体如图所示,比较它的正视图,左视图和俯视图的面积,则( )A.三个视图的面积一样大 C.主视图的面积最小 C.左视图的面积最小D.俯视图的面积最小6.8( )A.8826C.822=?D.837.已知抛物线()20y ax a =>过()12,A y -,()21,B y 两点,则下列关系式一定正确的是( ) A.120y y >>B.210y y >>C.120y y >>D.210y y >>8.如图所示,一动点从半径为2的O ⊙上的0A 点出发,沿着射线0A O 方向运动到O ⊙上的点1A 处,再向左沿着与射线1A O 夹角为60°的方向运动到O ⊙上的点2A 处;接着又从2A 点出发,沿着射线2A O 方向运动到O ⊙上的点3A 处,再向左沿着与射线3A O 夹角为60°的方向运动到O ⊙上的点4A 处;…按此规律运动到点2017A 处,则点2017A 与点0A 间的距离是( )A.4B.23C.2D.0二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.使分式11x -有意义的x 的取值范围是 . 10.计算()()22a a -+= .11.截至今年4月底,连云港市中哈物流合作基地累计完成货物进,出场量6800000吨,数据6 800 000用科学计数法可表示为 .12.已知关于x 的方程220x x m -+=有两个相等的实数根,则m 的值是 . 13.如图,在平行四边形ABCD 中,AE BC ^于点E ,AF CD ^于点F ,若60EAF =∠°,则B =∠ .14.如图,线段AB 与O ⊙相切于点B ,线段AO 与O ⊙相交于点C ,12AB =,8AC =,则O ⊙的半径长为 .15.设函数3y x=与26y x =--的图象的交点坐标为(),a b ,则12a b+的值是 .16.如图,已知等边三角形OAB 与反比例函数()0,0k y k x x=>>的图象交于A ,B 两点,将OAB △沿直线OB 翻折,得到OCB △,点A 的对应点为点C ,线段CB 交x 轴于点D ,则BDDC的值为 .(已知62sin154-=°)三、解答题 (本大题共11小题,共102分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:()()0318 3.14p ---+-.18.化简:211a a a a-×-.19.解不等式组:()3143216x x x ì-+<ïí--?ïî.20.某校举行了“文明在我身边”摄影比赛.已知每幅参赛作品成绩记为x 分(60100x#).校方从600幅参赛作品中随机抽取了部分参赛作品,统计了它们的成绩,并绘制了如下不完整的统计图表.根据以上信息解答下列问题: (1)统计表中c 的值为;样本成绩的中位数落在分数段中;(2)补全频数分布直方图;(3)若80分以上(含80分)的作品将被组织展评,试估计全校被展评作品数量是多少?21.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.22.如图,已知等腰三角形ABC中,AB AC=,点D,E分别在边AB、AC上,且AD AE=,连接BE、CD,交于点F.(1)判断ABE∠的数量关系,并说明理由;∠与ACD(2)求证:过点A、F的直线垂直平分线段BC.23.如图,在平面直角坐标系xOy中,过点()A-的直线交y轴正半轴于点B,2,0将直线AB绕着点O顺时针旋转90°后,分别与x轴y轴交于点D、C.(1)若4OB=,求直线AB的函数关系式;(2)连接BD,若ABD△的面积是5,求点B的运动路径长.24.某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完,直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤,设安排x名工人采摘蓝莓,剩下的工人加工蓝莓.(1)若基地一天的总销售收入为y元,求y与x的函数关系式;(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值.25.如图,湿地景区岸边有三个观景台A、B、C.已知1400AC=米,AB=米,1000B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求ABC△的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD.试求A、D间的距离.(结果精确到0.1米)(参考数据:sin53.20.80°≈,cos60.70.49°≈,°≈,sin66.10.91°≈,sin60.70.87°≈,cos53.20.60≈)cos66.10.41°≈,2 1.41426.如图,已知二次函数()230y axbx a =++?的图象经过点()3,0A ,()4,1B ,且与y 轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断ABC △的形状;若ABC △的外接圆记为M ⊙,请直接写出圆心M 的坐标; (3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点1A 、1B 、1C ,111A B C △的外接圆记为1M ⊙,是否存在某个位置,使1M ⊙经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.27.如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE DG =. 求证:2ABCD EFGH S S =矩形四边形.(S 表示面积)实验探究:某数学实验小组发现:若图1中AH BF ¹,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点1A 、1B 、1C 、1D ,得到矩形1111A B C D .如图2,当AH BF >时,若将点G 向点C 靠近(DG AE >),经过探索,发现:11112ABCD A B C D EFGH S S S =+矩形矩形四边形.如图3,当AH BF >时,若将点G 向点D 靠近(DG AE <,请探索EFGH S 四边形、ABCD S 矩形与1111A B C D S 矩形之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题.(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH BF >,AE DG >,11EFGH S =四边形,29HF ,求EG 的长.(2)如图5,在矩形ABCD中,3AD=,点E、H分别在边AB、AD上,1AB=,5BE=,FG=,连接EF、HG,请DH=,点F、G分别是边BC、CD上的动点,且102直接写出四边形EFGH面积的最大值.一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 2的绝对值是( ) A.2-B.2C.12-D.12【答案】B 【解析】试题分析:根据绝对值的性质,一个正数的绝对值为本身,可知2的绝对值为2. 故选:B 考点:绝对值2. 计算2a a ×的结果是( ) A.aB.2aC.22aD.3a【答案】D考点:同底数幂相乘3. 小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A.方差B.平均数C.众数D.中位数。

2017年江苏省南通市中考数学真题及答案 精品

2017年江苏省南通市中考数学真题及答案 精品

江苏省南通市2017年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•南通)﹣4的相反数()D﹣2.(3分)(2017•南通)如图,∠1=40°,如果CD∥BE,那么∠B 的度数为()3.(3分)(2017•南通)已知一个几何体的三视图如图所示,则该几何体是()图是分别从物体正面、左面和上面看所4.(3分)(2017•南通)若在实数范围内有意义,则x的取值范围是()≥≥﹣>≠>.5.(3分)(2017•南通)点P(2,﹣5)关于x轴对称的点的坐标为()6.(3分)(2017•南通)化简的结果是()解:﹣母7.(3分)(2017•南通)已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则它的图象经过( )的符号确定该函数图象所经过的象限.,8.(3分)(2017•南通)若关于x的一元一次不等式组无解,则a的取值范围是()无解,求出解:解∵9.(3分)(2017•南通)如图,△ABC中,AB=AC=18,BC=12,正方形DEFG的顶点E,F在△ABC内,顶点D,G分别在AB,AC上,AD=AG,DG=6,则点F到BC的距离为()﹣BC=6=12∴∴,AN=6AN=6GF=610.(3分)(2017•南通)如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是().B.D,∴.由,=.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)(2017•南通)我国第一艘航母“辽宁舰”最大排水量为67500吨,这个数据用科学记数法可表示为 6.75×104 吨.12.(3分)(2017•南通)因式分解a3b﹣ab= ab(a+1)(a﹣1).13.(3分)(2017•南通)如果关于x的方程x2﹣6x+m=0有两个相等的实数根,那么m= 9 .14.(3分)(2017•南通)已知抛物线y=ax2+bx+c与x轴的公共点是(﹣4,0),(2,0),则这条抛物线的对称轴是直线x=﹣1 .x=x=x=x=15.(3分)(2017•南通)如图,四边形ABCD中,AB∥DC,∠B=90°,连接AC,∠DAC=∠BAC.若BC=4cm,AD=5cm,则AB= 8 cm.AE=性质以及勾股定理.16.(3分)(2017•南通)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在 A 区域的可能性最大(填A或B 或C).17.(3分)(2017•南通)如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= 60 °.°,然后又三角形外角的性质,即可求得18.(3分)(2017•南通)已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于﹣12 .平方式恒大于等于三、解答题(本大题共10小题,共96分)19.(10分)(2017•南通)计算:(1)(﹣2)2+()0﹣﹣()﹣1;(2)[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y.20.(8分)(2017•南通)如图,正比例函数y=﹣2x 与反比例函数y=的图象相交于A (m ,2),B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)结合图象直接写出当﹣2x >时,x 的取值范围.y=可计算出y=得﹣>.21.(8分)(2017•南通)如图,海中有一灯塔P,它的周围8海里内有暗礁.海伦以18海里/时的速度由西向东航行,在A处测得灯塔P在北偏东60°方向上;航行40分钟到达B处,测得灯塔P在北偏东30°方向上;如果海轮不改变航线继续向东航行,有没有触礁的危险?ABP×=12×=6海里.>22.(8分)(2017•南通)九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是 C ;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.)根据中位数的意义判断.23.(8分)(2017•南通)盒中有x 个黑球和y 个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;若往盒中再放进1个黑球,这时取得黑球的概率变为.(1)填空:x= 2 ,y= 3 ;(2)小王和小林利用x个黑球和y个白球进行摸球游戏.约定:从盒中随机摸取一个,接着从剩下的球中再随机摸取一个,若两球颜色相同则小王胜,若颜色不同则小林胜.求两个人获胜的概率各是多少?)根据题意得:解得:===.24.(8分)(2017•南通)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点M 在⊙O 上,MD 恰好经过圆心O ,连接MB .(1)若CD=16,BE=4,求⊙O 的直径;(2)若∠M=∠D ,求∠D 的度数.M=∠D=25.(9分)(2017•南通)如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为14 cm,匀速注水的水流速度为 5 cm3/s;(2)若“几何体”的下方圆柱的底面积为15cm2,求“几何体”上方圆柱的高和底面积.26.(10分)(2017•南通)如图,点E是菱形ABCD对角线CA的延长线上任意一点,以线段AE为边作一个菱形AEFG,且菱形AEFG∽菱形ABCD,连接EC,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=,求GD的长.BP AB=1EP=2DAB=60BP =,AE=AG=,EP=2==27.(13分)(2017•南通)如图,矩形ABCD 中,AB=3,AD=4,E 为AB 上一点,AE=1,M 为射线AD 上一动点,AM=a (a 为大于0的常数),直线EM 与直线CD 交于点F ,过点M 作MG ⊥EM ,交直线BC 于G .(1)若M 为边AD 中点,求证:△EFG 是等腰三角形;(2)若点G 与点C 重合,求线段MG 的长;(3)请用含a 的代数式表示△EFG 的面积S ,并指出S 的最小整数值.=∴=,∴=∴=,∴=S=MG=××+6 S=+6a=时,28.(14分)(2017•南通)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC 相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.x2|===,=2AOD,解得的坐标是x2|===,=2。

江苏省南通市2017年中考数学真题试题(含解析)

江苏省南通市2017年中考数学真题试题(含解析)

于点 C; PQ
Q ;②MC∥OA;③OP=PQ;④OC 平分∠AOB,其中正确的个数为( ) 则下列判断:① PC = C

A.1
B.2
C.3
D.4
【答案】C.
∴ PC

C Q ,OC 平分∠AOB,结论①④正确;
∵∠AOB 的度数未知,∠POQ 和∠PQO 互余, ∴∠POQ 不一定等于∠PQO, ∴OP 不一定等于 PQ,结论③错误. 综上所述:正确的结论有①②④. 故选 C. 考点:作图—复杂作图;圆周角定理. 10.如图,矩形 ABCD 中,AB=10,BC=5,点 E,F,G,H 分别在矩形 ABCD 各边上,且 AE=CG,BF=DH,则四 边形 EFGH 周长的最小值为( )
考点:科学记数法—表示较大的数. 3.下列计算,正确的是( ) A.a2﹣a=a 【答案】D. 【解析】 试题解析:A、a2-a,不能合并,故 A 错误; B、a2•a3=a5,故 B 错误; C、a9÷a3=a6,故 C 错误; D、 (a3)2=a6,故 D 正确; 故选 D. 考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 4.如图是由 4 个大小相同的正方体组合而成的几何体,其左视图是( ) B.a2•a3=a6 C.a9÷a3=a3 D. (a3)2=a6
【答案】B. 【解析】 试题解析:每分钟的进水量为:20÷4=5(升) , 每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升) . 故选:B. 考点:函数的图象. 9.已知∠AOB,作图. 步骤 1:在 OB 上任取一点 M,以点 M 为圆心,MO 长为半径画半圆,分别交 OA、OB 于点 P、Q; 步骤 2:过点 M 作 PQ 的垂线交 步骤 3:画射线 OC.

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10 四边形-2017年中考数学试题分项版解析汇编(解析版)

专题10:四边形一、选择题1.(2017北京第6题)若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12C . 16D .18【答案】B .【解析】试题分析:设多边形的边数为n ,则有(n -2)×180°=n ×150°,解得:n =12.故选B .考点:多边形的内角与外角2. (2017河南第7题)如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有( )A .AC BD ⊥B .AB BC = C .AC BD = D .12∠=∠【答案】C .考点:菱形的判定.3. (2017湖南长沙第10题)如图,菱形ABCD 的对角线BD AC ,的长分别为cm cm 8,6,则这个菱形的周长为( )A .cm 5B .cm 10C .cm 14D .cm 20【答案】D【解析】试题分析:根据菱形的对角线互相垂直,可知OA =3,OB =4,根据勾股定理可知AB =5,所以菱形的周长为4×5=20.故选:D考点:菱形的性质4. (2017湖南长沙第12题)如图,将正方形ABCD 折叠,使顶点A 与CD 边上的一点H 重合(H 不与端点D C ,重合),折痕交AD 于点E ,交BC 于点F ,边AB 折叠后与边BC 交于点G ,设正方形ABCD 的周长为m ,CHG ∆的周长为n ,则mn 的值为( ) A .22 B .21 C .215- D .随H 点位置的变化而变化【答案】B【解析】试题分析:设正方形ABCD 的边长为2a ,正方形的周长为m =8a ,设CM =x ,DE =y ,则DM =2a -x ,EM =2a -y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG , ∴CG CM MG DM DE EM ==,即22CG x MG a x y a y==-- ∴CG =(2)(2)=,x a x x a y CG MG y y--= △CMG 的周长为CM +CG +MG =24ax x y-在Rt △DEM 中,DM 2+DE 2=EM 2即(2a -x )2+y 2=(2a -y )2整理得4ax -x 2=4ay∴CM +MG +CG =2444ax x ay a y y-===n . 所以12n m = 故选:B .考点:1、正方形,2、相似三角形的判定与性质,3、勾股定理5. (2017山东临沂第7题)一个多边形的内角和是外角和的2倍,这个多边形是( )A .四边形B .五边形C .六边形D .八边形【答案】C【解析】试题分析:根据多边形的外角和为360°,可知其内角和为720°,因此可根据多边形的内角和公式(n -2)·180°=720°,解得n =6,故是六边形.故选:C考点:多边形的内外角和6. (2017山东临沂第12题)在ABC V 中,点D 是边BC 上的点(与B 、C 两点不重合),过点D 作DE AC ∥,DF AB ∥,分别交AB ,AC 于E 、F 两点,下列说法正确的是( )A .若AD BC ⊥,则四边形AEDF 是矩形B .若AD 垂直平分BC ,则四边形AEDF 是矩形C .若BD CD =,则四边形AEDF 是菱形D .若AD 平分BAC ∠,则四边形AEDF 是菱形【答案】D【解析】试题分析:根据题意可知:DE AC ∥,DF AB ∥,可得四边形AEDF 是平行四边形.若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;选项A 错误;若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;选项B 错误;若BD =CD ,则四边形AEDF 是平行四边形,不一定是菱形;选项C 错误;若AD 平分∠BAC ,则四边形AEDF 是菱形;正确.故选:D考点:特殊平行四边形的判定7. (2017山东青岛第7题)如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23B .23C .721D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. (2017四川泸州第11题)如图,在矩形ABCD 中,点E 是边BC 的中点,AE BD ⊥,垂足为F ,则tan BDE ∠的值是 ( )A .24B .14C .13D .23【答案】A .【解析】试题分析:由AD ∥BC 可得△ADF ∽△EBF ,根据相似三角形的性质可得AD AF DF EB EF BF== ,因点E 是边BC 的中点且AD =BC ,所以AD AF DF EB EF BF ===2,设EF =x ,可得AF =2x ,在Rt △ABE 中,由射影定理可得BF =2x ,再由AD AF DF EB EF BF ===2可得DF =22x ,在Rt △DEF 中,tan BDE ∠=2422EF x DF x == ,故选A . 9. (2017江苏苏州第10题)如图,在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点.过点F 作F D E ⊥A ,垂足为E .将F ∆AE 沿点A 到点B 的方向平移,得到F '''∆A E .设P 、'P 分别是F E 、F ''E 的中点,当点'A 与点B 重合时,四边形CD 'PP 的面积为A .283B .243C .323D .3238-【答案】A .【解析】试题分析:作,,DH AB PK AB FL AB ⊥⊥⊥在菱形CD AB 中,60∠A =,D 8A =,F 是AB 的中点 423,3AF EF EL ∴==∴=,P 是F E 的中点,32PK ∴= 43DH = 1373322PP CD ∴-= 高为4 7382832S ∴=⨯=L K H故答案选A .考点:平行四边形的面积,三角函数. 10.(2017江苏苏州第7题)如图,在正五边形CD AB E 中,连接BE ,则∠ABE 的度数为A .30B .36C .54D .72【答案】B .【解析】试题分析:∠ABE =3601=3652︒⨯︒ 故答案选B . 考点:多边形的外角,等腰三角形的两底角相等11.(2017浙江台州第10题) 如图,矩形EFGH 的四个顶点分别在菱形ABCD 的四条边上,BE BF =,将,AEH CFG ∆∆分别沿,EH FG 折叠,当重叠部分为菱形且面积是菱形ABCD 面积的116时,则AE EB 为 ( )A . 53B .2C . 52D .4 【答案】A考点:1、菱形的性质,2、翻折变换(折叠问题)二、填空题1.(2017天津第17题)如图,正方形ABCD 和正方形EFCG 的边长分别为3和1,点G F ,分别在边CD BC ,上,P 为AE 的中点,连接PG ,则PG 的长为 .【答案】5.【解析】试题分析:连结AC ,根据正方形的性质可得A 、E 、C 三点共线,连结FG 交AC 于点M ,因正方形ABCD 和正方形EFCG 的边长分别为3和1,根据勾股定理可求得EC =FG =2,AC =32,即可得AE =22,因P 为AE 的中点,可得PE =AP =2,再由正方形的性质可得GM =EM =22,FG 垂直于AC ,在Rt △PGM 中,PM =322,由勾股定理即可求得PG =5.2.(2017福建第15题)两个完全相同的正五边形都有一边在直线l 上,且有一个公共顶点O ,其摆放方式如图所示,则AOB ∠等于 度.【答案】108【解析】∵五边形是正五边形,∴每一个内角都是108°,∴∠OCD =∠ODC =180°-108°=72°,∴∠COD =36°,∴∠AOB =360°-108°-108°-36°=108°.D C3.(2017广东广州第16题)如图9,平面直角坐标系中O 是原点,OABC 的顶点,A C 的坐标分别是()()8,0,3,4,点,D E 把线段OB 三等分,延长,CD CE 分别交,OA AB 于点,F G ,连接FG ,则下列结论:①F 是OA 的中点;②OFD ∆与BEG ∆相似;③四边形DEGF 的面积是203;④453OD =;其中正确的结论是 .(填写所有正确结论的序号)【答案】①③【解析】试题分析:如图,分别过点A 、B 作AN OB ⊥ 于点N ,BM x ⊥ 轴于点M在OABC 中,(80)(34)(114)137A C B OB ∴= ,,,,,D E 、 是线段AB 的三等分点, 12OD BD ∴= ,CB OF ODF BDC ∴∆∆111222OF OD OF BC OA BC BD ∴==∴==, F ∴ 是OA 的中点,故①正确.(34)5C OC OA ∴=≠ ,,OABC ∴ 不是菱形.,DOF COD EBG ODF COD EBG ∴∠≠∠=∠∠≠∠=∠(40)17,F CF OC CFO COF ∴=<∴∠>∠ ,,DFO EBG ∴∠≠∠故OFD ∆ 和BEG ∆ 不相似.则②错误;由①得,点G 是AB 的中点,FG ∴ 是OAB ∆ 的中位线1137,22FG OB FG OB ∴== D E 、 是OB 的三等分点,1373DE ∴= 1118416222OAB S OB AN OA BM ∆=⋅=⋅=⨯⨯= 解得:1162AN OB= ,DF FG ∴ 四边形DEGH 是梯形()551202121223DEGF DE FG h S OB h OB AN -∴==⋅=⋅=四边形 则③正确 113733OD OB == ,故④错误. 综上:①③正确.考点: 平行四边形和相似三角形的综合运用4.(2017广东广州第11题)如图6,四边形ABCD 中,0//,110AD BC A ∠=,则B ∠=___________.【答案】70°【解析】试题分析:两直线平行,同旁内角互补,可得:B ∠=180°-110°=70°考点:平行线的性质5.(2017山东临沂第18题)在ABCD Y 中,对角线AC ,BD 相交于点O .若4AB =,10BD =,3sin 5BDC ∠=,则ABCD Y 的面积是 .【答案】24【解析】试题分析:作OE ⊥CD 于E ,由平行四边形的性质得出OA =OC ,OB =OD =12BD =5,CD =AB =4,由sin ∠BDC =35,证出AC ⊥CD ,OC =3,AC =2OC =6,得出▱ABCD 的面积=CD •AC =24. 故答案为:24.考点:1、平行四边形的性质,2、三角函数,3、勾股定理6.(2017山东青岛第13题)如图,在四边形 ABCD 中,∠ABC =∠ADC =90°,E 为对角线AC 的中点,连接BE 、ED 、BD ,若∠BAD =58°,则∠EBD 的度数为__________度.【答案】32 【解析】 试题分析:如下图由∠ABC =∠ADC =90°,E 为对角线AC 的中点,可知A ,B ,C ,D 四点共圆,圆心是E ,直径AC 然后根据圆周角定理由∠BAD =58°,得到∠BED =116°,然后根据等腰三角形的性质可求得∠EBD =32°. 故答案为:32.考点:1、圆周角性质定理,2、等腰三角形性质7.(2017山东滨州第16题)如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在AB 边上的E 处,EQ 与BC 相交于点F .若AD =8,AB =6,AE =4,则△EBF 周长的大小为___________.ABCDHQGFE【答案】8.【解析】由折叠的性质可得DH =EH ,设AH =x ,则DH =EH =8-x ,在Rt △AEH 中,根据勾股定理可得2224(8)x x +=- ,解得x =3,即可得AH =3,EH =5;根据已知条件易证△AEH ∽△BFE ,根据相似三角形的性质可得AH AE EH BE BF EF == ,即3452BF EF ==,解得BF =83 ,EF =103,所以△EBF 的周长为2+83+103=8. 8.(2017江苏宿迁第15题)如图,正方形CD AB 的边长为3,点E 在边AB 上,且1BE =.若点P 在对角线D B 上移动,则PA +PE 的最小值是 .【答案】10.9.(2017辽宁沈阳第16题)如图,在矩形ABCD 中,53AB BC ==,,将矩形ABCD 绕点B 按顺时针方向旋转得到矩形GBEF ,点A 落在矩形ABCD 的边CD 上,连接CE ,则CE 的长是 .【答案】3105. 【解析】试题分析:如图,过点C 作MN ⊥BG ,分别交BG 、EF 于点M 、N ,根据旋转的旋转可得AB =BG =EF =CD =5,AD =GF =3,在Rt △BCG 中,根据勾股定理求得CG =4,再由1122BCG S BC CG BG CM =⋅=⋅ ,即可求得CM =125 ,在Rt △BCM 中,根据勾股定理求得BM =22221293()55BC CM -=-=,根据已知条件和辅助线作法易知四边形BENMW 为矩形,根据矩形的旋转可得BE =MN =3,BM =EN =95,所以CN =MN -CM =3-125=35,在Rt △ECN 中,根据勾股定理求得EC =22223990310()()55255CN EN +=+==.考点:四边形与旋转的综合题.10.(2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. 【解析】试题分析:连接AG ,设DG =x ,则 G=4+x ''AB =B在'Rt AB G ∆ 中,22492(4)1x x x +=+⇒= ,则5,7AB BC =='254974'55CC BB +∴==考点:旋转的性质 ,勾股定理 .11. (2017山东菏泽第11题)菱形ABCD 中, 60=∠A ,其周长为cm 24,则菱形的面积为____2cm . 【答案】183. 【解析】试题分析:如图,连接BD ,作DE ⊥AB ,已知菱形的周长为cm 24,根据菱形的性质可得AB =6;再由 60=∠A ,即可判定△ABD 是等边三角形;求得DE =33,所以菱形的面积为:6×33=183.12. (2017浙江湖州第13题)已知一个多边形的每一个外角都等于72,则这个多边形的边数是 . 【答案】5考点:多边形的外角和三、解答题1. (2017北京第20题) 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S . 【解析】试题分析:由矩形的对角线的性质,对角线把矩形分成两个面积相等的三角形计算即可. 本题解析:由矩形对角线把矩形分成两个面积相等的两部分可得:(),()ADC ANF FGC ABC AEF FMC NFGD EBMF S S S S S S S S ∆∆∆∆∆=-+=-+矩形矩形 ,∴,,ADC ABC ANF AEF FGC FMC S S S S S S ∆∆∆∆∆∆=== , ∴NFGD EBMF S S =矩形矩形 . 考点:矩形的性质,三角形面积计算.2. (2017北京第22题)如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(2)3. 【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.本题解析:(1)证明:∵E 为AD 中点,A D =2BC ,∴BC =ED , ∵AD ∥BC , ∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)∵AD ∥BC ,AC 平分∠BAD ∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°, ∴∠DAC =30°, ∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC = 3 .考点:平行线性质,菱形判定,直角三角形斜边中线定理.3. (2017天津第24题)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)0,3(A ,点)1,0(B ,点)0,0(O .P 是边AB 上的一点(点P 不与点B A ,重合),沿着OP 折叠该纸片,得点A 的对应点'A .(1)如图①,当点'A 在第一象限,且满足OB B A ⊥'时,求点'A 的坐标; (2)如图②,当P 为AB 中点时,求B A '的长;(3)当030'=∠BPA 时,求点P 的坐标(直接写出结果即可).【答案】(1)点A ’的坐标为(2,1);(2)1;(3)3333(,)22--或2333(,)22- . 【解析】试题分析:(1)因点)0,3(A ,点)1,0(B ,可得OA =3 ,OB =1,根据折叠的性质可得△A ’OP ≌△AOP ,由全等三角形的性质可得OA ’=OA =3,在Rt △A ’OB 中,根据勾股定理求得'A B 的长,即可求得点A的坐标;(2)在Rt △AOB 中,根据勾股定理求得AB =2,再证△BOP 是等边三角形,从而得∠OPA =120°.在判定四边形OPA ’B 是平行四边形,根据平行四边形的性质即可得B A '的长; 试题解析:(1)因点)0,3(A ,点)1,0(B , ∴OA =3 ,OB =1.根据题意,由折叠的性质可得△A ’OP ≌△AOP .∴OA ’=OA =3,由OB B A ⊥',得∠A ’BO =90°.在Rt △A ’OB 中,22''2A B OA OB =-=, ∴点A ’的坐标为(2,1). (2) 在Rt △AOB 中,OA =3 ,OB =1, ∴222AB OA OB =+= ∵当P 为AB 中点, ∴AP =BP =1,OP =12AB =1. ∴OP =OB =BP , ∴△BOP 是等边三角形 ∴∠BOP =∠BPO =60°, ∴∠OPA =180°-∠BPO =120°. 由(1)知,△A ’OP ≌△AOP ,∴∠OPA ’=∠OPA =120°,P ’A =PA =1,又OB =PA ’=1,∴四边形OPA ’B 是平行四边形. ∴A ’B =OP =1. (3)3333(,)22--或2333(,)22- .4. (2017福建第24题)如图,矩形ABCD 中,6,8AB AD ==,,P E 分别是线段AC 、BC 上的点,且四边形PEFD 为矩形.(Ⅰ)若PCD ∆是等腰三角形时,求AP 的长; (Ⅱ)若2AP =,求CF 的长.【答案】(Ⅰ)AP 的长为4或5或145;(Ⅱ)CF =324【解析】试题分析:(Ⅰ)分情况CP =CD 、PD =PC 、DP =DC 讨论即可得;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,通过证明△ADP ∽△CDF ,从而得34CF CD AP AD == ,由AP =2 ,从而可得CF =324. 试题解析:(Ⅰ)在矩形ABCD 中,AB =6,AD =8,∠ADC =90°,∴DC =AB =6, AC =22AD DC + =10;要使△PCD 是等腰三角形,有如下三种情况: (1)当CP =CD 时,CP =6,∴AP =AC -CP =4 ;(2)当PD =PC 时,∠PDC =∠PCD ,∵∠PCD +∠PAD =∠PDC +∠PDA =90°,∴∠PAD =∠PDA ,∴PD =PA ,∴PA =PC ,∴AP =2AC,即AP =5;(3)当DP =DC 时,过D 作DQ ⊥AC 于Q ,则PQ =CQ ,∵S △ADC =12 AD ·DC =12AC ·DQ ,∴DQ =245AD DC AC = ,∴CQ =22185DC DQ -= ,∴PC =2CQ =365 ,∴AP =AC -PC =145. 综上所述,若△PCD 是等腰三角形,AP 的长为4或5或145;(Ⅱ)连结PF 、DE ,记PF 与DE 的交点为O ,连结OC ,∵四边形ABCD 和PEFD 都是矩形,∴∠ADC =∠PDF =90°,即∠ADP +∠PDC =∠PDC +∠CDF ,∴∠ADP =∠CDF ,∵∠BCD =90°,OE =OD ,∴OC =12 ED ,在矩形PEFD 中,PF =DE ,∴OC =12PF ,∵OP =OF =12PF ,∴OC =OP =OF ,∴∠OCF =∠OFC ,∠OCP =∠OPC ,又∵∠OPC +∠OFC +∠PCF =180°,∴2∠OCP +2∠OCF =180°,∴∠PCF =90°,即∠PCD +∠FCD =90°,在Rt △ADC 中,∠PCD +∠PAD =90°,∴∠PAD =∠FCD ,∴△ADP ∽△CDF ,∴34CF CD AP AD == ,∵AP =2 ,∴CF =324.5. (2017广东广州第24题)如图13,矩形ABCD 的对角线AC ,BD 相交于点O ,COD ∆关于CD 的对称图形为CED ∆.(1)求证:四边形OCED 是菱形;(2)连接AE ,若6cm AB =,5BC cm =. ①求sin EAD ∠的值;②若点P 为线段AE 上一动点(不与点A 重合),连接OP ,一动点Q 从点O 出发,以1/cm s 的速度沿线段OP 匀速运动到点P ,再以1.5cm /s 的速度沿线段PA 匀速运动到点A ,到达点A 后停止运动.当点Q 沿上述路线运动到点A 所需要的时间最短时,求AP 的长和点Q 走完全程所需的时间.【答案】(1)详见解析;(2)①2sin 3EAD ∠= ②32AP =和Q 走完全程所需时间为32s 【解析】(2)①连接OE ,直线OE 分别交AB 于点F ,交DC 于点GCOD ∆ 关于CD 的对称图形为CED ∆,OE DC DC AB ∴⊥ ,OF AB EF AD ∴⊥在矩形ABCD 中,G 为DC 的中点,且O 为AC 的中点OG ∴ 为CAD ∆ 的中位线 52OG GE ∴==同理可得:F 为AB 的中点,532OF AF ==, 22223593()22AE EF AF ∴=+=+= 32sin sin 932EAD AEFEAD AEF ∠=∠∴∠=∠==②过点P 作PM AB ⊥ 交AB 于点MQ ∴ 由O 运动到P 所需的时间为3s由①可得,23AM AP = ∴ 点O 以1.5/cm s 的速度从P 到A 所需的时间等于以 1/cm s 从M 运动到A 即:11OP PA OP MA t t t OP MA =+=+=+ Q ∴ 由O 运动到P 所需的时间就是OP +MA 和最小.如下图,当P 运动到1P ,即1PO AB 时,所用时间最短. 3t OP MA ∴=+=在11Rt APM ∆ 中,设112,3AM x APx == 2222211115(3)=(2)+()22AP AM PM x x =+∴ 解得:12x = 32AP ∴= 32AP ∴=和Q 走完全程所需时间为32s考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置6. (2017山东青岛第24题)(本小题满分12分)已知:Rt △EFP 和矩形ABCD 如图①摆放(点P 与点B 重合),点F ,B (P ),C 在同一条直线上,AB =EF =6cm ,BC =FP =8cm ,∠EFP =90°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年江苏省南通市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)在0、2、﹣1、﹣2这四个数中,最小的数为()A.0 B.2 C.﹣1 D.﹣22.(3分)近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A.1.8×105B.1.8×104C.0.18×106D.18×1043.(3分)下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6 C.a9÷a3=a3D.(a3)2=a64.(3分)如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A.B.C.D.5.(3分)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2) B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)6.(3分)如图,圆锥的底面半径为2,母线长为6,则侧面积为()A.4πB.6πC.12πD.16π7.(3分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差8.(3分)一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内即进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为()A.5L B.3.75L C.2.5L D.1.25L9.(3分)已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交于点C;步骤3:画射线OC.则下列判断:①=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A.1 B.2 C.3 D.410.(3分)如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.5 B.10C.10D.15二、填空题(每小题3分,共24分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)如图所示,DE是△ABC的中位线,BC=8,则DE=.13.(3分)四边形ABCD内接于圆,若∠A=110°,则∠C=度.14.(3分)若关于x的方程x2﹣6x+c=0有两个相等的实数根,则c的值为.15.(3分)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=度.16.(3分)甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为.17.(3分)已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为.18.(3分)如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.三、解答题(本大题共10小题,共96分)19.(10分)(1)计算:|﹣4|﹣(﹣2)2+﹣()0(2)解不等式组.20.(8分)先化简,再求值:(m+2﹣)•,其中m=﹣.21.(9分)某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如下不完整的统计表.课外阅读时间t频数百分比10≤t<3048%30≤t<50816%50≤t<70a40%70≤t<90 16b90≤t<11024%合计50100%请根据图表中提供的信息回答下列问题:(1)a=,b=;(2)将频数分布直方图补充完整;(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不少于50min?22.(8分)不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差别,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.23.(8分)热气球的探测器显示,从热气球A看一栋楼顶部B的仰角α为45°,看这栋楼底部C的俯角β为60°,热气球与楼的水平距离为100m,求这栋楼的高度(结果保留根号).24.(8分)如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长.25.(9分)某学习小组在研究函数y=x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.x…﹣4﹣3.5﹣3﹣2﹣10123 3.54…y…﹣﹣0﹣﹣﹣…(1)请补全函数图象;(2)方程x3﹣2x=﹣2实数根的个数为;(3)观察图象,写出该函数的两条性质.26.(10分)如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.27.(13分)我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC的“內似线”,求EF的长.28.(13分)已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.2017年江苏省南通市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017•南通)在0、2、﹣1、﹣2这四个数中,最小的数为()A.0 B.2 C.﹣1 D.﹣2【考点】18:有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:∵在0、2、﹣1、﹣2这四个数中只有﹣2<﹣1<0,0<2∴在0、2、﹣1、﹣2这四个数中,最小的数是﹣2.故选:D.【点评】本题考查了实数大小比较,任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(3分)(2017•南通)近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为()A.1.8×105B.1.8×104C.0.18×106D.18×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将180000用科学记数法表示为1.8×105,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•南通)下列计算,正确的是()A.a2﹣a=a B.a2•a3=a6 C.a9÷a3=a3D.(a3)2=a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方进行计算即可.【解答】解:A、a2﹣a,不能合并,故A错误;B、a2•a3=a5,故B错误;C、a9÷a3=a6,故C错误;D、(a3)2=a6,故D正确;故选D.【点评】本题考查了合并同类项、同底数幂的乘除法以及幂的乘方,掌握运算法则是解题的关键.4.(3分)(2017•南通)如图是由4个大小相同的正方体组合而成的几何体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:从左边看得到的是两个叠在一起的正方形.故选A.【点评】此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.5.(3分)(2017•南通)在平面直角坐标系中.点P(1,﹣2)关于x轴的对称点的坐标是()A.(1,2) B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.【解答】解:点P(1,﹣2)关于x轴的对称点的坐标是(1,2),故选:A.【点评】此题主要考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.6.(3分)(2017•南通)如图,圆锥的底面半径为2,母线长为6,则侧面积为()A.4πB.6πC.12πD.16π【考点】MP:圆锥的计算.【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【解答】解:根据圆锥的侧面积公式:πrl=π×2×6=12π,故选C.【点评】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.7.(3分)(2017•南通)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【考点】WA:统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是2,添加数字2后平均数扔为2,故A与要求不符;B、原来数据的中位数是2,添加数字2后中位数扔为2,故B与要求不符;C、原来数据的众数是2,添加数字2后众数扔为2,故C与要求不符;D、原来数据的方差==,添加数字2后的方差==,故方差发生了变化.故选:D.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.8.(3分)(2017•南通)一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内即进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为()A.5L B.3.75L C.2.5L D.1.25L【考点】E6:函数的图象.【分析】观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量﹣每分钟增加的水量”即可算出结论.【解答】解:每分钟的进水量为:20÷4=5(升),每分钟的出水量为:5﹣(30﹣20)÷(12﹣4)=3.75(升).故选:B.【点评】本题考查了函数图象,解题的关键是根据函数图象找出数据结合数量关系列式计算.9.(3分)(2017•南通)已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交于点C;步骤3:画射线OC.则下列判断:①=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A.1 B.2 C.3 D.4【考点】N3:作图—复杂作图;M5:圆周角定理.【分析】由OQ为直径可得出OA⊥PQ,结合MC⊥PQ可得出OA∥MC,结论②正确;根据平行线的性质可得出∠PAO=∠CMQ,结合圆周角定理可得出∠COQ=∠POQ=∠BOQ,进而可得出=,OC平分∠AOB,结论①④正确;由∠AOB的度数未知,不能得出OP=PQ,即结论③错误.综上即可得出结论.【解答】解:∵OQ为直径,∴∠OPQ=90°,OA⊥PQ.∵MC⊥PQ,∴OA∥MC,结论②正确;①∵OA∥MC,∴∠PAO=∠CMQ.∵∠CMQ=2∠COQ,∴∠COQ=∠POQ=∠BOQ,∴=,OC平分∠AOB,结论①④正确;∵∠AOB的度数未知,∠POQ和∠PQO互余,∴∠POQ不一定等于∠PQO,∴OP不一定等于PQ,结论③错误.综上所述:正确的结论有①②④.故选C.【点评】本题考查了作图中的复杂作图、角平分线的定义、圆周角定理以及平行线的判定及性质,根据作图的过程逐一分析四条结论的正误是解题的关键.10.(3分)(2017•南通)如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD 各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为()A.5 B.10C.10D.15【考点】PA:轴对称﹣最短路线问题;LB:矩形的性质.【分析】作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB=10、GG′=AD=5,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值.【解答】解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=10,∵GG′=AD=5,∴E′G==5,=2E′G=10.∴C四边形EFGH故选B.【点评】本题考查了轴对称中的最短路线问题以及矩形的性质,找出四边形EFGH周长取最小值时点E、F、G之间为位置关系是解题的关键.二、填空题(每小题3分,共24分)11.(3分)(2017•南通)若在实数范围内有意义,则x的取值范围为x≥2.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得x﹣2≥0,再解即可.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.12.(3分)(2017•南通)如图所示,DE是△ABC的中位线,BC=8,则DE=4.【考点】KX:三角形中位线定理.【分析】易得DE是△ABC的中位线,那么DE应等于BC长的一半.【解答】解:根据三角形的中位线定理,得:DE=BC=4.故答案为4.【点评】考查了三角形的中位线定理的数量关系:三角形的中位线等于第三边的一半.13.(3分)(2017•南通)四边形ABCD内接于圆,若∠A=110°,则∠C=70度.【考点】M6:圆内接四边形的性质.【分析】根据圆内接四边形的性质计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=110°,∴∠C=70°,故答案为:70.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.14.(3分)(2017•南通)若关于x的方程x2﹣6x+c=0有两个相等的实数根,则c的值为9.【考点】AA:根的判别式.【分析】根据判别式的意义得到△=(﹣6)2﹣4c=0,然后解关于c的一次方程即可.【解答】解:根据题意得△=(﹣6)2﹣4c=0,解得c=9.故答案为9.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.(3分)(2017•南通)如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=30度.【考点】R2:旋转的性质.【分析】根据旋转的性质可得∠BOD,再根据∠AOD=∠BOD﹣∠AOB计算即可得解.【解答】解:∵△AOB绕点O按逆时针方向旋转45°后得到△COD,∴∠BOD=45°,∴∠AOD=∠BOD﹣∠AOB=45°﹣15°=30°.故答案为:30.【点评】本题考查了旋转的性质,主要利用了旋转角的概念,需熟记.16.(3分)(2017•南通)甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为4.【考点】B7:分式方程的应用.【分析】设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为;根据甲做60个所用的时间比乙做40个所用的时间相等,列方程求解【解答】解:设乙每小时做x个,则甲每小时做(x+4)个,甲做60个所用的时间为,乙做40个所用的时间为,列方程为:=,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,则x+4=8.答:乙每小时做4个.故答案是:4.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.17.(3分)(2017•南通)已知x=m时,多项式x2+2x+n2的值为﹣1,则x=﹣m时,该多项式的值为﹣1﹣4m.【考点】33:代数式求值.【分析】利用整体代入的思想即可解决问题.【解答】解:∵x=m时,多项式x2+2x+n2的值为﹣1,∴m2+2m+n2=﹣1,∴m2+n2=﹣1﹣2m∴x=﹣m时,多项式x2+2x+n2的值为m2﹣2m+n2=﹣1﹣4m,故答案为﹣1﹣4m.【点评】本题考查代数式求值、学会整体代入的思想解决问题是解题的关键.18.(3分)(2017•南通)如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=(x >0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为(8,).【考点】G6:反比例函数图象上点的坐标特征;L5:平行四边形的性质.【分析】先根据点A(5,12),求得反比例函数的解析式为y=,可设D(m,),BC的解析式为y=x+b,把D(m,)代入,可得b=﹣m,进而得到BC的解析式为y=x+﹣m,据此可得OC=m﹣=AB,过D作DE⊥AB于E,过A作AF⊥OC于F,根据△DEB∽△AFO,可得DB=13﹣,最后根据AB=BD,得到方程m﹣=13﹣,进而求得D的坐标.【解答】解:∵反比例函数y=(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为y=,设D(m,),由题可得OA的解析式为y=x,AO∥BC,∴可设BC的解析式为y=x+b,把D(m,)代入,可得m+b=,∴b=﹣m,∴BC的解析式为y=x+﹣m,令y=0,则x=m﹣,即OC=m﹣,∴平行四边形ABCO中,AB=m﹣,如图所示,过D作DE⊥AB于E,过A作AF⊥OC于F,则△DEB∽△AFO,∴=,而AF=12,DE=12﹣,OA==13,∴DB=13﹣,∵AB=DB,∴m﹣=13﹣,解得m1=5,m2=8,又∵D在A的右侧,即m>5,∴m=8,∴D的坐标为(8,).故答案为:(8,).【点评】本题主要考查了反比例函数图象上点的坐标特征以及平行四边形的性质的运用,解决问题的关键是作辅助线构造相似三角形,依据平行四边形的对边相等以及相似三角形的对应边成比例进行计算,解题时注意方程思想的运用.三、解答题(本大题共10小题,共96分)19.(10分)(2017•南通)(1)计算:|﹣4|﹣(﹣2)2+﹣()0(2)解不等式组.【考点】CB:解一元一次不等式组;2C:实数的运算;6E:零指数幂.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义计算,第三项化为最简二次根式,最后一项利用零指数幂法则计算,即可得到结果.(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1)原式=4﹣4+3﹣1=2;(2)解不等式①得,x≥2,解不等式②得,x<4,所以不等式组的解集是2≤x<4.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).也考查了实数的运算.20.(8分)(2017•南通)先化简,再求值:(m+2﹣)•,其中m=﹣.【考点】6D:分式的化简求值.【分析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【解答】解:(m+2﹣)•,=•,=﹣•,=﹣2(m+3).把m=﹣代入,得原式=﹣2×(﹣+3)=﹣5.【点评】本题考查了分式的化简求值.分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解.21.(9分)(2017•南通)某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后利用所得数据绘制成如下不完整的统计表.课外阅读时间t频数百分比10≤t<3048%30≤t<50816%50≤t<70a40%70≤t<90 16b90≤t<11024%合计50100%请根据图表中提供的信息回答下列问题:(1)a=20,b=32%;(2)将频数分布直方图补充完整;(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不少于50min?【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表;W2:加权平均数.【分析】(1)利用百分比=,计算即可;(2)根据b的值计算即可;(3)用一般估计总体的思想思考问题即可;【解答】解:(1)∵总人数=50人,∴a=50×40%=20,b=×100%=32%,故答案为20,32%.(2)频数分布直方图,如图所示.(3)900×=648,答:估计该校有648名学生平均每天的课外阅读时间不少于50min.【点评】本题考查表示频数分布直方图、频数分布表、总体、个体、百分比之间的关系等知识,解题的关键是记住基本概念,属于中考常考题型.22.(8分)(2017•南通)不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差别,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.【考点】X6:列表法与树状图法.【分析】利用树状图得出所有符合题意的情况,进而理概率公式求出即可.【解答】解:如图所示:,所有的可能有12种,符合题意的有2种,故两次均摸到红球的概率为:=.【点评】此题主要考查了树状图法求概率,根据题意利用树状图得出所有情况是解题关键.23.(8分)(2017•南通)热气球的探测器显示,从热气球A看一栋楼顶部B的仰角α为45°,看这栋楼底部C的俯角β为60°,热气球与楼的水平距离为100m,求这栋楼的高度(结果保留根号).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】根据正切的概念分别求出BD、DC,计算即可.【解答】解:在Rt△ADB中,∠BAD=45°,∴BD=AD=100m,在Rt△ADC中,CD=AD×tan∠DAC=100m∴BC=(100+100)m,答:这栋楼的高度为(100+100)m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24.(8分)(2017•南通)如图,Rt△ABC中,∠C=90°,BC=3,点O在AB上,OB=2,以OB为半径的⊙O与AC相切于点D,交BC于点E,求弦BE的长.【考点】MC:切线的性质;KQ:勾股定理.【分析】连接OD,首先证明四边形OECD是矩形,从而得到BE的长,然后利用垂径定理求得BF的长即可.【解答】解:连接OD,作OE⊥BF于点E.∴BE=BF,∵AC是圆的切线,∴OD ⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=EC=2,BC=3,∴BE=BC﹣EC=BC﹣OD=3﹣2=1,∴BF=2BE=2.【点评】本题考查了切线的性质、勾股定理及垂径定理的知识,解题的关键是能够利用切线的性质构造矩形形,难度不大.25.(9分)(2017•南通)某学习小组在研究函数y=x3﹣2x的图象与性质时,已列表、描点并画出了图象的一部分.x…﹣4﹣3.5﹣3﹣2﹣10123 3.54…y…﹣﹣0﹣﹣﹣…(1)请补全函数图象;(2)方程x3﹣2x=﹣2实数根的个数为3;(3)观察图象,写出该函数的两条性质.【考点】H3:二次函数的性质;H2:二次函数的图象;HB:图象法求一元二次方程的近似根.【分析】(1)用光滑的曲线连接即可得出结论;(2)根据函数y=x3﹣2x和直线y=﹣2的交点的个数即可得出结论;(3)根据函数图象即可得出结论.【解答】解:(1)补全函数图象如图所示,(2)如图1,作出直线y=﹣2的图象,由图象知,函数y=x3﹣2x的图象和直线y=﹣2有三个交点,∴方程x3﹣2x=﹣2实数根的个数为3,故答案为3;(3)由图象知,1、此函数在实数范围内既没有最大值,也没有最小值,2、此函数在x<﹣2和x>2,y随x的增大而增大,3、此函数图象过原点,4、此函数图象关于原点对称.【点评】此题主要考查了函数图象的画法,利用函数图象确定方程解的个数的方法,解本题的关键是补全函数图象.26.(10分)(2017•南通)如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD、BE、BC于点P、O、Q,连接BP、EQ.(1)求证:四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.【考点】LB:矩形的性质;KG:线段垂直平分线的性质;LA:菱形的判定与性质.【分析】(1)先根据线段垂直平分线的性质证明QB=QE,由ASA证明△BOQ≌△EOP,得出PE=QB,证出四边形ABGE是平行四边形,再根据菱形的判定即可得出结论;(2)根据三角形中位线的性质可得AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE 中,根据勾股定理可得62+x2=(18﹣x)2,BE=10,得到OB=BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,根据勾股定理可得62+(8﹣y)2=y2,解得y=,在Rt△BOP中,根据勾股定理可得PO==,由PQ=2PO即可求解.【解答】(1)证明:∵PQ垂直平分BE,∴QB=QE,OB=OE,∵四边形ABCD是矩形,∴AD∥BC,∴∠PEO=∠QBO,在△BOQ与△EOP中,,∴△BOQ≌△EOP(ASA),∴PE=QB,又∵AD∥BC,∴四边形BPEQ是平行四边形,又∵QB=QE,∴四边形BPEQ是菱形;(2)解:∵O,F分别为PQ,AB的中点,∴AE+BE=2OF+2OB=18,设AE=x,则BE=18﹣x,在Rt△ABE中,62+x2=(18﹣x)2,解得x=8,BE=18﹣x=10,∴OB=BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,62+(8﹣y)2=y2,解得y=,在Rt△BOP中,PO==,∴PQ=2PO=.【点评】本题考查了菱形的判定与性质、矩形的性质,平行四边形的判定与性质、线段垂直平分线的性质、勾股定理等知识;本题综合性强,有一定难度.27.(13分)(2017•南通)我们知道,三角形的内心是三条角平分线的交点,过三角形内心的一条直线与两边相交,两交点之间的线段把这个三角形分成两个图形.若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“內似线”.(1)等边三角形“內似线”的条数为3;(2)如图,△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求证:BD是△ABC的“內似线”;(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分别在边AC、BC上,且EF是△ABC的“內似线”,求EF的长.【考点】SO:相似形综合题.【分析】(1)过等边三角形的内心分别作三边的平行线,即可得出答案;(2)由等腰三角形的性质得出∠ABC=∠C=∠BDC,证出△BCD∽△ABC即可;(3)分两种情况:①当==时,EF∥AB,由勾股定理求出AB==5,作DN⊥BC于N,则DN∥AC,DN是Rt△ABC的内切圆半径,求出DN=(AC+BC﹣AB)=1,由几啊平分线定理得出=,求出CE=,证明△CEF∽△CAB,得出对应边成比例求出EF=;②当==时,同理得:EF=即可.【解答】(1)解:等边三角形“內似线”的条数为3条;理由如下:过等边三角形的内心分别作三边的平行线,如图1所示:则△AMN∽△ABC,△CEF∽△CBA,△BGH∽△BAC,∴MN、EF、GH是等边三角形ABC的內似线”;故答案为:3;(2)证明:∵AB=AC,BD=BC,∴∠ABC=∠C=∠BDC,∴△BCD∽△ABC,∴BD是△ABC的“內似线”;(3)解:设D是△ABC的内心,连接CD,则CD平分∠ACB,∵EF是△ABC的“內似线”,∴△CEF与△ABC相似;分两种情况:①当==时,EF∥AB,∵∠ACB=90°,AC=4,BC=3,∴AB==5,作DN⊥BC于N,如图2所示:则DN∥AC,DN是Rt△ABC的内切圆半径,∴DN=(AC+BC﹣AB)=1,∵CD平分∠ACB,∴=,∵DN∥AC,∴=,即,∴CE=,∵EF∥AB,∴△CEF∽△CAB,∴,即,解得:EF=;②当==时,同理得:EF=;综上所述,EF的长为.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、三角形的内心、勾股定理、直角三角形的内切圆半径等知识;本题综合性强,有一定难度.28.(13分)(2017•南通)已知直线y=kx+b与抛物线y=ax2(a>0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作AD⊥x轴,垂足为D.(1)若∠AOB=60°,AB∥x轴,AB=2,求a的值;(2)若∠AOB=90°,点A的横坐标为﹣4,AC=4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DE=CO.【考点】HF:二次函数综合题.【分析】(1)如图1,由条件可知△AOB为等边三角形,则可求得OA的长,在Rt△AOD中可求得AD和OD的长,可求得A点坐标,代入抛物线解析式可得a的值;(2)如图2,作辅助线,构建平行线和相似三角形,根据CF∥BG,由A的横坐标为﹣4,得B的横坐标为1,所以A(﹣4,16a),B(1,a),证明△ADO∽△OEB,则,得a的值及B的坐标;(3)如图3,设AC=nBC由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(﹣mn,am2n2),分别根据两三角形相似计算DE和CO的长即可得出结论.【解答】解:(1)如图1,∵抛物线y=ax2的对称轴是y轴,且AB∥x轴,∴A与B是对称点,O是抛物线的顶点,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∵AB=2,AB⊥OC,∴AC=BC=1,∠BOC=30°,∴OC=,∴A(﹣1,),把A(﹣1,)代入抛物线y=ax2(a>0)中得:a=;。

相关文档
最新文档