第一节 数域
数域f的概念

数域f的概念引言在代数学中,数域(field)是一个具有特定代数结构的数学对象,它是一种满足一些特定性质的集合。
数域的概念是代数学中的基础概念之一,它在数论、代数几何、代数拓扑等领域都有广泛的应用。
本文将介绍数域f的概念,探讨它的性质和应用。
什么是数域f?数域f是一个非空集合,其中包含了加法运算和乘法运算,并且满足一定的性质。
具体来说,数域f需要满足以下四个性质:1.加法结合律:对于数域f中的任意三个元素a、b和c,有(a + b) + c = a+ (b + c)。
2.加法交换律:对于数域f中的任意两个元素a和b,有a + b = b + a。
3.存在加法单位元:数域f中存在一个特殊元素0,使得对于任意的元素a,有a + 0 = 0 + a = a。
4.存在加法逆元:对于数域f中的任意元素a,存在一个元素-b,使得a + (-b) = (-b) + a = 0。
另外,数域f中的乘法也需要满足类似的性质:1.乘法结合律:对于数域f中的任意三个元素a、b和c,有(a * b) * c = a* (b * c)。
2.乘法交换律:对于数域f中的任意两个元素a和b,有a * b = b * a。
3.存在乘法单位元:数域f中存在一个特殊元素1,使得对于任意的元素a,有a * 1 = 1 * a = a,并且1不等于0。
4.存在乘法逆元:对于数域f中的任意非零元素a,存在一个元素a的逆元素a^(-1),使得a * a^(-1) = a^(-1) * a = 1。
根据以上定义和性质,我们可以看出,数域f中的加法和乘法都满足结合律和交换律,并且有单位元和逆元。
这些性质使得数域f成为一个具有代数结构的数学对象。
数域f的例子数域f的例子有很多,其中最为常见的是有理数域(Q)、实数域(R)和复数域(C)。
1.有理数域(Q):有理数包括整数和分数,其中分母不为0。
有理数域中的加法和乘法的定义和性质都符合数域的要求,因此有理数域是一个数域。
1.1 数域

{
}
是至少含两个数的数集, 例2.设P是至少含两个数的数集,证明:若P中任 . 是至少含两个数的数集 证明: 中任 意两个数的差与商(除数≠ )仍属于P, 意两个数的差与商(除数≠0)仍属于 ,则P为一 为一 一个数域. 一个数域. 证:由题设任取 a , b ∈ P , 有
b 0 = a − a ∈ P , 1 = ∈ P (b ≠ 0), a − b ∈ P , b a ∈ P (b ≠ 0), a + b = a − (0 − b) ∈ P , b a b = 0 时, ab = 0 ∈ P . 当b ≠ 0时,ab = ∈ P,
c + d 2 (c + d 2)(a − b 2) = a + b 2 (a + b 2)(a − b 2) ac − 2bd ad − bc 2 ∈ Q. = 2 + 2 2 2 a − 2b a − 2b ∴ Q( 2)为数域. 为数域.
Gauss数域 数域
是数域. 类似可证 Q( i ) = a + bi a , b ∈ Q , i = −1 是数域
例如,整数集Z 就作成一个数环. 例如,整数集 就作成一个数环.
§1.1 数域
数学归纳法
数学归纳法原理) 定理 (数学归纳法原理) 的命题,如果 1 当n=1时,命题成立; 2 假设n=k时命题成立,则n=k+1命题也成立 ;那 么这个命题对于一切自然数n都成立. 设有一个与自然数n有关
§1.1 数域
例如,求方程 x 4 − 4 = 0 的根。在有理数范 围内此方程无根,在实数范围内,这个方程有 两个根: 2 ,− 2 。在复数范围内,这个方程 有四个根:± 2 ,± 2i 。由此可见,同一问题 在不同的数的范围内可能有不同的结论.
一元多项式——精选推荐

第一章 多项式§1 数域 §2 一元多项式一、数域1、定义:P 是由一些复数组成的集合,包含0和1,如果P 中的任意两个数的和、差、积、商(除数不为零)仍在P 中,则称P 为一个数域。
简单地说:P 是一个含0和1的非空集合,且对四种运算封闭。
2、例1:有理数的集合Q ,实数集合R ,复数集合C 均为数域。
例2:{}()2,2Q Q b a b a P =∈+=是一个数域。
证明:Pd c adcb d c bd ac d c d c d c b a d c b a d c d c P bc ad bd ac d c b a P d b c a d c b a P d b c a d c b a Qd c b a P d c b a P P ∈--+--=-+-+=++≠-≠+∈+++=++∈-+-=+-+∈+++=+++∈∈++∀∈+=∈+=2222)2)(2()2)(2(2202,02)5(2)()2()2)(2)(4(2)()()2()2)(3(2)()()2()2)(2(,,,,2,22011;2000)1(2222有若故P 是一个数域。
练习:证{}Q b a bi a i Q ∈+=,)(是一个数域。
二、一元多项式注:在数域P 上进行讨论,x 是一个符号。
1、定义:0111a x a x a x a n n n n ++++-- ,(-∈Z n )称为数域P 上的一元多项式。
其中P a a a n ∈,,,10 ,用 ),(),(x g x f 表示。
若0≠n a ,则称n a 为首项系数,n 为多项式的次数,用))((x f ∂表示。
0a 为常数项。
2、相等:)()(x g x f =当且仅当次数相同,对应系数相等。
3、运算:设0111)(a x a x a x a x f n n n n ++++=-- ,0111)(b x b x b x b x g m m m m ++++=-- ,m n ≥(1) 加法: )()()()()(00b a x b a x b a x g x f m m m n n n +++++++=+其中:011====+-m n n b b b())(),(max ))()((x g x f x g x f ≤+∂ (2) 乘法:snm s s j i j i m n m n m n m n m n xb a b a x b a b a x b a b a x b a x g x f ∑∑+==+-+--+⎪⎪⎭⎫ ⎝⎛=+++++++=0001001111)()()()()(若:0)(,0)(≠≠x g x f ,则))(())(())()((x g x f x g x f ∂+∂=∂ 4、运算规律:(1))()()()(x f x g x g x f +=+(加法交换律)(2)))()(()()())()((x h x g x f x h x g x f ++=++(加法结合律) (3))()()()(x f x g x g x f =(乘法交换律)(4)))()()(()())()((x h x g x f x h x g x f =(乘法结合律) (5))()()()())()()((x h x f x g x f x h x g x f +=+(分配律) (6)若,0)(),()()()(≠=x f x h x f x g x f 则)()(x h x g =(消去律) 5、多项式环。
高等代数课程教学大纲.总结

精品文档高等代数( 1)课程教学大纲第一部分前言一、课程基本信息1.课程类别:专业基础课2.开课单位:数学与财经系3.适用专业:数学与应用数学专业4. 备选教材:《高等代数(第三版)》,北京大学数学系几何与代数教研室前代数组编.高等教育出版社,2003.二、课程性质和目标高等代数是数学与应用数学专业的一门重要基础课程。
本课程的主要内容是多项式理论和线性代数理论。
通过本课程的教学,使学生掌握代数基本理论和基本方法,培养学生代数方面的科学的思维、抽象的思维,逻辑推理、提高运算以及解决实际应用的能力,为进一步学习专业后续课程奠定坚实的代数基础。
本课程的教学目的是使学生获得一元多项式,行列式,线性方程组,矩阵等方面的系统知识 , 为进一步学习近世代数,复变函数、等后续课程打下坚实的基础,也为深入理解初等数学、指导中学数学教学提供了高等的专业知识与重要的方法论。
通过本门课程系统的学习与严格的训练,全面掌握高等代数的基本理论知识;培养抽象的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用代数学的理论知识解决实际应用问题的能力。
三、课程学时与学分教学时数:96 学时,其中理论教学81 学时,实践教学15 学时学分数: 6 学分教学时数具体分配:教学内容理论教学实践教学合计(学时)(学时)(学时)第一章多项式26632第二章行列式16319第三章线性方程组22325第四章矩阵17320合计811596第二部分教学内容及其要求第一章多项式1.教学目标:要求学生理解数域的概念;掌握一元多项式的概念、运算及基本性质;掌握带余除法与整除性的关系,会进行相关运算;会求多项式的最大公因式;理解不可约多项式的概念,掌握求重因式的方法;理解多项式在不同的数域的因式分解形式;掌握Eisenstein判别法,会求有理系数多项式的根。
2.教学重点:整除概念,带余除法及整除的性质,最大公因式、互素、辗转相除法、不可约多项式概念、性质,k 重因式与 k 重根的关系。
数域的包含关系

数域的包含关系数域的包含关系是数学中一个重要的概念。
数域是数学中的一个基本概念,是指由一组数构成的集合,包含了加法、减法、乘法和除法等运算,并满足一定的性质。
在数域的研究中,数域之间的包含关系是一个重要的研究方向。
我们需要明确什么是数域。
数域是满足一定性质的数的集合。
在数学中,常见的数域有有理数域、实数域和复数域等。
有理数域是由整数和分数构成的数的集合,实数域是由有理数和无理数构成的数的集合,而复数域是由实数和虚数构成的数的集合。
在数域的包含关系中,有理数域是实数域的子集,实数域是复数域的子集。
这是因为实数域包含了有理数域中的所有数,并且还包含了无理数,而复数域则包含了实数域中的所有数,并且还包含了虚数。
因此,我们可以得出有理数域包含于实数域,实数域包含于复数域的结论。
除了这些常见的数域之外,还存在着其他的数域,如有限域和无限域等。
有限域是指元素个数有限的数域,而无限域则是指元素个数无限的数域。
有限域的研究在密码学和编码理论等领域有着重要的应用。
在数域的研究中,还存在着一些重要的结论和定理。
例如,代数基本定理指出,任何一个非常数的单项式方程都至少有一个复数解。
这个定理在复数域中是成立的,但在实数域和有理数域中却不一定成立。
这个定理的证明需要使用到复数域的性质,因此也说明了复数域包含了实数域和有理数域。
除了数域之间的包含关系,还存在着数域之间的扩张关系。
数域的扩张是指将一个数域中的元素扩展到另一个数域中。
例如,将有理数域中的元素扩展到实数域中,或者将实数域中的元素扩展到复数域中。
数域的扩张是数学中一个重要的概念,它在代数学和数论等领域有着广泛的应用。
数域的包含关系是数学中一个重要的研究方向。
不同的数域之间存在着包含关系和扩张关系,这些关系对于数学的发展和应用起着重要的作用。
通过对数域的包含关系的研究,我们可以更好地理解数学中的各种数的集合,为其他数学理论的研究提供基础。
数域知识点总结

数域知识点总结一、数域的基本概念1.1 数域的定义数域是一个满足一定性质的数集合,其中包括了加法、减法、乘法和除法运算。
形式化地,一个数域K是一个集合,其中定义了两个二元运算“+”和“·”,满足以下性质:加法运算“+”满足交换律、结合律、存在零元素和存在相反元素;乘法运算“·”满足交换律、结合律、存在单位元素和对每个非零元素存在乘法逆元素;加法和乘法满足分配律。
在数域中,零元素和单位元素通常分别表示为0和1,非零元素的乘法逆元素通常表示为a^-1。
1.2 数域的例子常见的数域包括有理数域Q、实数域R、复数域C等。
有理数域Q是所有可以表示为分数的数的集合,包括正整数、负整数、分数等;实数域R包括了所有实数的集合,包括有理数和无理数;复数域C包括了所有形式为a+bi的复数的集合,其中a和b都是实数,i是虚数单位。
1.3 有限域和无限域根据数域中元素的个数,可以将数域分为有限域和无限域。
有限域是指其元素个数是有限的数域,通常表示为GF(q),其中q是素数幂。
无限域则是指其元素个数是无限的数域,如实数域R和复数域C。
二、数域的性质和定理2.1 数域的加法和乘法性质在数域中,加法和乘法满足一系列性质,包括交换律、结合律、分配律等。
其中,最重要的性质之一是加法和乘法的交换律和结合律。
交换律表示对于任意的a和b,a+b=b+a,a·b=b·a;结合律表示对于任意的a、b和c,(a+b)+c=a+(b+c),(a·b)·c=a·(b·c)。
2.2 数域的单位元素和逆元素在数域中,加法单位元素通常表示为0,乘法单位元素通常表示为1。
对于任意非零元素a,其乘法逆元素表示为a^-1,满足a·a^-1=1。
有关单位元素和逆元素的性质和存在性有一系列相关定理和推论,这些是数域中非常重要的内容。
2.3 数域的子域在数域中还有一个重要的概念是子域。
高等代数课本笔记及其例题详解

高等代数课本笔记及其例题详解第一章 多项式1.1 数域定义1.1(数域):设P 是由一些复数组成的集合,其中包括0与1. 如果P 中任意两个数(这两个数也可以相同)的和、差、积、商(除数不为零)仍然是P 中的数,那么P 就称为一个数域.即:设{}C x x P ∈=,P b a ∈∀,,其中0≠a 且P ∈0,1都有P abab b a b a ∈-+,,,,称P为一个数域. (注:Z 表示全体整数;R 表示全体实数;C 表示全体复数;Q 表示全体有理数;N 表示全体自然数;)例题1. 设(){}Q b a b a Q ∈+=,22证明:()2Q 是一个数域. 证明:1)()22000,2011Q ∈+=+=(其中:Q ∈1,0)2)Q d c b a ∈∀,,,有()()()2222Q d b c a d c b a ∈+++=+++(其中: Q d b c a ∈++,);()()()2222Q d b c a d c b a ∈-+-=+-+(其中:Q d b c a ∈--,); ()()()()()22222Q bc ad bd ac d c b a ∈+++=++(其中:Q bc ad bd ac ∈++,2); 若02≠+b a ,有()22222222222Q b a bcad b a bd ac b a d c ∈--+--=++(其中:Q b a bc ad b a bd ac ∈----22222,22,且0222≠-b a ). 2Q ∴是一个数域.例题2. 证明:()()⎭⎬⎫⎩⎨⎧==∈∈++++++=+m j n i Z b a N n m b b b a a a P j i mm n n ,,0;,,0,,,1010 πππππ是一个数域.证明:1) ()πππππP m n ∈++++++=0010011 , ()πππππP mn∈++++++=0000000 2) 显然该集合的和、差、积封闭;若商不封闭,得()πππππππππP d d d c c c b b b a a a tt ss m m n n ∈++++++≠+++++ 101101010,0,得 ()πππππππππππππππππP a a a b b b d d d c c c b b b a a a d d d c c c n n mm t t s s m n n t t s s ∉++++++⋅++++++=++++++++++++ 1010101010101010,这与该集合的积封闭的结论矛盾,故()πP是一个数域.注:最小的数域为有理数域,任何数域都包含有理数域.1.2 一元多项式定义 1.2.1(一元多项式) 设n 是一非负整数. 形式表达式011a x a x a n n n n +++-- ,其中∈n a a a ,,,10 数域P ,称为系数在数域P 中的一元多项式,或者简称为数域P 上的一元多项式. (注:i i x a 称为i 次项; i a 称为i 次项的系数. )定义1.2.2 (多项式相等)如果在多项式()x f 与()x g 中,除去系数为零的项外,同次项的系数全相等,那么()x f 与()x g 就称为相等,记为()()x g x f =. 系数全为零的多项式称为零多项式,记为0. (注:若0≠n a ,则n n x a 称为多项式的首项;n a 称为首项系数; n 称为多项式的次数,记为()()x f ∂; 零多项式是唯一不定义次数的多项式. ) 性质1.2.1 ()()()()()()()()x g x f x g x f ∂∂≤±∂,max .性质1.2.2 ()()()()()()()x g x f x g x f ∂+∂=⋅∂(其中()0≠x f 且()0≠x g ). 运算规律:1. 加法交换律:()()()()x f x g x g x f +=+.2. 加法结合律:()()()()()()()()x h x g x f x h x g x f ++=++.3. 乘法交换律:()()()()x f x g x g x f =.4. 乘法结合律:()()()()()()()()x h x g x f x h x g x f =.5. 乘法对加法的分配律:()()()()()()()()x h x f x g x f x h x g x f +=+.6. 乘法消去律:如果()()()()x h x f x g x f =且()0≠x f ,那么()()x h x g =.定义1.2.3 (一元多项式环)所有系数在数域P 中的一元多项式的全体,称为数域P 上的一元多项式环,记为[]x P ,P 称为[]x P 的系数域.1.3 整除的概念性质1.3.1 (带余除法)对于[]x P 中任意两个多项式()x f 与()x g ,其中()0≠x g ,一定有[]x P 中的多项式()()x r x q ,存在,使()()()()x r x g x q x f +=成立,其中()()()()x g x r ∂<∂或者()0=x r ,并且这样的()()x r x q ,是唯一决定的. (注:()x q 通常称为()x g 除()x f 的商;()x r 称为()x g 除()x f 的余式)定义1.3.1(整除)数域P 上的多项式()x g 称为整除()x f ,如果有数域P 上的多项式()x h 使等式()()()x h x g x f =成立. 我们用“()()x f x g ”表示()x g 整除()x f ,用“()x g ()x f ”表示()x g 不能整除()x f .(注:当()()x f x g 时,()x g 就称为()x f 的因式;()x f 称为()x g 的倍式.)定理1.3.1 对于数域P 上的任意两个多项式()()x g x f ,,其中()0≠x g ,()()x f x g 的充分必要条件是()x g 除()x f 的余式为零. 整除性的常用的性质:1. 如果()()x g x f ,()()x f x g ,那么()()x cg x f =,其中0≠c .2. 如果()()x g x f ,()()x h x g ,那么()()x h x f (整除的传递性).3. 如果()()x g x f i ,r i ,,2,1 =,那么()()()()()()()x g x u x g x u x g x u x f r r +++ 2211其中()x u i 是数域P 上的任意的多项式.(注:()()()()()()x g x u x g x u x g x u r r +++ 2211称为多项式()()()x g x g x g r ,,,21 的一个组合.) 注:两个多项式之间的整除关系不因为系数域的扩大而改变.1.4 最大公因式定义 1.4.1(最大公因式)设()()x g x f ,是[]x P 中两个多项式. []x P 中多项式()x d 称为()()x g x f ,的一个最大公因式,如果它满足下面两个条件:1)()x d 是()()x g x f ,的公因式;2)()()x g x f ,的公因式全是()x d 的因式.(注:两个零多项式的最大公因式就是0) 引理1.4.1 如果有等式()()()()x r x g x q x f +=成立,那么()()x g x f ,和()()x r x g ,有相同的公因式.定理 1.4.1 对于[]x P 中任意两个多项式()()x g x f ,,在[]x P 中存在一个最大公因式()x d ,且()x d 可以表成()()x g x f ,的一个组合,即有[]x P 中多项式()()x v x u ,使()()()()()x g x v x f x u x d +=.(注:两个多项式的最大公因式在可以相差一个非零常数倍的意义下是唯一确定的;()()()x g x f ,表示首项系数为1的公因式.) 辗转相除法:例题3. 设()343234---+=x x x x x f ,()3210323-++=x x x x g 求()()()x g x f ,,并求()()x v x u ,使()()()()()()()x g x v x f x u x g x f +=,. 解:即:()()()()()()131092595913112x r x q x g x x x x g x f +=⎪⎪⎭⎫⎝⎛++-⎪⎭⎫ ⎝⎛-=310925952---x x即:()()()()()()22793109259595272212x r x q x r x x x x x g +=++⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛+-=. ()()()327981108153109259521 +⎪⎭⎫⎝⎛--=---=x x x x x r()()()3,+=∴x x g x f .将(1)代入(2)式可得:()()35251532+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎭⎫⎝⎛-x x g x x x f x ()()525,1532x x x v x x u +-=-=∴就有()()()()()()()x g x f x g x v x f x u ,=+.定义1.4.2(互素)[]x P 中两个多项式()()x g x f ,称为互素(也称互质)的,如果()()()1,=x g x f .定理 1.4.2 []x P 中两个多项式()()x g x f ,称为互素的充要条件是有[]x P 中的多项式()()x v x u ,使()()()()1=+x g x v x f x u .定理1.4.3 如果()()()1,=x g x f ,且()()()x h x g x f ,那么()()x h x f .推论1.4.3.1 如果()()x g x f 1,()()x g x f 2,且()()()1,21=x f x f ,那么()()()x g x f x f 21.推广:定义1.4.3 ()x d 称为()()()()2,,,21≥s x f x f x f s 的一个最大公因式,如果()x d 具有下面的性质:2) ()()s i x f x d i ,,2,1, =;3) 如果()()s i x f x i ,,2,1, =ϕ,那么()()x d x ϕ.(注:符号()()()()x f x f x f s ,,,21 表示首项系数为1的最大公因式.)性质1.4.1()()()()()()()()()()x f x f x f x f x f x f x f s s s ,,,,,,,21121 =-性质1.4.2 ()()()()()()()()()()x f x f x f x f x u x f x u x f x u s s s ,,,212211 =+++,其中 ()()()[]x P x u x u x u s ∈,,,21 .性质1.4.3 ()()()()()()()[],,,,1,,,2121x P x u x u x u x f x f x f s s ∈∃⇔=()()()()()()1:2211=+++x f x u x f x u x f x u st s s .1.5 因式分解定理定义1.5.1(不可约多项式) 数域P 上次数的多项式()x p 称为域上的不可约多项式,如果它不能表示成数域P 上的两个次数比()x p 的次数低的多项式的乘积(注:一个多项式是否是不可约是依赖于系数域的).性质1.5.1 ()x p 在数域[]x P 是不可约多项式,()[]x P x f ∈∀,()()x p x f 当且仅当()0≠=c x f 或()()x cp x f =.即:对于()[]x P x f ∈∀,有()()x f x p 或者()()()1,=x f x p . 定理1.5.1 如果()x p 是不可约多项式,那么对于任意的两个多项式()()x g x f ,,由()()()x g x f x p 一定推出()()x f x p 或者()()x g x p .定理1.5.2(定理1.5.1的推广) 如果()x p 是不可约多项式,若()()()(),21x f x f x f x p s 则()()()(){}x f x f x f x f s i ,,,21 ∈∃使得()()x f x p i .定理1.5.3(因式分解及唯一性定理)数域P 上每一个次数1≥的多项式()x f 都可以唯一地分解成数域P 上一些不可约多项式的乘积.所谓唯一性是说,如果有两个分解式()()()()()()()x q x q x q x p x p x p x f s s 2121==,那么必有t s =,并且适当排列因式的次序后有()()s i x q c x p i i i ,,2,1, ==,其中()s i c i ,,2,1 =是一些非零常数.(注:()()()()x p x p x cp x f s r s r r 2121=的分解称为标准分解式;已知两个多项式()()x g x f ,的标准分解式,那么()x f 与()x g 的最大公因式()x d 就是那些同时在与的标准式中出现的不可约多项式方幂的乘积,所带的方幂的指数等于它在()x f 与()x g 中所带的方幂中的较小的一个.)1.6 重因式定义1.6.1(k 重因式)不可约多项式()x p 称为多项式()x f 的k 重因式,如果()()x f x p k ,而()x p k 1+ ()x f .(注:0=k 时,()x p 不是()x f 的因式;1=k 时,()x p 是()x f 的单因式;1≥k 时,()x p 是()x f 的重因式.)定义1.6.2(微商)设有多项式()0111a x a x a x a x f n n n n ++++=-- .我们规定它的微商(也称导数)是()()1211'1a x n a nx a x f n n n n ++-+=--- . 性质1.6.1 :1)()()()()()x g x f x g x f '''+=+2)()()()x cf x cf ''=,3)()()()()()()()x g x f x g x f x g x f '''+=,4)()()()()()x f x f m x f m m '1'-=.定义1.6.3(高阶微商)微商()x f '称为()x f 的一阶微商;()x f '的微商()x f ''称为的二阶()x f 微商;等等.()x f 的k 阶微商记为()()x f k .(注:()()n x f =∂ο,则()()c x f n =,()()01=+x f n .)定理1.6.1 如果不可约多项式()x p 是()x f 的k 重因式()1≥k ,那么它是微商()x f '的1-k 重因式.推论1.6.1.1 如果不可约多项式()x p 是()x f 的k 重因式()1≥k ,那么()x p 是()()()()x f x f x f k 1''',,,- 的因式,但不是()()x f k 的因式.推论1.6.1.2 不可约多项式()x p 是()x f 的重因式的充分必要条件为()x p 是()x f 与()x f ' 的公因式.推论 1.6.1.3 多项式()x f 没有重因式的充分必要条件是()x f 与()x f '互素.(注:辗转相除法可用于求解重因式;()()()()x f x f x f ',是一个没有重因式的多项式与()x f 有完全相同的不可约因式.)1.7 多项式函数定义1.7.1(多项式函数)设()()10111 a x a x a x a x f n n n n ++++=--是[]x P 中的多项式,α是P 中的数,在()1中用α代x 所得的数0111a a a a n n n n ++++--ααα 称为()x f 当α=x 时的值,记为()αf .这样一来,多项式就定义了一个数域上的函数.定理1.7.1(余数定理)用一次多项式α-x 去除多项式()x f ,所得的余式是一个常数,这个常数等于函数值()αf .(注:其中()0=αf 时,α=x 是()x f 的一个根或者零点.) 推论1.7.1.1 α是()x f 的根的充分必要条件是()()x f x α-.定义1.7.2(重根)α称为()x f 的重根,如果()α-x 是()x f 的k 重因式.当1=k 时,α称为单根;当1>k 时,α称为重根.定理1.7.2 []x P 中n 次多项式()0≥n 在数域P 中的根不可能多于n 个,重根按重数计算. 定理1.7.3 如果多项式()()x g x f ,的次数都不超过n ,而它们对1+n 个不同的数121,,,+n ααα 有相同的值,即()()1,,2,1,+==n i g f i i αα,那么()()x g x f =.1.8 复系数与实系数多项式的因式分解定理1.8.1(代数基本定理)每个次数1≥的复系数多项式在复数域中有一根(即:复数域上所有次数大于1的多项式全是可约的.).定理1.8.2(复系数多项式的分解定理)每个次数1≥的复系数多项式在复数域上都可以唯一地分解成一次因式的乘积.(复系数多项式的标准分解式:()()()()s ls lln x x x a x f ααα---= 2121,其中C s ∈≠≠≠ααα 21,+∈Z l l l s ,,,21 )定理1.8.3 如果α是实系数多项式()x f 的复根,那么α的共轭数α也是()x f 的根. 定理1.8.4(实系数多项式因式分解定理)每个次数1≥的实系数多项式在实数域上都可以唯一地分解成一次因式与二次不可约因式的乘积(即是说:实数域上只含有一次不可约多项式和含二次共轭复根不可约多项式).1.9 有理系数多项式定理 1.9.1 每个次数1≥的有理系数多项式都能唯一地分解成不可约的有理系数多项式的乘积.定义1.9.1(本原多项式)如果一个非零的整系数多项式()011b x b x b x g n n n n +++=-- 的系数01,,,b b b n n -没有异于的公因子,也就是说,它们是互素的,它就称为一个本原多项式.(任意一个非零的有理系数多项式()x f 都可以表示成一个有理数r 与一个本原多项式()x g 的乘积:()()x rg x f =)定理1.9.2(高斯(Gauss )引理)两个本原多项式的乘积还是本原多项式.定理1.9.3 如果一非零的整系数多项式能够分解成两个次数较低的有理系数多项式的乘积,那么它一定能分解成两个次数较低的整系数多项式的乘积.推论1.9.3.1 设()()x g x f ,是整系数多项式,且()x g 是本原的. 如果()()()x h x g x f =,其中()x h 是有理系数多项式,那么()x h 一定是整系数的.定理1.9.4 设()011a x a x a x f n n n n +++=-- 是一个整系数多项式,而sr 是它的一个有理根,其中s r ,互素,那么必有n a s ,0a r .特别地,如果()x f 的首项系数1=n a ,那么()x f 的有理根都是整根,而且是0a 的因子. 例题4. 求方程032234=-+-x x x 的有理根. 解:令()32234-+-=x x x x f 得:24=a 的因子为:2,1±±30=a 的因子为:1±,3± ()x f ∴的有理根可能为:21±,23±,1±,2±.判别根的方法一:0321≠-=⎪⎭⎫⎝⎛-f (不为()x f 的根,舍弃);0221≠-=⎪⎭⎫⎝⎛f (不为()x f 的根,舍弃); ()021≠-=-f (不为()x f 的根,舍弃); ()01=f (为()x f 的根); 021523≠=⎪⎭⎫ ⎝⎛-f (不为()x f 的根,舍弃); 042723≠=⎪⎭⎫ ⎝⎛f (不为()x f 的根,舍弃);()0332≠=-f (不为()x f 的根,舍弃); ()0252≠=f (不为()x f 的根,舍弃); 1∴为032234=-+-x x x 方程的有理根.方法二:即2-=x 不是方程032234=-+-x x x 的根.…………经带余除法计算可得:1=x 为032234=-+-x x x 方程的有理根.方法三:21 22002-即21=x 不是方程032234=-+-x x x 的根. …………经综合除法计算可得:1=x 为032234=-+-x x x 方程的有理根.定理1.9.5(艾森斯坦(Eisenstein )判别法)设()011a x a x a x f n n n n +++=-- 是一个整系数多项式.如果有一个素数p ,使得1. p n a ;2. 021,,,a a a p n n --;3. 2p 0a .那么()x f 在有理数域上不可约的.例题5.证明()153+-=x x x f 在有理数域上不可约. 证明:依题意可得()x f 的有理根可能为:1±.又()31-=f ,()51-=-f 都不为零1±=∴x 都不是()x f 的有理根,即()x f 在有理数域上不可约的.1.10 多元多项式定义1.10.1(n 元多项式)设P 是一个数域,n x x x ,,,21 是n 个文字. 形式为n k nk k x x ax 2121的式子,其中P a ∈,n k k k ,,,21 是非负整数,称为一个单项式. 由以上一些单项式的和∑nnn k k k k nk k k k k x x x a,,,21212121 就称为n 元多项式,或者简称多项式.(注:若两个单项式中相同文字的幂全一样,那么它们就称为同类项.)定义1.10.2(元多项式环)所有系数在数域P 中的n 元多项式的全体,称为数域P 上的n元多项式环,记为[]n x x x P ,,21.(注:n k k k +++ 21称为单项式n k nk k x x ax 2121的次数;系数不为零的单项式的最高次数就称为这个多项式的次数.多元多项式的排列顺序方法:字典排列法;)定理1.10.1 当()0,,,21≠n x x x f ,()0,,,21≠n x x x g 时,乘积()()n n x x x g x x x f ,,,,,,2121 的首项等于()n x x x f ,,,21 的首项与()n x x x g ,,,21 的首项的乘积.推论1.10.1.1 如果,,,2,1,0m i f i =≠那么m f f f 21的首项等于每个i f 的首项的乘积. 推论1.10.1.2 如果()()0,,,,0,,,2121≠≠n n x x x g x x x f ,那么()()0,,,,,,2121≠n n x x x g x x x f .(两个齐次多项式的乘积是齐次多项式,乘积的次数等于因子的次数的和.)1.11 对称多项式定理1.11.1(一元多项式根与系数的关系)设()n n n a x a x x f +++=- 11是[]x P 中的一个多项式.如果()x f 在数域P 中有个根n ααα,,,21 ,那么就可以分解成()()()()n x x x x f ααα---= 21.将其展开即得根与系数的关系如下:()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=-+++=+++=-∑-n n n k k k k i in n n a i a a a j i αααααααααααααααα 211312122111121,的乘积之和个不同的所有可能的. 定义1.11.1(对称多项式)n 元多项式()n x x x f ,,,21 ,如果对于任意的n j i j i ≤≤≤1,,,都有()()n i j n j i x x x x f x x x x f ,,,,,,,,,,,,11 =,那么这个多项式称为对称多项式. 定理1.11.2 对于任意一个n 元对称多项式都有一个n 元多项式()n y y y ,,,21 ϕ,使得()()n n x x x f σσσϕ,,,,,,2121 =.(其中⎪⎪⎪⎩⎪⎪⎪⎨⎧=+++=+++=+++=----n n nn n n n n n n x x x xx x x x x x x x x x x x x x x x x x 21322211211131212211σσσσ称为n 元初等对称多项式.)例题6. 把三元对称多项式333231x x x ++表为321,,σσσ的多项式. 解:令()333231321,,x x x x x x f ++=得首项为:31x 对应的有序数对()0,0,3,()()332133323131333231321,,x x x x x x x x x x x x f ++-++=-++=∴σ()132123223132222132122163g x x x x x x x x x x x x x x x =-+++++-=得首项:2213x x 对应的有序数对()0,1,2.()()32123223132222132122132123223132222132122121133633x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x g +++++++-+++++-=+σσ23213g x x x =-=对应数对()1,1,1又0332=+σg ()3213132133,,σσσσ+-=∴x x x f .课后习题1. 用()x g 除()x f ,求商()x q 与余式()x r :1)()1323---=x x x x f ,()1232+-=x x x g ; 解:()9113-=∴x x q ,()99+-=x r . 2)()524+-=x x x f ,()22+-=x x x g解:()12-+=∴x x x q ,()75+-=x x r . 3)()1434--=x x x f ,()132--=x x x g 解:()1032++=∴x x x q ,()929+=x x r . 4)()13235-+-=x x x x f ,()233+-=x x x g . 解:()x g233+-x x22+x()22+=∴x x q ,()562-+=x x x r . 5)()x x x x f 85235--=,()3+=x x g 解:带余除法:()109391362234+-+-=∴x x x x x q ,()()3327-=-=f x r . 6)()x x x x f --=23,()i x x g 21+-=. 解:综合除法:i 21-1 i 2- i 25-- i 89+-()i x r 89+-=∴,()i ix x x q 2522---=. 2. m ,p ,q 适合什么条件时,有 1)q px x mx x ++-+321 解:方法一:带余除法:12-+mx xm x -即:()()m q x p m x r ++++=12,又q px x mx x ++-+321()0=∴x r 可得⎩⎨⎧-==++q m p m 012. 2)q px x mx x ++++2421. 解:方法二:待定系数法:设商为:()c bx x x q ++=2,又由q px x mx x ++++2421可得:()()q px x x q mx x ++=++2421即⎪⎪⎩⎪⎪⎨⎧==+=++=+q c b m c p m b c b m 010.()⎩⎨⎧=-=+-∴0112q m p m q . 3. 把()x f 表成0x x -的方幂和,即表成()() +-+-+22010x x c x x c c 的形式:1)()5x x f =,10=x ;解:辗转相除法:即:()()()111234+++++-=x x x x x x f .即:()()()()[]()()()1154321154321123223+-++++-=+++++--=x x x x x x x x x x x f()()()()[]()()()()()11511063111510631122322+-+-+++-=+-++++--=∴x x x x x x x x x x x f()()()()[])()()()()115110110411151101041123423+-+-+-++-=+-+-+++--=x x x x x x x x x x x f ()()()()()1151101101512345+-+-+-+-+-=x x x x x ()()()()()()1151101101512345+-+-+-+-+-=∴x x x x x x f .2)()3224+-=x x x f ,20-=x 解:综合除法:2-2-2- 2-14a = 38a =-()()()()()11124122181234+---+---=∴x x x x x f . 3)()()i xx i ix x x f ++-+-+=7312234,i x -=0. 解:综合除法:i - i - i - i -即:()()()()()()i i x i x i i x i i x x f 57512234+++-++-+-+=. 4. 求()x f 与()x g 的最大公因式:1)()143234---+=x x x x x f ,()123--+=x x x x g 解:带余除法:即:1322即:()()()1434121322+-⎪⎭⎫ ⎝⎛+----=x x x x x g又:()()1121322++-=---x x x x()()()1,+=∴x x g xf .2)()1434+-=x x x f ,()1323+-=x x x g . 解:带余除法:即:()()()2312+--=x x x g x f .即:()()13213232-+⎪⎭⎫ ⎝⎛+-+-=xx x x g .即:41942729132232-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=+-x x x .()()()1,=∴x g x f .3)()11024+-=x x x f ,()124624234+++-=x x x x x g . 解:即:()()x x f x g 242423-=即:()()12232124241624223++-⎪⎭⎫ ⎝⎛--++-=x x x x x x x f .即:()93292889323241223241624223++⎪⎪⎭⎫ ⎝⎛-++-=++-x x x x x x x .即:12192426328827932928812232+⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=++-x x x x . ()()()1,=∴x g x f .5. 求()x u ,()x v 使()()()()()()():,x g x f x g x v x f x u =+1)()242234---+=x x x x x f ,()22234---+=x x x x x g . 解:()13即:()()()221223 -++-=x x x x x g()()32223 x x x x -=- ()()()2,2-=∴x x g x f将(1)代入(2)得:()()()()2212-=+++-x x g x x f x即:取()1--=x x u ,()2+=x x v 可得:()()()()()()()x g x f x g x v x f x u ,=+.2)()951624234++--=x x x x x f ,()45223+--=x x x x g 解:即:()()622--=x x x g x f 即:()()()213139362 +-⎪⎭⎫⎝⎛+-+--=x x x x x g()()()39619362 ++-=+--x x x x()()()1,-=∴x x g x f ,将(1)式代(2)式得:()()()()1322311312-=--+--x x g x x x f x .即:取()()131--=x x u ,()()322312--=x x x v 就有:()()()()()()()x g x f x g x v x f x u ,=+. 3)()144234++--=x x x x x f ,()12--=x x x g 解:即:1232 -+-=x x x g x f()()()()2312 ++-=x x x g()()()1,=∴x g x f将(1)式代入(2)式得:()()13233123=--+++-x g x x x x f x 即取()()131+-=x x u ,()()233123--+=x x x x v 就有:()()()()()()()x g x f x g x v x f x u ,=+. 6. 设()()u x x t x x f 22123++++=,()u tx x x g ++=3的最大公因式是一个二次多项式,t ,u 的值. 解:又()()u x x t x x f 22123++++=,()u tx x x g ++=3的最大公因式是一个二次多项式()()u tx x u x t x t +++-++∴3221.即()()()()[]()c x u x t x t u tx x t ++-++=+++21123即:()()()()⎪⎩⎪⎨⎧+=+=-+=++-u t cu t t t c u t c t 112012解得:⎩⎨⎧=-=04u t ,或⎪⎩⎪⎨⎧=+=02321u i t ,或⎪⎩⎪⎨⎧=-=0231u i t ,或⎪⎩⎪⎨⎧--=+-=i u i t 11721121,或⎪⎩⎪⎨⎧+-=--=i u i t 1172111. 7. 证明:如果()()x f x d ,()()x g x d ,且()x d 为()x f 与()x g 的一个组合,那么()x d 是()x f 与()x g 的一个最大公因式.证明:()x d 为()x f 与()x g 的一个组合即:()()()()()x d x g x v x f x u =+.又()()x f x d ,()()x g x d ,即()x d 是()x f 与()x g 的一个公因式.()()x f x h ∀,且()()x g x h 则()()x d x h ()x d ∴是()x f 与()x g 的一个最大公因式.8. 证明:()()()()()()()()()x h x g x f x h x g x h x f ,,=,(()x h 的首项系数为1). 证明:()()()()x f x g x f , ,()()()()x g x g x f ,()()()()()()x h x f x h x g x f ,∴,()()()()()()x h x g x h x g x f ,. 即:()()()()x h x g x f ,是()()x h x f 与()()x h x g 的一个公因式. 又()()()()()()()()()x g x f x g x v x f x u st x v x u ,:,=+∃. 则()()()()()()()()()()x h x g x f x h x g x v x h x f x u ,=+()()()x h x f x c ∀,()()()x h x g x c 有()()()()()x h x g x f x c ,. 即()()()()x h x g x f ,是()()x h x f 与()()x h x g 的一个最大公因式. 又()x h 的首项系数为1.()()()()()()()()()x h x g x f x h x g x h x f ,,=∴.9. 如果()x f ,()x g 不全为零,证明:()()()()()()()()1,,,=⎪⎪⎭⎫ ⎝⎛x g x f x g x g x f x f .证明:()()()()x f x g x f , ,()()()()x g x g x f ,且()x f ,()x g 不全为零.()()()0,≠∴x g x f ,又()x u ∃,()x v ()()()()()()()x g x f x g x v x f x u st ,:=+()()()()()()()()()()1,,=+∴x g x f x g x v x g x f x f x u .即:()()()()()()()()1,,,=⎪⎪⎭⎫⎝⎛x g x f x g x g x f x f 成立. 10.证明:如果()x f ,()x g 不全为零,且()()()()()()()x g x f x g x v x f x u ,=+,那么()()()1,=x v x u .证明:()()()()x f x g x f , ,()()()()x g x g x f ,且()x f ,()x g 不全为零.且()()()()()()()x g x f x g x v x f x u ,=+()()()0,≠∴x g x f ()()()()()()()()()()1,,=+∴x g x f x g x v x g x f x f x u ()()()1,=x v x u .11.证明:如果()()()1,=x g x f ,()()()1,=x h x f ,那么()()()()1,=x h x g x f . 证明:()()()1,=x g x f ,()()()1,=x h x f .()x u 1∃∴,()x v 1,()x u 2,()x v 2使得:()()()()()1111 =+x g x v x f x u ()()()()()2122 =+x h x v x f x u . 由(1)式与(2)式相乘可得:()()()()()()()()()()()()()()()121212121=+++x h x g x v x v x f x g x u x v x h x v x u x f x u x u即()()()()1,=x h x g x f .12. 设()x f 1, ,()x f m ,()x g 1, ,()x g n 都是多项式,而且()()()1,=x g x f ji()n j m i ,,1;,,1 ==.求证:()()()()()1,11=x g x g x f x f nm.证明:由11题可得:()()()1,=x g x f ,()()()1,=x h x f ()()()()1,=⇒x h x g x f 又()()()1,=x g x f j i (其中m i ,,1 =;n j ,,1 =)可得,对于i 取m ,,2,1 中的任何一个固定值有:()()()()1,1=x g x g x f n i . 再将()()x g x g n 1看作一个整体可得:()()()()()1,11=x g x g x f x f n m . 13. 证明:如果()()()1,=x g x f ,那么()()()()()1,=+x g x f x g x f . 证明:()()()1,=x g x f 故有:()()()()1=+x g x v x f x u .即:()()()()()()()()()()()()()()()()1=++-=+-+x g x f x v x f x v x u x g x v x f x v x f x v x f x u()()()()1,=+∴x f x g x f ;同理可得:()()()()1,=+x g x f x g()()()()()1,=+∴x g x f x g x f .14. 求下列多项式的公共根:()12223+++=x x x x f ,()12234++++=x x x x x g . 解:()()()212+-=∴x x x f x g 即:()()()112+++=x x x x f()()()1,2++=∴x x x g x f 令:012=++x x 解得:2311i x +-=;2312ix --=. 即:()x f 与()x g 的公共根为:2311i x +-=和2312ix --=.(提示:公共根出现在多项式的公因式中.)15. 判别下列多项式有无重因式: 1)()842752345-+-+-=x x x x x x f解:()()()x x x x x x x x f 1524421205'2234+-=+-+-=又()()()1284275232345++-=-+-+-=x x x x x x x x x f即:()()()()22',-=x x f x f ()x f ∴有三重因式:2-x2)()34424--+=x x x x f解:()124484'33-+=x x x f即:()()()1',=x f x f ()x f ∴没有重因式. 16.求t 值使()1323-+-=tx x x x f 有重根.解:依题意可得:待定系数法:当有()x f 重根时,可得重根为有理根时,此时只能取重根为:1±=α.当重根为:1=α 1可得:3=t .当3=t 时,()()3231133-=-+-=x x x x x f 此时1=x 是()x f 的三重根;当重根为:1-=α1-解得:5-=t ,当5-=t 时,()()()141153223--+=---=x x x x x x x f 与1-=x 为重根矛盾,舍去.设重根为二重时得()⎪⎭⎫⎝⎛+-=+-=323163'22t x x t x x x f()()()()()()()()()12,''131,'',+=⎪⎭⎫ ⎝⎛--=x x f x f x x f x f x f x f 即得:021'=⎪⎭⎫⎝⎛-f .解得:415-=t . 17.求多项式q px x ++3有重根的条件.解:()()()()()()()()132,'3','3,',23≠⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-=+++=q px x f x f x f x f p x q px x x f x f 得: ()x f q px'32+即得:027423=+q p . 18.如果()11242++-Bx Ax x ,求A ,B .解:依题意可由综合除法可得:1 1A A 2B A +3 B A 24+由()11242++-Bx Ax x 可得:⎩⎨⎧=+=++02401B A B A 解得:⎩⎨⎧-==21B A .19.证明:!!212n x x x n++++ 不能有重根.证明:令()!!212n x x x x f n ++++= 得:()()!1!21'12-++++=-n x x x x f n反证法:设()x f 的重根为α得:()()⎩⎨⎧==0'0ααf f 即:()()0'=-ααf f 0!=∴n nα得:0=α 又()010≠=f 矛盾.∴!!212n x x x n++++ 不能有重根.20.如果a 是()x f '''的一个k 重根,证明a 是()()()[]()()a f x f a f x f ax x g +-+-=''2的一个3+k 重根.证明:依题意可得:()()()[]()()0''2=+-+-=a f a f a f a f aa a g ()()()[]()()0'''22'''=--++=a f a f aa a f a f a g()()()()()a f a f aa a f a f a g '''''22''2''''--++=又()0'''=a f ()0''=∴a g()()()()02'''21'''4=-+-=a f a a a f a g又a 是()x f '''的一个k 重根a ∴是()x g '''的一个k 重根. 又()()()()0''''''====a g a g a g a g∴a 是()()()[]()()a f x f a f x f ax x g +-+-=''2的一个3+k 重根. 21.证明:0x 是()x f 的k 重根的充分必要条件是()()()()0'0100====-x f x f x f k ,而()()00≠x f k证明: 0x 是()x f 的k 重根()()x f x x k0-∴即()x g ∃,使得:()()()x g x x x f k0-=,其中0x x -不整除()x g()()()()()x g x x x g x x k x f kk ''010-+-=∴-可得:()()x f x x k '10--()0'0=∴x f同理由此类推可得到:()()()()0'0100====-x f x f x f k 若()()00=x f k 得:()()()x f x x k 0-()()x f x x s k s10+--⇒其中k s ≤,即()()x f x x k 10+-这与0x 是()x f 的k 重根矛盾.()()00≠∴x f k反之显然成立.∴0x 是()x f 的k 重根的充分必要条件是()()()()0'0100====-x f x f x f k ,而()()00≠x f k .22.举例说明断语“如果a 是()x f '的m 重根,那么a 是()x f 的1+m 重根”是不对的. 解:例如:()()111111+-=+m a x x f 则()()()ma x m x f -+=1'a 是()x f '的m 重根,但a 不是()x f 的1+m 重根.23. 证明:如果()()n x f x 1-,那么()()n n x f x 1-. 证明:令:n x y =得:()()y f x 1-即()()011==f f n ∴()()y f y 1-即()()n n x f x 1-.24. 证明:如果()()()323121x xf x f x x +++,那么()()x f x 11-,()()x f x 21-证明:.令:012=++x x 解得:2311i x +-=,2312ix --= 又()()()323121x xf x f x x +++即:()()()32311x f x f x x +-,()()()32312x f x f x x +-()()()()⎩⎨⎧=+=+∴0032223213121311x f x x f x f x x f 即:()()()()⎪⎪⎩⎪⎪⎨⎧=--+=+-+0123110123112121f i f f i f 又0323112311≠-=--+-i i i即该方程程组只有唯一零解:()()⎩⎨⎧==010121f f∴()()x f x 11-,()()x f x 21-.25. 求多项式1-n x 在复数域范围内和在实数范围内的因式分解. 解:在复数域上分解:()()()111----=-n n x x x x εε 其中ni n ππε2sin 2cos +=. 在实数范围内因式分解:当n 为奇数:()()[]()[]⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++-++--=-+---111112222222212x x x x x x x x n n n n nεεεεεε 其中:n i i n i πεε2cos2=+-为一个实数,21,,2,1-=n i . 当n 为偶数时:()()()[]()[]⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++-++--+=-+---1111112222222212x x x x x x x x x n n n n nεεεεεε 26. 求下列多项式的有理根: 1)1415623-+-x x x解:令()1415623-+-=x x x x f 则()x f 的有理根可能为:1±,2±,7±,14±.由综合除法计算得:1即:()41-=f同理:()361-=-f ,()762-=-f ,()02=f ,()7567-=-f ,()1407=f ,()414414-=-f()176414=f∴1415623-+-x x x 多项式的有理根为:2.2)157424---x x x解:令()157424---=x x x x f 则的有理根可能为:41±,21±,1± 将根挨个代入原式得:641114154174144124-=--⨯-⎪⎭⎫⎝⎛-⨯-⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-f同理:6417141-=⎪⎭⎫ ⎝⎛f ,021=⎪⎭⎫ ⎝⎛-f ,521-=⎪⎭⎫⎝⎛f ,()11=-f ,()91-=f∴157424---x x x 多项式的有理根为:21-.3)3111462345----+x x x x x解:令()3111462345----+=x x x x x x f 则()x f 的有理根可能为:1±,3±由带余除法计算得:即:()01=-f 同理:()321-=f ,()963-=-f ,()03=f .∴3111462345----+x x x x x 多项式的有理根为:1-,3. 27. 下列多项式在有理数域上是否可约? 1)12+x解:不可约;理由如下:依题意可得令()12+=x x f 则()x f 的有理根可能为:1± 又()()0211≠=-=f f 即1±不为()x f 的有理根∴多项式12+x 在有理数域上是不可约的.(二次有理多项式在有理数域上可约的话必有有理根)2)2128234++-x x x解:不可约;理由如下: 取素数2=p 得: (1)p 41a =.(2)38a p =-,212a p =,10a p =,02a p = (3)42=p 02a =由艾森斯坦判别法可得:多项式2128234++-x x x 是不可约的. 3)136++x x解:不可约;理由如下:令()136++=x x x f ,1+=y x 得:原多项式39182115623456++++++=y y y y y y 这时只要取3=p 可由艾森斯坦判别法得出:39182115623456++++++y y y y y y 不可约;∴136++x x 不可约.4)1++px x p ,p 为奇素数;解:令1+=y x 作转化,再由艾森斯坦判别法判别不可约; 5)144++kx x ,k 为整数. 解:同4),不可约:。
1.1 数域~1.2 矩阵和运算1(13秋季,林鹭)

展开和式
4
4
(1) a2i (2) 2i
i 1
i 1
22
(3) aij i1 j1
(4)
aij
1i j3
特殊矩阵及其元素表示_4
• 基础矩阵Eij
0
0
1
Eij
0
j列
i行 0 mn
1 k i且l j ekl 0 其他
A (aij )mn
m i 1
a E n
j1 ij ij
小结
✓ 数域的定义 ✓ 矩阵的概念
– 特殊矩阵
✓ 矩阵的相等、加法和数乘
下节
• 矩阵的乘法(难点、重点) • 矩阵的转置
• 作业 §1.1 Ex. 1, 2; §1.2 Ex. 1
补充: 用 表示下列式子
(1) a1b2 a3b4 ... a b 2n1 2n2 (2) a1bn a2bn1 ... anb1 (3) a1b1 a1b2 a1b3 a2b2 a2b3 a3b3
• n阶方阵A: A的行数=列数= n
矩阵的相等
• A = (aij)m×n,B = (bij)s×t 则A = B 必须同 时满足如下两个条件
✓ m = s, n = t ✓ aij = bij i=1, 2, …, m; j = 1, 2, …, n
特别提示 具有不同行列数的零矩阵代表不同 的矩阵。如 O2×3≠O1×6 ≠O3×2
第一章 矩阵 Matrix
§1.1-1.2 目的要求
• 掌握数域的定义, 正确判断数域;
• 熟练掌握矩阵的定义、两矩阵的相 等概念;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1 数域(number field )
教学目的:掌握数域的概念及其性质,了解数环的概念.
教学重点:数域概念及其证明.
教学难点:数域概念.
数的发展过程
复数实数有理数整数自然数负数开方正数开方除法减法−−−→−−−−→−−−→−−−→−
1.数域的概念
关于数的加、减、乘、除等运算的性质通常称为数的代数性质.代数所研究的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的全体所共有的.
定义1 设P 是由一些复数组成的集合,其中包括0与1.如果P 中任意两个数的和、差、积、商(除数不为零)仍然是P 中的数,那么P 就称为一个数域.
如果数的集合P 中任意两个数作某一种运算的结果都仍在P 中,就说数集P 对这个运算是封闭的.因此数域的定义也可以说成,如果一个包含0,1在内的数集P 对于加法、减法、乘法与除法(除数不为零)是封闭的,那么P 就称为一个数域.
显然全体有理数(rational number)组成的集合、全体实数(real number)组成的集合、全体复数(complex number)组成的集合都是数域.这三个数域分别用字母Q 、R 、C 来表示.全体整数(integral number)组成的集合就不是数域,整数集关于加减乘运算是封闭的,但除法运算不封闭.类似的自然数集也不是数域.
例1 所有具有形式
2b a +
的数(其中b a ,是任意的有理数),构成一个数域.通常用)2(Q 来表示这个数域.即
},2{)2(Q b a b a Q ∈+=.
证明:显然)2(2011),2(2000Q Q ∈+=∈+=.
)2(,Q y x ∈∀,设Q d c b a d c y b a x ∈+=+=,,,,2,2,则Q c a ∈±, d b ±Q ∈,Q bc ad Q bd ac ∈+∈+,2.因此有
)2(2)()(Q d b c a y x ∈±+±=±,
)2(2)()2(Q bc ad bd ac y x ∈+++=⋅. 因此)2(Q 对加减乘运算是封闭的.
设Q b a ∈,,02≠+=b a x ,则02≠-b a ,若02=-b a ,则0==b a ,因此02=+b a ,与02≠+=b a x 矛盾.而
,2222)2)(2()2)(2(222222b a bc ad b
a bd ac
b a b a b a d
c b a
d c --+--=-+-+=++ 因为Q d c b a ∈,,,,所以Q b
a bc ad Q
b a bd a
c ∈--∈--22222,22.因此)2(Q 关于除法运算也是封闭的.因此)2(Q 是一个数域.
把本例中2换成其他的质数p ,)(p Q 也是一个数域.由于质数有无穷多个,因此数域有无穷多个.
例2 所有可以表成形式
m m n n b b b a a a π
πππ++++++ 1010 的数组成一数域,其中m n ,为任意非负整数,),,1,0;,,1,0(,m j n i b a j i ==是整数.
例3 所有奇数(odd number)组成的数集,对于乘法是封闭的,但对于加、减法不是封闭的,因此不是数域.
例4 设P 是至少含两个数的数集,证明:若P 中任意两个数的差与商(除数≠0)仍属于P ,则P 为一数域.
证明 ,,P b a ∈∀有P b
a P
b a P b b b P a a ∈∈-∈≠=∈-=,,)0(1,0.因此 P ab b P b
a a
b b P b a b a ∈==∈=≠∈--=+00/10,)0(时,当,时,当.
所以P 为一数域.
2.数域的性质
性质1:所有的数域都包含有理数域作为它的一部分.若P 是数域,则有P Q ⊆.
证明: 设P 是任意一个数域,则有P ∈1,0。
由加法的封闭性,
,111n
n Z n P +∀∈=+++∈
由减法的封闭性,
,0n Z n n P +∀∈-=-∈.
而任意一个有理数可以表示成两个整数的商,由除法的封闭性有P Q ⊆. 性质2. 若21,P P 是数域,则21P P 也是数域.
3.数环
设P 是一个非空的数集,若P 关于数的加减乘运算是封闭的,则称P 是一个数环.
例如整数集是一个数环,偶数集也是数环.但奇数集不是数环.
作业:
1.证明},,{)(为虚数单位i Q b a bi a i Q ∈+=是一个数域.
2.若21,P P 是数域,则21P P 也是数域.。