(03)第三章 非均相混合物分离及固体流态化习题答案
夏清主编的《化工原理》(第2版)上册-配套题库-章节题库-第3章 非均相物系的分离和固体流态化【圣才

第3章 非均相物系的分离和固体流态化一、选择题1.沉降过程中,雷诺准数越大,流体粘度对沉降速度的影响( )。
A .越大B .越小C .不确定D .无影响【答案】B【解析】沉降过程中,随着雷诺数的增大,由流体黏性引起的表面摩擦力逐渐减弱,由边界层分离所引起的形体阻力逐渐增强。
2.在设计降尘室时,所依据的基本关系是,其中u t 是指( )。
A .颗粒的平均沉降速度B .要求被除去的最小颗粒的沉降速度C .平均粒径大小的颗粒的沉降速度【答案】B 【解析】在重力沉降过程中,沉降速度应该根据需要完全分离下来的最小颗粒尺寸计算。
此外,气体在沉降室中的速度不应过高,一般应保证气体流动的雷诺数处于层流区,以免干扰颗粒的沉降或把已沉降下来的颗粒重新扬起。
3.降尘室的生产能力与( )有关。
A .颗粒的u t 和降尘室的高度HB .沉降面积A 和u tC .沉降面积AD .u t 、A 及H【答案】B【解析】降尘室的生产能力V =blu t ,其中面积A =bl 。
二、填空题1.某回转真空过滤机,忽略滤布阻力,当转速n =4r/min 时,滤饼厚度为5.66mm 。
其他条件不变,当转速n ,=2r/min 时,滤饼厚度约为_______mm 。
【答案】8mm【解析】。
'''n A Q nA Q δδ==2.聚式流化床操作是否正常可以通过床层压降的变化来进行判断。
当发生腾涌时,床层压降__________;发生沟流时,床层压降__________。
【答案】变大 变小【解析】出现腾涌现象,由于颗粒层与器壁摩擦,致使压强降大于理论值;若压强降比正常操作时低,产生了沟流现象,实际压强降与正常压强降偏离的大小反应了沟流现象的严重程度。
3.含尘气体在降尘室内按斯托克斯定律进行沉降,理论上能完全除去30μm 的粒子,现气体处理量增大1倍,该降尘室理论上能完全除去的最小粒径为____________。
【答案】42.43mμ【解析】,代入数据。
化工原理 第三章 非均相分离试题及答案

化工原理考试题及答案第三章非均相分离姓名____________班级____________学号_____________成绩______________一、填空题:1.(2分)悬浮液属液态非均相物系,其中分散内相是指_____________;分散外相是指______________________________。
***答案*** 固体微粒,包围在微粒周围的液体2.(3分)悬浮在静止流体中的固体微粒在重力作用下,沿重力方向作自由沿降时,会受到_____________三个力的作用。
当此三个力的______________时,微粒即作匀速沉降运动。
此时微粒相对于流体的运动速度,称为____________ 。
***答案*** 重力、阻力、浮力代数和为零沉降速度3.(2分)自由沉降是 ___________________________________ 。
***答案*** 沉降过程颗粒互不干扰的沉降4.(2分)当微粒在介质中作自由沉降时,若粒子沉降的Rep相同时,球形度越大的微粒,介质阻力系数越________ 。
球形粒子的球形度为_________ 。
***答案*** 小 15.(2分)沉降操作是使悬浮在流体中的固体微粒,在 _________力或__________力的作用下,沿受力方向发生运动而___________ ,从而与流体分离的过程。
***答案*** 重离心沉积6.(3分)球形粒子在介质中自由沉降时,匀速沉降的条件是_______________ 。
滞流沉降时,其阻力系数=____________.***答案*** 粒子所受合力的代数和为零 24/ Rep7.(2分)降尘宝做成多层的目的是____________________________________ 。
***答案*** 增大沉降面积,提高生产能力。
8.(3分)气体的净制按操作原理可分为________________________________________________________.旋风分离器属_________________ 。
柴诚敬《化工原理》(第2版)配套题库章节题库非均相混合物分离及固体流态化【圣才出品】

第3章非均相混合物分离及固体流态化1.某球形颗粒直径为40μm,密度为4000kg/m3。
在水中作重力沉降。
试求(1)该颗粒在20℃水中的沉降速度为多少?(2)直径为80μm的该类颗粒在20℃水中的沉降速度为多少?(3)直径为40μm的该类颗粒在50℃的水中沉降速度为多少?(4)与直径为40μm的球形颗粒同体积的立方体颗粒在20℃水中的沉降速度为多少?解:(1)20℃时水的黏度为1×10-3Pa·S。
假设颗粒沉降运动处在层流区,用Stokes 公式计算沉降速度如下:校核沉降运动是否处在层流区:所以,该颗粒沉降运动的确处在层流区,以上计算有效。
(2)颗粒直径加倍而其他条件均不变。
假定此时沉降运动仍处于层流区,由Stokes公式可知:,于是:校核沉降运动是否处在层流区:由于颗粒雷诺数正比于颗粒直径与沉降速度的乘积,故所以,该颗粒沉降运动仍处在层流区,以上计算有效。
(3)50℃时水的黏度为0.549×10-3Pa·S,密度ρ=988kg/m3。
假设沉降运动处在层流区,由Stokes公式可知:校核沉降运动是否处在层流区:所以,该颗粒沉降运动的确处在层流区,以上计算有效。
(4)因该立方体颗粒与上述球形颗粒体积相等,故该颗粒的当量直径与球形颗粒相同,de=40μm。
立方体颗粒的边长为:立方体颗粒的形状系数为:为求立方体颗粒沉降速度表达式,列该颗粒受力平衡方程式如下:式中,A指立方体颗粒的最大投影面积:由试差法求沉降速度,设沉降速度u t=0.0018m/s.则颗粒雷诺数:根据形状系数0.807可得再设u t=0.00164m/s,则查得,故近两次计算结果接近,试差结束,沉降速度为0.00161m/s。
2.采用降尘室回收常压炉气中所含球形固体颗粒。
降尘室底面积为10m2,高1.6m。
操作条件下气体密度为0.5kg/m3,黏度为2.0×10-5Pa·S,颗粒密度为3000kg/m3。
化工原理第三章习题及答案

d 2 (ρ s -ρ ) u t 218μ第三章机械分离一、名词解释(每题 2 分)1. 非均相混合物物系组成不同,分布不均匀,组分之间有相界面 2. 斯托克斯式u r = ⋅r3. 球形度ϕ s非球形粒子体积相同的球形颗粒的面积与球形颗粒总面积的比值 4. 离心分离因数离心加速度与重力加速度的比值 5. 临界直径 dc离心分离器分离颗粒最小直径6.过滤利用多孔性介质使悬浮液中液固得到分离的操作 7. 过滤速率单位时间所产生的滤液量8. 过滤周期间歇过滤中过滤、洗涤、拆装、清理完成一次过滤所用时间9. 过滤机生产能力过滤机单位时间产生滤液体积 10. 浸没度转筒过滤机浸没角度与圆周角比值二、单选择题(每题 2 分)1、自由沉降的意思是_______。
A颗粒在沉降过程中受到的流体阻力可忽略不计 B颗粒开始的降落速度为零,没有附加一个初始速度C颗粒在降落的方向上只受重力作用,没有离心力等的作用 D颗粒间不发生碰撞或接触的情况下的沉降过程 D2、颗粒的沉降速度不是指_______。
A等速运动段的颗粒降落的速度B加速运动段任一时刻颗粒的降落速度 C加速运动段结束时颗粒的降落速度D净重力(重力减去浮力)与流体阻力平衡时颗粒的降落速度B3、对于恒压过滤_______。
A滤液体积增大一倍则过滤时间增大为原来的√2倍B滤液体积增大一倍则过滤时间增大至原来的2倍C滤液体积增大一倍则过滤时间增大至原来的4倍D当介质阻力不计时,滤液体积增大一倍,则过滤时间增大至原来的4倍D4、恒压过滤时,如介质阻力不计,滤饼不可压缩,过滤压差增大一倍时同一过滤时刻所得滤液量___。
A增大至原来的2倍B增大至原来的4倍D增大至原来的1.5倍C5、以下过滤机是连续式过滤机_______。
A箱式叶滤机B真空叶滤机C回转真空过滤机D板框压滤机C6、过滤推动力一般是指______。
A过滤介质两边的压差B过滤介质与滤饼构成的过滤层两边的压差C滤饼两面的压差D液体进出过滤机的压差B7、回转真空过滤机中是以下部件使过滤室在不同部位时,能自动地进行相应的不同操作:______。
化工原理:(含答案)第三章 非均相物系的分离

第三章 非均相物系的分离一、填空题:1.⑴一球形石英颗粒,在空气中按斯托克斯定律沉降,若空气温度由20°C 升至50°C ,则其沉降速度将 。
⑵降尘室的生产能力只与降尘室的 和 有关,而与 无关。
解⑴下降 ⑵长度 宽度 高度2.①在除去某粒径的颗粒时,若降尘室的高度增加一倍,则沉降时间 ,气流速度 ,生产能力 。
②在滞流(层流)区,颗粒的沉降速度与颗粒直径的 次方成正比;在湍流区,颗粒的沉降速度与颗粒直径的 次方成正比。
解①增加一倍 , 减少一倍 , 不变 ②2 , 1/2沉降操作是指在某种 中利用分散相和连续相之间的 差异,使之发生相对运动而实现分离的操作过程。
沉降过程有 沉降和 沉降两种方式。
答案:力场;密度;重力;离心3.已知q 为单位过滤面积所得滤液体积V/S ,e e e S V q V /,为为过滤介质的当量滤液体积(滤液体积为e V 时所形成的滤饼层的阻力等于过滤介质的阻力),在恒定过滤时,测得2003740/+=∆∆q q τ,过滤常数K = ,e q = 。
解0.000535 , 0.05354.⑴间歇过滤机的生产能力可写为Q =V/∑τ,此外V 为 ,∑τ表示一个操作循环所需的 ,∑τ等于一个操作循环中 , 和 三项之和。
一个操作循环中得到的滤液体积 ,总时间 ,过滤时间τ ,洗涤时间τw , 辅助时间τD⑵.一个过滤操作周期中,“过滤时间越长,生产能力越大”的看法是 ,“过滤时间越短,生产能力越大”的看法是 。
过滤时间有一个 值,此时过滤机生产能力为 。
不正确的 ,不正确的 , 最适宜 , 最大⑶.过滤机操作循环中,如辅助时间τ越长则最宜的过滤时间将 。
⑶ 越长(4). 实现过滤操作的外力可以是 、 或 。
答案:重力;压强差;惯性离心力5.⑴在过滤的大部分时间中, 起到了主要过滤介质的作用。
⑵最常见的间歇式过滤机有 和 连续式过滤机有 。
⑶在一套板框过滤机中,板有 种构造,框有 种构造。
(完整版)新版化工原理习题答案(03)第三章非均相混合物分离及固体流态化-题解

第三章 非均相混合物分离及固体流态化1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为0.04 mm 的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m 3,球形度6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多少?(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为7.32 s ,液体的黏度是多少?解:(1)假设为滞流沉降,则:2s t ()18d u ρρμ-= 查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15⋅⨯=-μ,所以,()()()m 1276.0s m 1081.11881.9205.126501004.018523s 2t =⨯⨯⨯-⨯⨯=-=--μρρg d u 核算流型:3t 51.2050.12760.04100.3411.8110du Re ρμ--⨯⨯⨯===<⨯ 所以,原假设正确,沉降速度为0.1276 m/s 。
(2)采用摩擦数群法()()s 123t 523434 1.81102650 1.2059.81431.93 1.2050.1g Re u μρρξρ---=⨯⨯-⨯==⨯⨯ 依6.0=φ,9.431Re 1=-ξ,查出:t e t 0.3u d Re ρμ==,所以: 55e 0.3 1.8110 4.50610m 45μm 1.2050.1d --⨯⨯==⨯=⨯ (3)假设为滞流沉降,得:2s t()18d g u ρρμ-= 其中 s m 02049.0s m 32.715.0t ===θh u将已知数据代入上式得:()s Pa 757.6s Pa 02049.01881.91600790000635.02⋅=⋅⨯⨯-=μ 核算流型t 0.006350.020*******.0308116.757du Re ρμ⨯⨯===< 2.用降尘室除去气体中的固体杂质,降尘室长5 m ,宽5 m ,高4.2 m ,固体杂质为球形颗粒,密度为3000 kg/m 3。
非均相混合物分离及固体流态化习题答案

第三章 非均相混合物分离及固体流态化1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为0.04 mm 的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少(2)密度为2 650 kg/m 3,球形度6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多少(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为 s ,液体的黏度是多少解:(1)假设为滞流沉降,则:2s t ()18d u ρρμ-=查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15⋅⨯=-μ,所以,()()()m 1276.0s m 1081.11881.9205.126501004.018523s 2t =⨯⨯⨯-⨯⨯=-=--μρρg d u 核算流型:3t 51.2050.12760.04100.3411.8110du Re ρμ--⨯⨯⨯===<⨯ 所以,原假设正确,沉降速度为0.1276 m/s 。
(2)采用摩擦数群法()()s 123t 523434 1.81102650 1.2059.81431.93 1.2050.1g Re u μρρξρ---=⨯⨯-⨯==⨯⨯依6.0=φ,9.431Re1=-ξ,查出:t et 0.3u d Re ρμ==,所以: 55e 0.3 1.8110 4.50610m 45μm 1.2050.1d --⨯⨯==⨯=⨯(3)假设为滞流沉降,得:2s t()18d g u ρρμ-=其中 s m 02049.0m 32.15.0t ===θh u 将已知数据代入上式得:()s Pa 757.6s Pa 02049.01881.91600790000635.02⋅=⋅⨯⨯-=μ核算流型 t 0.006350.0204916000.0308116.757du Re ρμ⨯⨯===< 2.用降尘室除去气体中的固体杂质,降尘室长5 m ,宽5 m ,高4.2 m ,固体杂质为球形颗粒,密度为3000 kg/m 3。
第三章 非均相混合物离2.3.4.5.8.13题解

For personal use only in study and research; not for commercial use第三章 非均相混合物分离及固体流态化习题解答2.解:颗粒沉降速度为:t 0.207.32m s 0.0273m su h θ=== 设沉降在斯托克斯区,则:2s t()18d g u ρρμ-= ()20.006790013009.81Pa s 5.31Pa s 180.0273μ-⨯=⋅=⋅⨯ 核算流型t 0.0060.027612800.0***15.31du Re ρμ⨯⨯===< 所以,原假设正确查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15⋅⨯=-μ,所以,()()()s m 1276.0m 1081.11881.9205.126501004.018523s 2t =⨯⨯⨯-⨯⨯=-=--μρρg d u 核算流型:3t 51.2050.12760.04100.3411.8110du Re ρμ--⨯⨯⨯===<⨯ 所以,原假设正确,沉降速度为0.1276 m/s 。
3.解:颗粒沉降时间为:t t h θ=()()()()()()2.62369.1s 33336max max max 223s 33336minmin min 223998.22650998.29.812.6257.37101.00510998.22650998.29.8169.11513101.00510K stokes K newton K d g d d d g d d d ρρρμρρρμ==----=∙→-⨯-⨯==∙−−→=⨯⨯-⨯-⨯==∙−−→=⨯⨯4.解:假设在斯托克斯区s t v 3600m s 0.025m s 360040u bl ===⨯ 查附录20 ℃空气351.128/.... 1.9110a kg m p s ρμ-==⨯⋅ 所以,51.7110d m-===⨯核算流型:3t51.705100.025 1.1280.02511.9110tduReρμ--⨯⨯⨯===<⨯5.解:假设在斯托克斯区沉降()()262s3t581040009.81m 4.210m s1818210d guρρμ---⨯⨯⨯-===⨯⨯⨯ss3t2160273427v 1.54m s3600273v 1.5411491.8 4.1 4.2010nblu-+=⨯==-=-=⨯⨯⨯气体降尘室停留时间为S32tV 1.530.2mHb 4.2 1.84.1200.24.210208.410mulsuh uθθ--===⨯=====⨯⨯=⨯核算颗粒沉降雷诺数[核算流型在斯托克斯区]:t******0.0***1******tduReρμ===<核算流体流型[在滞流区]:∴******1***2000******duReρμ===<P196 8.在实验室里用面积0.1 m2的滤叶对某悬浮液进行恒压过滤实验,操作压力差为67 kPa,测得过滤5 min后得滤液1 L,再过滤5 min后,又得滤液0.6 L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 非均相混合物分离及固体流态化1.颗粒在流体中做自由沉降,试计算(1)密度为2 650 kg/m 3,直径为0.04 mm 的球形石英颗粒在20 ℃空气中自由沉降,沉降速度是多少?(2)密度为2 650 kg/m 3,球形度6.0=φ的非球形颗粒在20 ℃清水中的沉降速度为0.1 m/ s ,颗粒的等体积当量直径是多少?(3)密度为7 900 kg/m 3,直径为6.35 mm 的钢球在密度为1 600 kg/m 3的液体中沉降150 mm 所需的时间为7.32 s ,液体的黏度是多少?解:(1)假设为滞流沉降,则:2s t ()18d u ρρμ-=查附录20 ℃空气31.205kg/m ρ=,s Pa 1081.15⋅⨯=-μ,所以,()()()s m 1276.0m 1081.11881.9205.126501004.018523s2t =⨯⨯⨯-⨯⨯=-=--μρρgdu核算流型: 3t 51.2050.12760.04100.3411.8110du Re ρμ--⨯⨯⨯===<⨯ 所以,原假设正确,沉降速度为0.1276 m/s 。
(2)采用摩擦数群法()()s 123t523434 1.81102650 1.2059.81431.93 1.2050.1gR eu μρρξρ---=⨯⨯-⨯==⨯⨯依6.0=φ,9.431Re1=-ξ,查出:t et 0.3u d Re ρμ==,所以:55e 0.3 1.8110 4.50610m 45μm 1.2050.1d --⨯⨯==⨯=⨯(3)假设为滞流沉降,得:2s t()18d gu ρρμ-=其中 s m 02049.0s m 32.715.0t ===θh u 将已知数据代入上式得: ()s Pa 757.6s Pa 02049.01881.91600790000635.02⋅=⋅⨯⨯-=μ核算流型 t0.006350.0204916000.0308116.757du Re ρμ⨯⨯===< 2.用降尘室除去气体中的固体杂质,降尘室长5 m ,宽5 m ,高4.2 m ,固体杂质为球形颗粒,密度为3000 kg/m 3。
气体的处理量为3000(标准)m 3/h 。
试求理论上能完全除去的最小颗粒直径。
(1)若操作在20 ℃下进行,操作条件下的气体密度为1.06 kg/m 3,黏度为1.8×10-5Pa •s 。
(2)若操作在420 ℃下进行,操作条件下的气体密度为0.5 kg/m 3,黏度为3.3×10-5 Pa •s 。
解:(1)在降尘室内能够完全沉降下来的最小颗粒的沉降速度为:s m 03577.0s m 553600273202733000s v,t =⨯⨯+⨯==blq u设沉降在斯托克斯区,则:2t ()0.0357718s d g u ρρμ-==51.98510m 19.85μmd -===⨯=核算流型: 5t t 51.985100.035771.060.041811.810du Re ρμ--⨯⨯⨯===<⨯ 原设滞流区正确,能够完全除去的最小颗粒直径为1.985×10-5 m 。
(2)计算过程与(1)相同。
完全能够沉降下来的最小颗粒的沉降速度为:s m 0846.0s m 5536002734202733000s v,t =⨯⨯+⨯==blq u设沉降在斯托克斯区,则:54.13210m 41.32μmd -==⨯=核算流型: 5t t 54.132100.08460.50.052913.310du Re ρμ--⨯⨯⨯===<⨯ 原设滞流区正确,能够完全除去的最小颗粒直径为4.132×10-5 m 。
3.对2题中的降尘室与含尘气体,在427 ℃下操作,若需除去的最小颗粒粒径为10 μm ,试确定降尘室内隔板的间距及层数。
解:取隔板间距为h ,令tL h uu =则 t L h u u=(1)s m 1017.0m 2.4527342727336003000s v,=⨯+⨯==bHq u10 μm 尘粒的沉降速度 ()()()m 10954.4s m 1031.31881.95.030001010183526s2t ---⨯=⨯⨯⨯-⨯⨯=-=μρρgdu由(1)式计算h ∴ 0.244mm 10954.41017.053=⨯⨯=-h 层数2.17244.02.4===h H n 取18层0.233mm 182.418===H h核算颗粒沉降雷诺数: 644t t 51010 4.954100.5e 7.51013.310du R ρμ----⨯⨯⨯⨯===⨯<⨯核算流体流型: e 52250.233()0.10170.55.23368621003.310bhu d u b h Re ρρμμ-⨯⨯⨯⨯+====<⨯ 4.在双锥分级器内用水对方铅矿与石英两种粒子的混合物进行分离。
操作温度下水的密度ρ=996.9 kg/m 3,黏度μ=0.897 3×10-3 Pa •s 。
固体颗粒为棱长0.08~0.7mm 的正方体。
已知:方铅矿密度ρs1=7 500 kg/m 3,石英矿密度ρs2=2 650 kg/m 3。
假设粒子在上升水流中作自由沉降,试求(1)欲得纯方铅矿粒,水的上升流速至少应为多少?(2)所得纯方铅矿粒的尺寸范围。
解:(1)水的上升流速 为了得到纯方铅矿粒,应使全部石英粒子被溢流带出,因此,水的上升流速应等于或略大于最大石英粒子的自由沉降速度。
对于正方体颗粒 ,应先算出其当量直径和球形度。
设l 代表棱长,V p 代表一个颗粒的体积。
颗粒的当量直径为()m 10685.8m 107.0π6π6π64333333p e -⨯=⨯===-lV d因此,颗粒的球形度,2e s 2pπ0.80666d S S ll φ====用摩擦数群法计算最大石英粒子的沉降速度,即32s 2t 24()e 3d gR ρρρξμ-=17538)108973.0(381.99.996)9.9962650()10685.8(42334=⨯⨯⨯⨯-⨯⨯⨯=--已知s φ=0.806,由图3-3查得Re t =70,则m/s 07255.0m/s 10685.89.996108973.07043e t t =⨯⨯⨯⨯==--ρμd Re u所以水的上升流速应取为0.07255 m/s 或略大于此值。
(2)纯方铅矿粒的尺寸范围 所得到的纯方铅矿粒中尺寸最小者应是沉降速度恰好等于0.07255 m/s 的粒子。
用摩擦数群法计算该粒子的当量直径:1s1t 23t4()e 3gR u μρρξρ--=2011.0)07255.0(9.996381.9)9.9967500(108973.04323=⨯⨯⨯-⨯⨯=-已知s φ =0.806,由图3-3查得Re t =30,则m 10722.3m 07255.09.996108973.03043tt e --⨯=⨯⨯⨯==u Re d ρμ与此当量直径相对应的正方体棱长为m 103m π610722.3π64343e -⨯=⨯==-d l所得纯方铅矿粒的棱长范围为0.3~0.7 mm 。
5.用标准型旋风分离器处理含尘气体,气体流量为0.4 m 3/s 、黏度为3.6×10-5Pa •s 、密度为0.674 kg/m 3,气体中尘粒的密度为2 300 kg/m 3。
若分离器圆筒直径为0.4 m ,(1) 试估算其临界粒径、分割粒径及压力降。
(2)现在工艺要求处理量加倍,若维持压力降不变,旋风分离器尺寸需增大为多少?此时临界粒径是多少?(3)若要维持原来的分离效果(临界粒径),应采取什么措施?解:临界直径c d =式中 m1.044.04===D B ,2/D h=Ne =5 s m 20s m 24.01.04.0s v,=⨯==hBq u将有关数据代入,得μm 10698.6m 10698.6m π23002051.0106.3965e ⨯=⨯=⨯⨯⨯⨯⨯=--d分割粒径为()()μm 778.4m 10778.4m 674.02300204.0106.327.027.065s i 50=⨯=-⨯⨯⨯=-=--ρρμu Dd压强降为 Pa 4.1078Pa 674.02208222i =⨯⨯==∆ρξu p(2)i u p ,∆不变v,s v,s i 24q q u D D hB==⨯m 5657.0m 204.0288is v,=⨯⨯==u q Dm 1096.7m 202300514.345657.0106.3927.0965is e e --⨯=⨯⨯⨯⨯⨯⨯==u N Bd ρπμ所以,处理量加倍后,若维持压力降不变,旋风分离器尺寸需增大,同时临界粒径也会增大,分离效率降低。
(3)若要维持原来的分离效果(临界粒径),可采用两台圆筒直径为0.4 m 的旋风分离器并联使用。
6.在实验室里用面积0.1 m 2的滤叶对某悬浮液进行恒压过滤实验,操作压力差为67 kPa ,测得过滤5 min 后得滤液1 L ,再过滤5 min 后,又得滤液0.6 L 。
试求,过滤常数e V K ,,并写出恒压过滤方程式。
解:恒压过滤方程为: θK qq q =+e 22 由实验数据知: m i n 51=θ,231/m m 01.01.0001.0==qm i n 101=θ,231/m m 016.0=q 将上两组数据代入上式得: K q 5)01.0(2)01.0(e 2=+ K q 10)016.0(2)016.0(e 2=+ 解得 23e /m m 007.0=q/s m 108m in /m 108.42725--⨯=⨯=K 所以,恒压过滤方程为θ72108014.0-⨯=+q q (m 3/m 2,s )或 θ921080014.0-⨯=+V V (m 3,s )7.用10个框的板框过滤机恒压过滤某悬浮液,滤框尺寸为635 mm×635 mm×25 mm 。
已知操作条件下过滤常数为/s m 10225-⨯=K ,23e /m m 01.0=q , 滤饼与滤液体积之比为v =0.06。
试求滤框充满滤饼所需时间及所得滤液体积。
解:恒压过滤方程为θK qq q =+e 22θ5210202.0-⨯=+q q332c m 1008.0m 025.0635.010=⨯⨯=V33c m 680.1m06.01008.0===v V V ,222m 0645.8m 102635.0=⨯⨯=A2323/m m 208.0/mm 0645.8680.1===A V q代入恒压过滤方程θ52102208.001.02208.0-⨯=⨯⨯+得 min 52.39s 2.2317==θ8.在0.04 m 2的过滤面积上以1×10-4 m 3/s 的速率进行恒速过滤试验,测得过滤100 s 时,过滤压力差为3×104 Pa ;过滤600 s 时,过滤压力差为9×104 Pa 。