1.7节 事件的相互独立性

合集下载

概率论

概率论
P( A1 A2 An ) P( A1 ) P( A2 A1 ) P( A3 ( A1 A2 )) P( An ( A1 A2 An 1 ))
全概率公式
设A1 ,A2 ,...,An 构成一个完备事件组,且 P(Ai )>0 ,i=1,2,...,n,则对任一随机事件B, 有
P( B) P( Ai ) P( B | Ai )
i 1
n

A1 A2 A3
P( A1 ) P( B | A1 ) P( A2 ) P( B | A2 ) P( A3 ) P(B | A3 )
P( B)
贝叶斯公式 Bayes’ Theorem
设A1,A2,…, An构成完备事件组,且诸P(Ai)>0)
B为样本空间的任意事件,P( B) >0 , 则有
3 某工人照看三台机床,一个小时内1号,2号,3 号机床需要照看的概率分别为0.3, 0.2, 0.1。设各机床 之间是否需要照看是相互独立的,求在一小时内:1) 没有一台机床需要照看的概率;2)至少有一台不需要 照看的概率;3)至多有一台需要照看的概率。
练习2
发报台分别以概率 0.6 和 0.4发出信号“ .” 和“ - ”,• 由于通信系统受到干扰,当发出信 号“ .”时,收报台分别以概率 0.8 及 0.2 收 到信号 “ .”和“ - ”,同样,当发报台发 出信号“ - ”时,收报台分别以概率 0 .9 和 0.1 收到信号“ - ”和“ .”.求 (1) 收报台收到信号“ .”的概率. (2) 当收报台收到信号“ .”时,发报台确系 发出信号“ .”的概率.
x1 , x2 ,

, xn ,
,而取值 xk 的概率为
pk
PX xk pk

北师大版高中数学必修第一册 第七章 4-《事件的独立性》课件PPT

北师大版高中数学必修第一册 第七章 4-《事件的独立性》课件PPT
3
2
3
5
甲、乙、丙三人都回答错误的概率为P( · · )=P()·P()·P()=(1− 4)×(1− 3)×(1− 8)= 96.
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙三人中,至少有一人答对这道题”是对
5
91
立事件,所以,所求事件概率为() =1− 96 = 96.
反思感悟
与相互独立事件有关的概率问题求解策略
明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发
生”“不都发生”等词语的意义.
四、方程思想在概率中的应用
例4
甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工
1
1
的零件不是一等品的概率为4,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为12,
不可能同时发生,即事件A与B是互斥的,所以所求概率为 = (A)+(B)= (A)P()+()()
=0.8×(1−0.8)+(1−0.8)×0.8=0.32.
3.袋中装有红、黄、蓝3种颜色的球各1个,从中每次任取1个,有放回地抽取3次,则3次全是红球的概率为( D )
A.
1
回答问题正确与否是相互独立的.
(1)求乙答对这道题的概率;
(2)求甲、乙、丙三人中,至少有一人答对这道题的概率.
解 (1)记甲、乙、丙3人独自答对这道题分别为事件, , ,
设乙答对这道题的概率() = ,
由于每人回答问题正确与否是相互独立的,因此, , 是相互独立事件.
由题意,并根据相互独立事件同时发生的概率公式,
1
9
, , .由题设得 () = 12 ,即 ()(1−()) = 12 ,②由①③,得() =1− 8 (),

事件的相互独立性人教版高一年级数学课堂PPT学习

事件的相互独立性人教版高一年级数学课堂PPT学习
2
4
(4,1) (4,2) (4,3) (4,4)
于是, P(AB)= P(A)P(B).

积事件AB的概率P(AB)恰好等于P(A)与P(B)的乘积.
三、新知学习
1.定义
从上述两个试验的共性中得出这种事件关系的一般定义
对任意两个事件A与B,如果
(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)
(4,1) (4,2) (4,3) (4,4)
在试验2中,样本空间 ={(m,n)| m,n ∈{1,2,3,4}},
而A = {(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)} ,
问题1 下面的随机试验中,事件A发生与否会影响事件B发生的概率吗?
试验1
分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝
上”,B=“第二枚硬币反面朝上”.
互不影响
二、问题探究
问题1 下面的随机试验中,事件A发生与否会影响事件B发生的概率吗?
试验1
分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝
外没有其他差异,采用有放回方式从袋中依次任意摸出两球.设A=
“第一次摸到球的标号小于3”, B=“第二次摸到球的标号小于3”.
问题3 请分别计算P(A),P(B),P(AB),你有什么发现?
在试验1中,用1表示硬币“正面朝上”,用0表示硬币“反面朝
上”,则样本空间为 = {(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样
本点.
而A={(1,1),(1,0)},B= {(1,0),(0,0)},所以AB ={(1,0)}.

第一章 概率论的基本概念(第3讲)

第一章 概率论的基本概念(第3讲)

第1.7节 事件的独立性
三、n个事件相互独立定义
n个事件 A1 , A2 , A3 ,..., An 相互独立的定义为:
P( Ai Aj ) = P( Ai )P( Aj ), i < j, i, j = 1,2,..., n P( Ai Aj Ak ) = P( Ai )P( Aj )P( Ak ), i < j < k, i, j, k = 1,2,..., n ... P( A1 A2 ...An ) = P( A1 )P( A2 )...P( An )
解: (1)设A=甲中, B=乙中, C=目标被击中, 所求
P(A|C)=P(AC)/P(C) =P(A)/[P(A)+P(B)-P(A)P(B)]
(C=A∪B)
=0.6/0.8=3/4
第1.7节 事件的独立性
二、三个事件相互独立定义
对于三个事件 A, B, C 的相互独立定义为: P ( AB ) = P ( A ) P ( B ) P ( AC ) = P ( A ) P (C ) P ( BC ) = P ( B ) P (C ) P ( ABC ) = P ( A ) P ( B ) P (C )
C
k n
pk q n−k
(k
=
0,1,L, n)
P( A1 A2 ...Ak Ak+1 Ak+2 ...An ) = pkqn−k (前k次成功)
第1.8节 独立试验序列
二、考察概率
(2) 第 k 次试验首次“成功”的概率为
qk−1 p(k = 0,1,2,L)
第1.8节 独立试验序列
三、例题:Leabharlann 第1.9节 几何概率和概率的数学定义

概率

概率

二、乘法公式
设A、B,P(A)>0,则 P(AB)=P(A)P(B|A). (1.6.2)
式(1.6.2)就称为事件A、B的概率乘法公式。 式(1.6.2)还可推广到三个事件的情形: P(ABC)=P(A)P(B|A)P(C|AB). 一般地,有下列公式: (1.6.3)
P(A1A2…An)=P(A1)P(A2|A1)...P(An|A1…An-1).
2 P( A1 ) 5
3 P( A2 | A1 ) 6
例1.6:在盒子中有十个相同的球,分别标为
号码1、2、…、10,从中任取一球,求此球的号 码为偶数的概率。
三、古典概型的几类基本问题
复习:排列与组合的基本概念 乘法公式:设完成一件事需分两步,第一步有n1 种方法,第二步有n2种方法,则完成这件事共有n1n2种 方法。 加法公式:设完成一件事可有两种途径,第一 种途径有n1种方法,第二种途径有n2种方法,则完 成这件事共有n1+n2种方法。
Y=x+15 60 15 15 60
m( A) 60 2 45 2 7 P( A) 2 m( S ) 16 60
Y=x-15
三、几何概率的基本性质
(1)0 P(A) 1; (2)P( S)=1;P( )=0; (3)若,A1,A2,…An…两两互不相容,则
P( An) P( An ) (可列可加性)。
E1: 抛一枚硬币,分别用“H” 和“T” 表示出正面和反面; E2: 将一枚硬币连抛三次,考虑正反面出现的情况;
E3:将一枚硬币连抛三次,考虑正面出现的次数; E4:掷一颗骰子,考虑可能出现的点数; E5: 记录某网站一分钟内受到的点击次数; E6:在一批灯泡中任取一只,测其寿命; E7:任选一人,记录他的身高和体重 。

事件的独立性和伯努利试验

事件的独立性和伯努利试验

n
n
n
P C P( Ak Bk )
P(
Ak
)P(Bk
)
(
6 25
)n
Cnk
Cnk n
(
6 25
)n
Cn2n
.
k 0
k 0
k 0
谢谢聆听
定义 1.7 设 A, B,C 是三个事件,如果有 P(AB) P(A)P(B) , P(AC) P(A)P(C) , P(BC) P(B)P(C) ,
则称事件 A, B,C 两两独立,若同时还有 P(ABC) P(A)P(B)P(C) ,
则称事件 A, B,C 相互独立.
注:相互独立的事件一定是两两独立的,反之不成立.
定理 1.5 在 n 重伯努利试验中,设每次试验中事件 A 发生的
概率为 p (0 p 1) , 则在 n 次试验中,事件 A 恰好发生 k 次的
概率为
Pn (k) Cnk pk (1 p)nk , k 0, 1, , n .
证明 记 Ai {第 i 次试验中事件 A 发生} , i 1, 2, , n .在 n
1 2

1 P( A1A2 ) P( A1A3) P( A2 A3) 4 .
由于
P( A1A2
)
1 4
P( A1)P(
A2
)
,
P( A1A3)
1 4
P(
A1)P( A3)
,
P( A2
A3 )
1 4
P( A2
)P(
A3 )
,
因而 A1, A2 , A3 三个事件两两独立.
又知
P( A1A2
A3 )
一般地, 任意 n 个事件 A1, A2 , , An ,若对任意的 k (1 k n ) 个事件 Ai1 , Ai2 , , Aik , 1 i1 i2 ik n ,都有

概率论教学课件第一章1.7事件的独立性与伯努利概型

概率论教学课件第一章1.7事件的独立性与伯努利概型

1 P( A)
P( AB) P( A)P(B) A与B相互独立 8
P( A) 0 A与任何事件B都相互独立; 2º
P( A) 1 A与任何事件B都相互独立.
和 都与任何事件相互独立. 证 关于第一个蕴涵式.由 P( A) 0 及概率的 单调性知 P( AB) 0 , 从而
P(AB) P(A)P B .
1
一、事件的独立性
两个事件相互独立是指: 其中一个事件的发现正面”,B=“第二次出现反面”.
显然,A的发生不影响B的发生,反之亦然. 因此,A与B相互独立.
2
上述意思翻译成概率语言即为
P B A P(B) 且 P A B P(A).
证 假设 A 与 B 相互独立,则 P(AB) P( A)P B , 从而 P(AB) P(A) P AB P(A) P A P B P(A)[1 P B] P A P(B)
这证明了 A 与 B 相互独立. 由已证明结论可证: A 与 B , A 与 B 也分别相互独立.
12
例1.28 甲、乙两射手彼此独立地向同一目标 各射击一次,甲射中目标的概率为0.8,乙射中目 标的概率为0.7,问目标被击中的概率是多少?
而A与B互不相容 AB , 前者的定义与概率
有关,后者的定义没有借助概率.
10
事件相互独立与互不相容的关系
P(A) 0, P(B) 0
若事件A与B互不相容,则事件A与B一定不相互独立. 换句话说,若事件A与B相互独立,则事件A与B一定不是互不相容.
11
4º 若 A 与 B 相互独立,则 A 与 B , A 与 B, A 与 B 亦相互独立.
7
(0 P(A) 1,0 P(B) 1)
A与B相互独立 P B A P B A

高中数学排列组合相临问题常用方法归类

高中数学排列组合相临问题常用方法归类

一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.四、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A )A.42 B.30 C.20 D.例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?(以数字作答)五、混合问题——先选后排法对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略.例8.(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有()种。

例9.(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有(C )A.24种B.18种C.12种D.6种七.相同元素分配——档板分隔法例10.把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不可能互不相容。 这是因为 A,B 互不相容,则 AB ,故 0 P( AB) P( A) P( B) ( P( A)>0,P( B)>0 ) 所以 A,B 不相互独立。
在实际应用中,往往根据问题的实际意义去判断两事 件是否独立. 例如:甲、乙两人向同一目标 射击,记 A={甲命中}, B={乙命 中},A与B是否独立?
② ③、设 A, B 独立
P ( AB ) 1 P ( AB ) 1 P ( A B ) 1 [ P ( A) P ( B ) P ( AB )]
1 [ P( A) P( B) P( A) P( B)] [1 P( A)][1 P( B)] P( A) P( B) ,则 A, B 独立
P(AB)=P(A) P(B)
用P(AB)=P(A) P(B)刻划独立性,比用:
P(A|B) = P(A) 或 P(B|A) = P(B) 更好,它不受P(B) > 0或P(A) > 0的制约.
一、两个事件的相互独立性
1、设 A, B 是两个随机事件,若
P( AB) = P( A) P( B) ,
发生没有影响,它说明了独立性的内在意义。
(3)下列各组事件的独立性是等价的:
A, B . ① A, B ;② A, B ;③ A , B ;④
证明:① ②、设 A, B 独立
P ( AB ) P ( A) P ( AB ) P ( A) P ( A) P ( B )
P ( A)[1 P ( B )] P ( A) P ( B ) ,则 A, B 独立。
例1、设A、B为互斥事件,且P(A)>0,P(B)>0, 下面四个结论中,正确的是:
1. P(B|A)>0 3. P(A|B)=0
2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
例2、设A、B为独立事件,且P(A)>0,P(B)>0, 下面四个结论中,正确的是:
1. P(B|A)>0 3. P(A|B)=0
第1-7节 事件的相互独立性
先看一个例子: 将一颗均匀骰子连掷两次, A={第二次掷出6点}, 设 B={第一次掷出6点},
显然 P(A|B)=P(A) P( A) P( A | B) 说明:事件B发生与否对A的发生没 有影响,这时称事件A、B独立。 由乘法公式知,当事件A、B独立时,有:
P(AB)=P(B)P(A|B)
例 1 设 A, B 独立,且 P( A) 0 , P( A ) 0 ,则
P( B) P( B | A) P( B | A ) . 证明:因 A, B 独立,则 A , B 也独立,又 P( A) 0 , P(A) P( B | A ) .
则称 A, B 相互独立。 例、 从一副不含大小王的扑克牌中任取一张,记
A={抽到K}, B={抽到的牌是黑色的}
问事件A、B是否独立?
解:由于 P(A)=4/52=1/13,
P(B)=26/52=1/2
P(AB)=2/52=1/26 可见, P(AB)=P(A)P(B) 这说明事件A、B独立. B, A 相互独立。 【注 1】显然, A, B 相互独立 【注 2】当 P( A)>0,P( B)>0 时,若 A,B 互不相容,则 A,B 一定不是相互独立的。或若 A,B 相互独立,则 A,B
2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
2、性质
与任意事件 A 相互独立. (1) 必然事件 、不可能事件 证明: P(A) P( A) 1 P( A) P() P( A)
P(A) P() 0 0 P( A) P() P( A)
(2) 设A、B是两个随机事件,则: P( B) P( B | A) . (P( A) 0 ) A, B 独立 P( A) P( A | B) . (P( B) 0 ) A, B 独立 证明:因为 P( A) 0 ,
P( AB) P( A) P( B) A, B 独立 P ( AB ) P( B) P( B) P( B | A) P ( A)
同理: 因 P( B) 0 ,
P( AB) P( A) P( B) A, B 独立 P ( AB ) P ( A) P( A) P( A | B) P( B) 【注 3】 P ( A) P ( A | B ) 说明:事件 B 发生与否对 A 的
例 2、设 P( B | A) P( B | A) ,则 A, B 独立.
证明:显然 P( A) 0 , P ( A ) 0 ,那么
P ( B ) P ( A) P ( B | A ) P ( A ) P ( B | A ) [ P ( A) P ( A )] P ( B | A) P ( B | A) ,
“甲命中”并不影响“乙命中” ,故认为A、B独立 . 又如:一批产品共n件,从中抽取2件,设 Ai={第i件 是合格品} (i=1,2). 若抽取是有放回的, 则A1与A2独立 ( 因为第二次抽取的结果不受第一次抽取的影响 ) .
若抽取是无放回的,则A1与A2不独立 ( 因为第二次 抽取的结果受到 第一次抽取的影响 ).
③ ④设 A, B 独立
P( AB ) P( A) P( AB) P( A) P( A) P( B) P( A)[1 P( B)] P( A) P( B ) , 则 A, B 独立。
④ ①设 A, B 独立
P( AB) 1 P( AB) 1 P( A B ) 1 [ P( A) P( B ) P( AB )] 1 [ P( A) P( B ) P( A) P( B )] [1 P( A)][1 P( B )] P( A) P( B )
相关文档
最新文档