六年级下册数学《比例的应用》专项典型考点试题(含答案)

合集下载

六年级数学下册第四单元:比例的应用题专项练习一(解析版)人教版

六年级数学下册第四单元:比例的应用题专项练习一(解析版)人教版

六年级数学下册典型例题系列之第四单元:比例的应用题专项练习一(解析版)1.(2019·河北沧州·六年级期末)一堵墙,量得25层砖高1米50厘米,这堵墙有150层砖。

这堵墙高多少米?【解析】解:设这堵墙高x 米,1米50厘米 1.5=米1.525150x = 25 1.5150x =⨯1.515025x ⨯= 9x =答:这堵墙高9米。

2.(2021·河北保定·小升初真题)数学兴趣小组的同学测得一座塔的影长是22.5米,同时把一根1米长的标竿直立在地上,测得影长0.9米。

这座塔高多少米?(用比例解)【解析】解:设这座塔高x 米。

x ∶22.5=1∶0.90.9x =22.50.9x ÷0.9=22.5÷0.9x =25答:这座塔高25米。

3.(2021·河南·中牟县教育体育局教学研究室六年级期末)2020年我国正式进入5G 时代。

目前5G 正以更快的速度、更稳定的连接与更大的容量融入各行各业。

小明原来用4G 下载电影《流浪地球》需要8分钟,而他现在用5G 下载这部电影所用的时间与用4G 下载所用时间的比是1∶100。

那么他用5G 下载这部电影要用多少秒?(用比例解)【解析】解:设他用5G下载这部电影要用x秒。

8分钟=480秒x∶480=1∶100100x=480x=480÷100x=4.8答:他用5G下载这部电影要用4.8秒。

4.(2021·广东肇庆·小升初真题)一批啤酒用载重8吨的汽车运,需要15辆,如果改用载重10吨的汽车运,需要多少辆?(用比例解)【解析】解:设如果改用载重10吨的汽车运,需要x辆。

10x=8×1510x=120解得x=12答:需要12辆。

5.(2021·广东河源·小升初真题)用500g海水可以晒15g海盐,照这样计算,用10吨海水可以晒多少g海盐?(用比例的方法解答)【解析】10吨=10000千克解:设10000千克海水可以晒x千克海盐。

六年级下册数学《比例的应用》专项典型考点试题(含答案)

六年级下册数学《比例的应用》专项典型考点试题(含答案)

六年级下册数学《比例的应用》专项典型考点试题一、单选题1.求未知数x.1.2∶x=6 x=( )A. 16B. 0.2C.D. 52.求未知数x.x∶12.8=10∶8x=( )A. 16B. 0.2C.D. 53.用一个放大10倍的放大镜来观察一个30度的角,则看到的角()A. 大小不变B. 缩小了100倍C. 放大了100倍4.求未知数x.x∶=x=( )A. 16B. 0.2C.D. 5二、判断题5.判断对错.()解比例时,未知内项x等于两个外项的积乘已知内项的倒数。

6.判断对错()三、填空题7.X=________8.X=________9.解比例:3.6:5.4=15:x,则x=________10.解比例:x:51=30:17,则x=________11.X=________四、解答题12.解比例:(1)3.6:9=10:x(2)5.5:2.5=x:2013. 求未知数.(1)=5:(2)1 :0.26=x:15(3)4 :1 =2 :(1﹣x)五、综合题14.求出下列x的值(1)7:2=28:x(2)=(3):3=x:(4):x= :.六、应用题15.解比例。

① ② ③ ④参考答案一、单选题1.【答案】B2.【答案】A3.【答案】A4.【答案】C二、判断题5.【答案】正确6.【答案】正确三、填空题7.【答案】8.【答案】9.【答案】22.510.【答案】9011.【答案】4四、解答题12.【答案】(1)解:3.6:9=10:x 3.6x=9×10 x=90÷3.6 x=25 (2)解:5.5:2.5=x:20 2.5x=20×5.5 2.5x=110 x=44 13.【答案】(1)解:=5:,=5÷ ,=5× ,×8=17.5×8,x=140(2)解:1 :0.26=x:15,0.26x=1 ×15,0.26x=16.25,x=62.5(3)解:4 :1 =2 :(1﹣x),4 ×(1﹣x)=1 ×2 ,1﹣x= × × ,1﹣x= ,x=五、综合题14.【答案】(1)解:7:2=28:x7x=2×287x=56x=8(2)解:=2x=1.2×52x=6x=3(3)解::3=x:3x= ×x=(4)解::x= :x= ×x=x=六、应用题15.【答案】① ② 0.75③0.64 ④1050。

六年级数学下册试题-比例的应用人教版含答案

六年级数学下册试题-比例的应用人教版含答案

比例的应用【运用比例解决问题】(2019﹒天河区模拟)晴晴全家“五一”到中山公园游玩,拍了许多照片,她买了一本相册,如果每页放6张照片,刚好放16页,现在晴晴打算每页只放4张,25页够放下这些照片吗?(用比例解)【考点】比例的应用.用比例解决问题【分析】根据照片的数量是一定的,每页放相片的张数×放照片的页数=照片的数量(一定),由此判断每页放相片的张数与放照片的页数成反比例,设出未知数,列出比例解答即可.【解答】解:设每页只放4张,可以放x 页,4x =6×16,x =6×164, x =24,因为25>24,所以25页够放下这些照片,答:25页够放下这些照片.【点评】解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.例2 (2019春﹒法库县期末)淘气和笑笑收集的邮票张数的比是3:5.淘气收集了36张邮票,笑笑收集了多少张邮票?【用比例解】【考点】比例的应用.比例的应用【专题】比和比例应用题.【分析】已知淘气和笑笑收集的邮票张数的比是3:5.淘气收集了36张邮票,设笑笑收集了x 张邮票,据此列比例解答.【解答】解:设笑笑收集了x 张邮票,3:5=36:x3x =5×36x =5×363x =60.答:笑笑收集了60张邮票.【点评】此题考查的目的是理解掌握比例的意义、比例的基本性质及应用.例3 一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。

如果要4小时到达,每小时要行多少千米?(1)这道题里的路程是一定的,________和________成_______比例。

所以两次行驶的________和________的________________是相等的。

(2)如果设每小时需要行驶X 千米答:每小时需要行驶 千米。

(3)如果把例2中的第三个已知条件和问题互换一下:一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。

精选练习六年级下册 正比例、反比例应用题专项训练 含答案解析

精选练习六年级下册 正比例、反比例应用题专项训练 含答案解析

正比例、反比例应用题一、应用题1.小兰的身高1.5m,她的影长是2.4m。

如果同一时间同一地点测得一棵树的影子长4米,这棵树有多高?2.一间房子要用方砖铺地,用边长5分米的方砖需用2000块,如果改用边长是4分米的方砖,需用多少块?(用比例解)3.用同样的砖铺地,铺18平方米要用618块砖.如果铺地24平方米,要用多少块砖?(用比例知识来解)4.测量小组要测量一棵树的高度,先量得树的影子长12米,接着在树的附近直立了一根长2米的竹竿,量得竹竿的影子长1.2米.这棵树的高度是多少米?5.王师傅完成一批零件,计划每天加工240个,20天完成。

实际每天多加工60个,多少天完成任务?(用比例知识解答)6.青艺农场收割小麦.前6天收割了114公顷,剩下152公顷.(1)照前几天的工作效率,剩下的还要多少天才能完成?(用比例解)(2)前几天收割的比后几天收割的少百分之几?(3)每公顷平均收小麦7.5吨,这个农场用载重5吨的卡车运回全部小麦,需要运多少次?7.小华的身高是1.6米,他的影长是2.4米.如果在同一时间、同一地点测得一棵树的影长为6米,这棵树有多高?8.市政工程队铺一条路,原计划每天铺0.6千米,24天完成.实际每天铺0.8千米,实际用多少天完成?9.给学校教务处办公室铺地砖,原计划选用3分米的方砖,需要960块;后来实际选用了4分米的方砖铺地,实际用了多少块4分米的方砖?10.甲乙两地相距360千米,一辆汽车从甲地到乙地计划7小时行完全程,汽车时间234….(小时)路程100150200….(千米)4.5千米,20天完成,实际每天修6千米,实际几天可修完?(用比例解)12.一辆汽车3小时行了135千米,照这样计算,行驶315千米需要几小时?(用比例解)13.一辆汽车从甲地出发,每小时行45千米,4小时到达乙地.如果每小时行60千米,几小时可到达乙地?(用比例解)14.(2015•邹城市)一艘轮船从甲港开往乙港,去时顺水,每小时行24千米,15小时到达.返回时逆水,速度降低了25%,多少小时返回甲港?(用比例解)15.用边长是40厘米的方砖给教室铺地需500块,如果改用边长是50厘米的方砖铺地,可节省多少块?16.六年级甲、乙、丙三个班植树,任务分配是:甲班要植三个班总棵数的40%,乙、丙两班植树棵数的比是4:3.当甲班植了200棵树时,正好完成三个班植.求丙班植树多少棵?树总棵数的2717.一间房子要用方砖铺地,用边长是5分米的方砖需要400块,如果改用边长是4分米的方砖,需要多少块?(用比例解)18.育美小学的六年级同学参加军校的行军训练,3小时行了15千米.照这样计算,再行17.5千米就可到达目的地,到达目的地还要行几小时?(用比例解) 19.A、B两地相距360km,一辆汽车从甲地到乙地,原计划每小时行90km,实际这辆汽车是按照下表的速度行驶的.问这辆汽车能否在原计划时间内到达目的时间(h)234…10…路程(km)100150200…500…平方米的客厅要用87.5块,那么18平方米的卧室要用多少块?21.印刷厂用一批纸装订英语练习本.如果每本36页,能订4000本,如果每本32页,能订多少本?车厢种类车厢节数每节车厢可乘人数硬座7108硬卧1678软卧43423.一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如果改用边长是4分米的方砖,需用多少块?(用比例解)24.在春游活动中,我班共创建了8个活动小组,每组5人。

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项-比例解决问题1.一个精密零件,长5厘米,画在图纸上长0.4米.这张图纸的比例尺是多少?2.填空并按要求作图。

(1)以AB为轴,将三角形ABC旋转一周能形成________。

(填几何体名称)(2)在适当的位置按2∶1的比画出三角形ABC放大后的图形。

(3)在适当的位置按1∶2的比画出长方形缩小后的图形。

3.在一幅比例尺是1∶4000000的地图上量得甲、乙两地的距离是16厘米。

若画在比例尺是1∶8000000的地图上,两地间的图上距离是多少厘米?4.画一画,填一填。

(1)按3∶1的比画出图形A放大后得到的图形B。

(2)按1∶2的比画出图形B缩小后得到的图形C。

我发现:放大或缩小前后的图形()变了,但()没有变,而且图形各部分长度是按一定的比变化的。

5.在一张比例尺是1∶150的建筑图纸上,量得一座大楼的长是6分米,这座大楼的实际长与宽的比是3∶1,这座大楼的实际宽是多少米?6.下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。

(单位:分米)12.根据图中提供的信息,完成下列问题。

(1)自来水厂要从水库取水,取水管道怎样铺最短,请在图中画出来。

(2)自来水厂到城区的送水管道经测算最短是2000米,请你测算:自来水厂到水库的取水管道最短需多少米?13.在一幅地图上,用5厘米长的线段表示实际距离100千米,这幅地图的比例尺是多少?如果甲市至乙市的铁路线路长150千米,那么这段铁路线路在这幅地图上的长度是多少厘米?14.江苏省云龙湖景区杏花坞广场是人们夏天避暑纳凉的佳处。

广场绿地面积与铺装面积的比是6∶5,其中铺装面积共5000平方米,绿地面积有多少平方米?15.甲乙两城相距150千米,在一幅地图上量得甲乙两城之间的距离是5厘米,同时在这幅地图上量得乙丙两城之间的距离是8厘米。

乙丙两城之间的实际距离是多少千米?20.下图中A点是游乐场所在的位置,B点是电影院所在的位置,两地实际距离相距2千米。

比例应用题(专项训练)数学六年级下册人教版

比例应用题(专项训练)数学六年级下册人教版

比例应用题(专项训练)20232024学年数学六年级下册人教版典例分析一.工程队修一段公路,原计划每天修4.8千米,18天修完。

实际提前2天修完,实际每天修多少千米?【答案】5.4千米【分析】根据题意可知:工作总量是一定的,工作效率和工作时间成反比例关系,设实际每天修x千米,据此列比例解答。

【详解】解:设实际每天修x千米。

(18-2)x=4.8×1816x=86.4x=86.4÷16x=5.4答:实际每天修5.4千米。

【点睛】明确工作总量一定,工作效率和工作时间成反比例关系,据此列出比例是解答本题的关键。

典例分析二.如图,学校大门在孔子雕像的正东方240米处。

1号教学楼在孔子雕像北偏东45°的200米处。

(1)分别计算出学校大门、1号教学楼到孔子雕像的图上距离。

(2)在图纸上画出学校大门和1号教学楼的位置。

【答案】(1)学校大门6厘米;1号教学楼5厘米(2)见详解【分析】(1)根据进率“1米=100厘米”以及“图上距离=实际距离×比例尺”,分别求出学校大门、1号教学楼到孔子雕像的图上距离。

(2)以图上的“上北下南,左西右东”为准,在孔子雕像的正东方画6厘米长的线段,即是学校大门;在孔子雕像的北偏东45°方向画5厘米长的线段,即是1号教学楼。

【详解】(1)240米=24000厘米24000×14000=6(厘米)200米=20000厘米20000×14000=5(厘米)答:学校大门到孔子雕像的图上距离是6厘米,1号教学楼到孔子雕像的图上距离是5厘米。

(2)如图:【点睛】本题考查比例尺的应用、根据比例尺画图以及根据方向、角度和距离确定物体的位置。

典例分析三.旗杆有多长?(1)操场上,同学们正在阳光下测量不同长度的竹竿、木棒、大树的长度及它们的影长,测量数据如表:实际长度(米)影长(米)实际长度与影长的比值跟踪训练1.在比例尺是1∶400000的地图上量得甲、乙两地的距离是6厘米。

人教版六年级下学期数学 比例的应用 完整版例题+答案解析

人教版六年级下学期数学 比例的应用 完整版例题+答案解析

比例的应用★知识概要1、比例尺1)数字比例尺:图上距离与实际距离的比。

前项是图上距离,后项是实际距离。

前项和后项的单位相同。

只能表示距离的比。

2)线段比例尺可以直观看出图上一厘米代表的实际距离。

2、正比例和反比例的应用:在实际问题中,两个呈比例的量,可以用比例的知识来解决。

1)两个成正比的量:比值相等列出比例方程。

2)两个成反比的量:乘积相等列出方程。

★精讲精练例1、(1)、化简。

20kg:10g = ___2000___: ____1____6 m : 120 cm = ___5___:____1____5cm: 250km=____1____:____500000____(2)、将线段比例尺化为数字比例尺0 20 40 60km1:2000000演练1、(1)、化简。

20km:15cm = ___4000____: ____3____6 cm : 150 m = ___1____:____2500____5cm: 24km=____1____:____480000____(2)、将线段比例尺化为数字比例尺0 30 60 90km1:3000000例2、(1)填表(2)一幅地图的比例尺为1 : 20000000,小芳在地图上量得广州到上海的 某条线路全长为7.5厘米。

那么广州到上海的这条线路实际距离是多少千米?实际距离:7.5x200=1500(千米)演练2、比例尺 图上距离 实际距离1:2000000 5cm 100km 15:17.5cm 5mm 1:7500002cm 15km(2)一幅地图的比例尺为 1 : 5000000,小新在地图上量得北京到上海的铁 路长度是29厘米。

一辆高速动车从北京南站出发,经过5小时到达 上海,这辆高速动车的时速是多少?实际距离:29÷50000001=145000000(厘米)=1450(千米) 速度:1450÷5=290(千米/小时)1599m30cm1:3000000例3、(1)学校篮球场平面图的比例尺为1 : 250,工程师在平面图上量得篮球场的长为11.2厘米,宽为6厘米。

北师大版六年级下册数学第二单元 比例应用题专题训练(含答案)

北师大版六年级下册数学第二单元 比例应用题专题训练(含答案)

北师大版六年级下册数学第二单元比例应用题专题训练1.明明妈妈有一张站在梅花树下的全身照,照片上量得妈妈高3cm,梅花树高8cm,妈妈实际身高1.62m。

你能算出这棵梅花树的实际高度是多少吗?2.一个长方形零件,画在比例尺是20∶1的图纸上,量得图上周长是36cm,它的长与宽的比是5∶4,这个零件的实际面积是多少?3.在比例尺为3∶1的设计图上,量得精密零件的长为105毫米,这种精密零件的实际长度是多少?4.学校举行四驱车模比赛。

小强的车模速度为480米/分,跑完全程用了5分钟。

小瑞的车模跑完全程比小强的多用了1分钟,他的车模速度是多少?5.在同一张地图上,量得甲乙两地的图上距离是40厘米,乙丙两地的距离是50厘米,已知甲乙两地的实际距离是8千米,乙丙两地的实际距离是多少千米?6.恒大12号楼的实际高度是35m,它的高度与模型高度之比是500:1,模型的高度是多少厘米?(用比例知识解答)7.汽车厂按1∶20的比例生产了一批汽车模型。

(1)一辆轿车的模型长25.6厘米,它的实际长度是多少厘米?(2)一辆公共汽车长12.3米,模型车的长度是多少米?8.在一张比例尺是1:15000000的地图上,量得甲地到乙地的距离是3cm。

则两地间的实际距离是多少千米?一列火车从甲地到乙地用了3小时,那么火车的平均速度是多少?9.在比例尺为1:5000的图纸上,画了一个边长4厘米的正方形花坛,花坛的实际面积是多少公顷?10.在一幅比例尺是1:2000000的地图上,量得甲、乙两个城市之间高速公路的距离是4cm。

在另一幅比例尺是1:4000000的地图上,这条公路的图上距离是多少?(用比例解)11.运输公司的一辆汽车从甲地往乙地运送物资,原计划每小时行75千米,4小时到达。

现在情况有所变化,需要3小时到达,每小时要行多少千米?(用比例解)12.工程队修一条水渠,每天工作6小时,12天可以完成。

如果工作效率不变,每天工作8小时,多少天可以完成任务?(用比例解)13.工程队修一条水渠,每天工作8小时,15天可以修完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级下册数学《比例的应用》专项典型考点试题
一、单选题
1.求未知数x.1.2∶x=6 x=( )
A. 16
B. 0.2
C.
D. 5
2.求未知数x.
x∶12.8=10∶8
x=( )
A. 16
B. 0.2
C.
D. 5
3.用一个放大10倍的放大镜来观察一个30度的角,则看到的角()
A. 大小不变
B. 缩小了100倍
C. 放大了100倍
4.求未知数x.
x∶=
x=( )
A. 16
B. 0.2
C.
D. 5
二、判断题
5.判断对错.()
解比例时,未知内项x等于两个外项的积乘已知内项的倒数。

6.判断对错()
三、填空题
7.
X=________
8.
X=________
9.解比例:3.6:5.4=15:x,则x=________
10.解比例:x:51=30:17,则x=________
11.
X=________
四、解答题
12.解比例:
(1)3.6:9=10:x
(2)5.5:2.5=x:20
13. 求未知数.
(1)=5:
(2)1 :0.26=x:15
(3)4 :1 =2 :(1﹣x)
五、综合题
14.求出下列x的值
(1)7:2=28:x
(2)=
(3):3=x:
(4):x= :.
六、应用题
15.解比例。

① ② ③ ④
参考答案
一、单选题
1.【答案】B
2.【答案】A
3.【答案】A
4.【答案】C
二、判断题
5.【答案】正确
6.【答案】正确
三、填空题
7.【答案】
8.【答案】
9.【答案】22.5
10.【答案】90
11.【答案】4
四、解答题
12.【答案】(1)解:3.6:9=10:x 3.6x=9×10 x=90÷3.6 x=25 (2)解:5.5:2.5=x:20 2.5x=20×5.5 2.5x=110 x=44
13.【答案】(1)解:=5:,
=5÷ ,
=5× ,
=17.5,
×8=17.5×8,
x=140
(2)解:1 :0.26=x:15,
0.26x=1 ×15,
0.26x=16.25,
x=62.5
(3)解:4 :1 =2 :(1﹣x),
4 ×(1﹣x)=1 ×2 ,
1﹣x= × × ,
1﹣x= ,
x=
五、综合题
14.【答案】(1)解:7:2=28:x 7x=2×28
7x=56
x=8
(2)解:=
2x=1.2×5
2x=6
x=3
(3)解::3=x:
3x= ×
3x=
x=
(4)解::x= :
x= ×
x=
x=
六、应用题
15.【答案】① ② 0.75
③0.64 ④1050。

相关文档
最新文档