七年级数学-数轴上点所对应的数
七年级数学上册1.2.2 数轴-数轴上的动点问题 解答题专项练习十八(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习十八1.2.2 数轴-数轴上的动点问题1.点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离表示为AB,在数轴上A,B两点距离AB=|a﹣b|.已知数轴上两点A,B对应的数分别为-1,3.点P为数轴上一动点,其对应的数为x,A,B两点之间的距离是 .设点P在数轴上表示的数为x,则x与-4之间的距离表示为 ..若点P到点A、点B的距离相等,则点P对应的数为 .若点P到点A、点B的距离之和为8,则点P对应的数为 .现在点A以2个单位长度/秒的速度向右运动,同时点B以0.5个单位长度/秒的速度向左运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?2.如图,已知数轴上点B表示的为-5,点A是数轴上一点,且AB=12,动点P从点A出发,以每秒1个单位长度的速度沿数轴向右匀速运动,动点H从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(0t )秒.(1)写出数轴上点A表示的数;(2)当动点P,H同时从点A和点B出发,运动t秒时,点P表示的数;点H表示的数;(用含t的代数式表示)(3)动点P、H同时出发,问点H运动多少秒时追上点P?3.如图1,点A,B,O,C为数轴上四点,点A对应数a(a<﹣2),点O对应0,点C对应3,AB=2(AB表示点A到点B的距离).(1)填空:点C到原点O的距离,:点B对应的数.(用含有a的式子)(2)如图2,将一刻度尺放在数轴上,刻度尺上“6cm”和“8.7cm”分别对应数轴上的点O和点C,若BC=5,求a的值和点A在刻度尺上对应的刻度.(3)如图3,在(2)的条件下,点A以1单位长度/秒的速度向右运动,同时点C向左运动,若运动3秒时,点A和点C到原点D的距离相等,求点C的运动速度.4.点A在数轴上对应的数为3,点B对应的数为b,其中A、B两点之间的距离为5(1)求b的值(2)当B在A左侧时,一点D从原点O出发以每秒2个单位的速度向左运动,请问D运动多少时间,可以使得D到A、B两点的距离之和为8?(3)当B在A的左侧时,一点D从O出发以每秒2个单位的速度向左运动,同时点M从B出发,以每秒1个单位的速度向左运动,点N从A出发,以每秒4个单位的速度向右运动;在运动过程中,MN的中点为P,OD的中点为Q,请问MN-2PQ的值是否会发生变化?若发生变化,请说明理由;如果没有变化,请求出这个值.5.我们知道:在数轴上,点M表示实数为x,点N表示实数为y,当x<y 时,点M,N之间的距离记作:MN =Y-X;当x>y时,点M,N之间的距离记作:MN = x-y,例如:x=-3,y=2,则MN =2-(-3)=5.如图,点A,B,C是数轴上从左向右依次排列的三点,且AC=17,BC=11,点B表示的数是-6.(1) 点A表示的数是,点C表示的数是;(2) 动点M,N分别从A,C同时出发,点M沿数轴向右运动,速度为1个单位长度∕秒,点N沿数轴向左运动,速度为2个单位长度∕秒,运动t秒后:①点M表示的数,点N表示的数;(用含t的代数式表示)②求当t为何值时,点M,N,B三点中相邻两个点之间的距离相等.(M、N、B三点中任意两点不重合)6.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,2-,3-观察数轴,B,C两点之间的距离为_______;与点A的距离为3的点表示的数是_______;(2)若将数轴折叠,使得A点与C点合,则与B点重合的点表示的数是______;若此数轴上M,N两点之间的距离为20(M在N的左侧),且A点与C点重合时,M点N点也恰好重合,则M,N两点表示的数分别是:M:_______,N_______.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P______,Q______.(用含m,n的式子表示这两个数).7.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣2.5,﹣3观察数轴,B,C两点之间的距离为;与点A的距离为3的点表示的数是;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则MM两点表示的数分别是:M:,N:.(3)若数轴上P ,Q 两点间的距离为m (P 在Q 左侧),表示数n 的点到P ,Q 两点的距离相等,则将数轴折叠,使得P 点与Q 点重合时,P ,Q 两点表示的数分别为:P ,Q .(用含m ,n 的式子表示这两个数)8.定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是[],A B 的美好点.例如;如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[,]A B 的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距高是2,那么点D 就不是[,]A B 的美好点,但点D 是[,]B A 的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2.(1)点E ,F ,G 表示的数分别是3-,6.5,11,其中是[,]M N 美好点的是________;写出[,]N M 美好点H 所表示的数是___________.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,点P 恰好为M 和N 的美好点?9.如图,若点A 在数轴上对应的数为a ,点B 在数轴上对应的数为b ,且a ,b 满足|a +2|+(b ﹣1)2=0,点A 与点B 之间的距离表示为AB =|a ﹣b|. (1)求AB 的长;(2)若点C 在数轴上对应的数为83,在数轴上是否存在点P ,使得PA +PB =PC ?若存在,求出点P 对应的数;若不存在,说明理由;(3)在(1)、(2)的条件下,点A ,B ,C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和C 分别以每秒4单位长度和9个单位长度的速度向右运动,经过t 秒后,请问:AB ﹣BC 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其常数值.10.阅读理解:已知Q 、K 、R 为数轴上三点,若点K 到点Q 的距离是点K 到点R 的距离的2倍,我们就称点K 是有序点对[Q ,R]的好点. 根据下列题意解答问题:(1)如图1,数轴上点Q 表示的数为−1,点P 表示的数为0,点K 表示的数为1,点R 表示的数为2.因为点K 到点Q 的距离是2,点K 到点R 的距离是1,所以点K 是 有序点对[],Q R 的好点,但点K 不是有序点对[],R Q 的好点.同理可以判断:点P__________有序点对[],Q R 的好点,点R______________有序点对[],P K 的好点(填“是”或“不是”);(2)如图2,数轴上点M 表示的数为-1,点N 表示的数为5,若点X 是有序点对[],M N 的好点,求点X 所表示的数,并说明理由?(3)如图3,数轴上点A 表示的数为−20,点B 表示的数为10.现有一只电子蚂蚁C 从 点B 出发,以每秒2个单位的速度向左运动t 秒.当点A 、B 、C 中恰有一个点为其余两有序点对的好点,求t 的所有可能的值.11.如图,数轴上,点A 的初始位置表示的数为1.现点A 做如下移动:第1次点A 向左移动3个单位长度至点1A ,第2次从点1A 向右移动6个单位长度至点2A ,第3次从点2A 向左移动9个单位长度至点3A ,... ,按照这种移动方式进行下去,如果点n A 与原点的距离不小于20,求n 的最小值.12.如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动;同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒).()1当0.5=t 时,求点Q 到原点O 的距离;()2当 2.5t =时,求点Q 到原点O 的距离;()3当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.13.已知数轴上有 A 、B 、C 三点,分别表示有理数-26,-10,10,动点 P 从 A 出发,以每秒 1 个 单位的速度向终点 C 移动,设点 P 移动时间为 t 秒.(1)用含 t 的代数式表示 P 到点 A 和点C 的距离:PA= ,PC= (2)当点 P 运动到 B 点时,点 Q 从 A 点出发,以每秒 3 个单位的速 度向 C 点运动,Q 点到达 C 点后,再立即以同样的速度返回,当点 P 运动到点 C 时,P 、Q 两点运动停止, ①当 P 、Q 两点运动停止时,求点 P 和点 Q 的距离;②求当 t 为何值时 P、Q 两点恰好在途中相遇.14.如图,在数轴上A点表示的数是-8,B点表示的数是2.动线段4CD=(点D在点C的右侧),从点C与点A重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t秒.(1)①已知点C表示的数是-6,试求点D表示的数;②用含有t的代数式表示点D表示的数;(2)当2=时,求t的值.AC BD(3)试问当线段CD在什么位置时,AD BC+或AD BC-的值始终保持不变?请求出它的值并说明此时线段CD的位置.15.已知M、N在数轴上,M对应的数是-3,点N在M的右边,且距M点4个单位长度,点P、Q是数轴上两个动点:(1)写出点N所对应的数;(2)点P到M、N的距离之和是6个单位长度时,点P所对应的数是多少?(3)如果P、Q分别从点M、N同时出发,均沿数轴向同一方向运动,点P每秒走2个单位长度,点Q每秒走3个单位长度,3秒后,点P、Q之间的距离是多少?参考答案1.(1)4;(2) |x+4|;(3)1;(4) -3或5;(5)-0.2或4.6解析:(1)(2)在数轴上A、B两点之间的距离为AB= |a- b|,依此即可求解;(3)根据中点坐标公式即可求解;(4)分两种情况:点P在点A的左边,点P在点B的右边,进行讨论即可求解;(5)分两种情况:点A在点B的左边,点A在点B的右边,进行讨论即可求解. 详解:(1)A,B两点之间的距离是3-(-1)=4;(2)x与-4之间的距离表示为|x-(-4)|= |x+4|;(3)(-1+3)÷2= 1,∴故点P对应的数是1;(4)点P在点A的左边,x的值是-1-(8-4)÷2=-3;点P在点B的右边,x的值是3 +(8-4)÷2=5;故x的值是-3或5;(5)点A在点B的左边,(4-3)÷ (2-0.5)×2+(-1)=13,∴点A所对应的数是13点A在点B的右边,(4 +3) ÷(2-0.5)×2+(-1)=813;点A所对应的数是813.故点A所对应的数是13或813.点睛:本题主要考查了数轴上的基本性质,注意解题时会有两种情况,A在B的左边或者右边.2.(1)7;(2)7+t,2t-5;(3)12秒.解析:试题分析:(1)根据两点间距离公式可求出数轴上点A表示的数;(2)根据两点之间的距离公式可求点P表示的数与点H表示的数;(3)根据题意列出方程2t-5=7+t,求解即可.试题解析:(1)∵数轴上点B表示的数为-5,A是数轴上一点,且AB=12,∴AO=7,∴数轴上点A表示的数为:7;(2)点P表示的数7+t ,点H表示的数2t-5. (3)根据题意得:2t-5=7+t,解得t=12.答:点H运动12秒时追上点P.3.(1)3;a+2;(2)C对应3,点A在刻度尺上对应的刻度为2.4 cm;(3)C的速度是2 3单位长度/秒或43单位长度/秒.解析:试题分析:(1)根据两点间的距离解答即可;(2)根据两点间的距离解答即可;(3)根据题意列出方程解答即可.试题解析:(1)点C到原点O的距离3;点B对应的数a+2;(2)∵AB=2,BC=5,C对应3∴a=3﹣7=﹣4,∵刻度尺上“6cm”和“8.7cm”分别对应数轴上的点D和点C,又OC=3 ∴(8.7﹣6)÷3=0.9即个单位长度对应0.9cm,∵AC=7∴点A在刻度尺上对应的刻度8.7﹣0.9×7=2.4 cm;(3)3秒钟时点A对应﹣1①点C与点A关于原点对称点C的速度31233-=单位长度/秒;②点C与点A重合点C的速度3(1)433--=单位长度/秒;综上点C的速度是23单位长度/秒或43单位长度/秒.4.(1)8b或-2=;(2)t=1.75;(3)在运动过程中,MN-2PQ=4恒成立,理由详见解析.解析:(1)根据数轴上两点之间的距离公式即可求解.(2)根据运动速度可表达出D 点坐标,根据D 到A 、B 两点的距离之和为8,可知D 点在B 的左侧,根据两点之间的距离公式即可求解(3)根据运动速度可表达出M 、D 、N 点的坐标,根据中点公式求出P 、Q 坐标进而求出MN 、PQ 线段长即可求解. 详解:(1)由题意得:|3|5b -=,解得:8b 或-2=(2)当B 在A 左侧时,由(1)可知:b -2=,设点D 运动的时间为t 秒,则D 表示的数为-2t ,当D 到A 、B 两点的距离之和为8时,可得D 在B 左侧,且DB+DA=DB+DB+AB=2DB+5=8,故 DB=1.5,即-2-(-2t )=1.5,解得t=1.75(3) 在运动过程中,MN-2PQ=4恒成立,理由如下:当B 在A 左侧时,由(1)可知:b -2=,设点D 运动的时间为t 秒,则 D 表示的数为-2t ,M 表示的数为-2-t ,N 表示的数为3+4t ; 故MN 的中点P 表示的数为0.5+1.5t ,OD 的中点Q 表示的数为-t ; 则MN-2PQ=[(3+4t )-(-2-t )]-2[(0.5+1.5t)-(-t)] =5+5t-2(0.5+2.5t) =5+5t-1-5t =4 点睛:本题考查了实数与数轴,解题的关键是理解题意,学会用方程的思想思考问题.5.(1):12,:5A C - ;(2)①12t -+,52t -②5t = 5.6t = 5.75t =解析:(1)用点B 表示的数减去AB ,即可得出点A 表示的数;用点B 表示的数加上BC ,即可得出点C 表示的数;(2)①由用点A 表示的数加上AM ,即可得出点M 表示的数;用点C 表示的数减去CN ,即可得出点N 表示的数;②分三种情况讨论:当B 为中点时,(-12+t )+(5-2t )=2×(-6); 当N 为中点时,(-12+t )+(-6)=2×(5-2t ); 当M 为中点时,(5-2t ) +(-6)=2×(-12+t ); 分别求解即可.详解:解:(1)∵AC=17,BC=11∴AB=6∴点A 表示的数=-6-6=-12,点C 表示的数=-6+11=5(2)设运动时间为t 时,①AM=t,点M 表示的数=-12+t ,CN=2t ,点N 表示的数=5-2t②分三种情况讨论当B 为中点时,(-12+t )+(5-2t )=2×(-6),解得t=5;当N 为中点时,(-12+t )+(-6)=2×(5-2t ),解得t=5.6;当M 为中点时,(5-2t ) +(-6)=2×(-12+t ),解得t=5.75;答:当t 为5秒或5.6秒或5.75秒时,点M ,N ,B 三点中相邻两个点之间的距离相等. 点睛:本题考查了数轴上两点之间的距离,灵活运用距离公式是解题的关键.6.(1)1;4或-2(2)0;-11,9;(3);22mm n n -+ 解析:(1)由数轴可知BC 之间的距离;与点A 的距离为3的点表示的数分两种情况,利用两点之间的距离计算方法直接计算得出答案即可;(2)A 点与C 点重合,得出对称点为-,1,然后利用两点之间的距离计算方法列式计算得出答案即可;(3)根据(2)的计算方法,然后分别列式计算即可得解.详解:(1)B ,C 两点之间的距离为1;与点A 的距离为3的点表示的数是1+3=4或1-3=-2,故答案为:1;4或-2(2)与B 点重合的点表示的数是:1[1(2)]0-+---=;2020111,1922M N =--=-=-+= 故答案为:0;-11,9;(3),22m m P n Q n =-=+ 故答案为:;22mm n n -+. 点睛:本题主要考查数轴以及数轴上点之间的距离计算公式,难度较大,属于压轴题,熟练掌握点之间的距离计算公式是解题关键.7.(1)0.5,4或﹣2;(2)﹣1011,1009;(3)P =n ﹣2m ,Q =n+2m . 解析:(1)利用两点之间的距离计算方法直接计算得出答案,分点在A 的左边和右边两种情况解答(2)A 点与C 点重合,得出对称点为-1,然后根据两点之间的距离列式计算即可得解;(3)根据(2)的计算方法,然后分别列式计算即可得解.详解:(1)观察数轴可知:B 、C 两点之间的距离为﹣2.5﹣(﹣3)=0.5,与点A 的距离为3的点表示的数是1+3=4或1﹣3=﹣2.故答案为0.5,4或﹣2.(2)与点B 重合的点表示的数是:﹣1+[﹣1﹣(﹣2.5)]=0.5;M =﹣1﹣20202=﹣1011, N =﹣1+20202=1009; 故答案为﹣1011,1009.(3)根据题意,得P =n ﹣m 2,Q =n+m 2. 故答案为n ﹣m 2,n+m 2. 点睛:本题考查了数轴的运用.关键是利用数轴,涉及绝对值的性质,点到点之间的距离,折叠等知识,较为综合,根据数形结合求出答案,注意不要漏解..8.(1)G,-4或-16;(2)1.5或3或9解析:(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G 符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据美好点的定义,分情况分别确定P点的位置,进而可确定t的值.详解:解:(1)根据美好点的定义,结合图2,直观考察点E,F,G到点M,N的距离,只有点G 符合条件,故答案是:G.结合图2,根据美好点的定义,在数轴上寻找到点N的距离是到点M的距离2倍的点,点N 的右侧不存在满足条件的点,点M和N之间靠近点M一侧应该有满足条件的点,进而可以确定-4符合条件.点M的左侧距离点M的距离等于点M和点N的距离的点符合条件,进而可得符合条件的点是-16.故答案是:-4或-16.(2)根据美好点的定义,P,M和N中恰有一个点为其余两点的美好点分6种情况,第一情况:当P为【M,N】的美好点,点P在M,N之间,如图1,当MP=2PN时,PN=3,点P对应的数为2-3=-1,因此t=1.5秒;第二种情况,当P为【N,M】的美好点,点P在M,N之间,如图2,当2PM=PN时,NP=6,点P对应的数为2-6=-4,因此t=3秒;第三种情况,P为【N,M】的美好点,点P在M左侧,如图3,当PN=2MN时,NP=18,点P对应的数为2-18=-16,因此t=9秒;综上所述,t的值为:1.5或3或9.点睛:本题考查实数与数轴、美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.9.(1)3;(2)存在,113-或13-;(3)不变,值为43.解析:(1)先利用几个非负数的和为零,则每个数都为零,列式求出a,b的值,最后根据已知的关系式即可求出AB;(2)根据数轴上表示两点距离的方法设出P点代表的数字为x,再分别表示出对应的PA、PB、PC,最后代入关系式PA+PB=PC即可解答;(3)由于运动时间为t秒,A、B、C的运动方向和运动速度已知,利用路程=速度×时间可表示出AB和BC,再计算出AB﹣BC的值,再与运动前AB﹣BC的值比较即可得出结论,进而求出这个常数值.详解:解:(1)∵|a+2|+(b﹣1)2=0,又∵|a+2|≥0,(b﹣1)2≥0,∴a+2=0,b﹣1=0.∴a=﹣2,b=1.∵点A与点B之间的距离表示为AB=|a﹣b|,∴AB=|﹣2﹣1|=3答:AB的长为3;(2)存在点P,使得PA+PB=PC.设点P对应的数为x,当点P在点A的左侧时,即x<﹣2,∴PA=|﹣2﹣x|=﹣2﹣x,PB=|1﹣x|=1﹣x,PC=|83﹣x|=83﹣x.∵PA+PB=PC,∴﹣2﹣x+1﹣x=83﹣x.解得:x=﹣113.当点P在点A的右侧,点B的左侧时,即﹣2<x<1,∴PA=|﹣2﹣x|=x+2,PB=|1﹣x|=1﹣x,PC=|83﹣x|=83﹣x.∴x+2+1﹣x=83﹣x.解得:x=﹣13.当点P在点B 的右侧时,PA+PB>PC,不合题意.综上,点P对应的数为﹣113或﹣13;(3)AB﹣BC的值不随着时间t的变化而改变.由(1)知:AB=3,由(2)知:BC=83﹣1=53,∴AB﹣BC=43.∵点A以每秒1个单位长度的速度向左运动,同时,点B以每秒4单位长度的速度向右运动,∴AB=t+3+4t=5t+3.∵点B和C分别以每秒4单位长度和9个单位长度的速度向右运动,∴BC=(9﹣4)t+(83﹣1)=5t+53.∴AB﹣BC=(5t+3)﹣(5t+53)=43.∴AB﹣BC的值不随着时间t的变化而改变.∴AB﹣BC的值不会随着时间t的变化而改变且这个常数的值为43.点睛:本题主要考查了数轴两点之间的距离公式的应用,掌握根据数字的大小去掉绝对值符号,再结合已知条件列出方程并求解成为解答本题的关键.10.(1)不是;是;(2)3;(3)5秒或7.5或10秒或22.5秒或30秒或45秒;解析:可以根据好点的定义判断好点,这种新定义问题通常的解法是照猫画虎.详解:(1)PQ =12PR ,RP=2RK所以答案为:不是;是(2) 当点X 在点M 、N 之间,由MN=5-(-1)=6,XM=2XN,所以XM=4,XN=2,即点X 距离点M 为4个单位,距离点N 为2个单位,即点X 所表示的数为3,当点X 在点N 的右边,由MN=5-(-1)=6,XM=2XN ,所以XM=12,XN=6,即点X 距离点M 为12个单位,距离点N 为6个单位,即点X 所表示的数为11;(3)AB=10-(-20)=30,当点C 在点A 、B 之间,若点C 为有序点对[],A B 的好点,则CA=2CB ,CB=10,t=5(秒)②若点C 为有序点对[],B A 的好点,即CB=2CA ,CB=20, t=10(秒)③若点B 为有序点对[],A C 的好点或点A 为有序点对[],B C 的好点,即BA=2BC 或AB=2AC ,CB=15, t=7.5(秒)当点A 在点C 、B 之间,④点A 为有序点对[],B C 的好点,即AB=2AC ,CB=45,t=22.5(秒)②点C 为有序点对[],B A 的好点或点B 为有序点对[],C A 的好点,即CB=2CA 或BC=2BA ,CB=60,t=30(秒);③点A 为有序点对[],C B 的好点,即AC=2AB ,CB=90, t=45∴当经过5秒或7.5或10秒或22.5秒或30秒或45秒时,A 、B 、C 中恰有一个点为其余两有序点对的好点.点睛:正确理解好点的定义,要学会照猫画虎.11.13解析:序号为奇数的点在点A 的左边,各点所表示的数依次减少3,序号为偶数的点在点A 的右边,各点所表示的数依次增加3,找到此规律即可得到答案.详解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数为:132-=-;第二次点1A 向右移动6个单位长度至点2A ,则2A 表示的数为:264-+=;第三次点2A 向左移动9个单位长度至点3A ,则3A 表示的数为:495-=-结合点在数轴上运动的规律可知:对于n A ,如果n 为奇数,则该点表示的数是1n A -向负方向移动3个单位长度;如果n 为偶数,则该点表示的数是1n A -向正方向移动3个单位长度;所以当n 为奇数时,点n A 表示为111131322n n -+⎛⎫-+⨯=-⨯ ⎪⎝⎭;当n 为偶数,点n A 表示为132n +⨯; 由此规律可得到131413114=13=20=13=2222A A +-⨯-+⨯,, 所以若n A 与原点的距离不小于20,则n 的最小值为13n =.点睛:本题主要考查的是规律探索,能够找到点A 移动的规律是解题的关键.12.(1)6;(2)2;(3)点P 到原点的距离为2或6.解析:(1)求出AQ 的长度,再根据OQ OA AQ =-求解即可;(2)求出点Q 运动的距离,再根据OQ=点Q 运动的距离-OA 求解即可;(3)分两种情况:①Q 向左运动时;②Q 向右运动时,分别求出运动时间t ,即可求出OP 的长度.详解:(1)由题意得440.52AQ t ==⨯=∵8OA =∴826OQ OA AQ =-=-=;(2)由题意得,点Q 运动的距离是44 2.510t =⨯=∵8OA =∴102OQ OA =-=;(3)①Q 向左运动时,∵8OA =,4OQ =,∴4AQ OA OQ =-=,∴441t =÷=,∴212OP=⨯=;②Q向右运动时,OQ=,∵8OA=,4∴Q的运动距离是8412+=,∴运动时间是1243t=÷=,∴236OP=⨯=.综上,点P到原点的距离为2或6.点睛:本题考查了数轴上的动点问题,掌握数轴的特点是解题的关键.13.(1)t; 36-t;(2)①24;②t的值为:24或30.解析:(1)根据两点间的距离,可得P到点A和点C的距离;(2))①根据点P、Q的运动速度与时间来求其距离;②需要分类讨论:Q返回前相遇和Q返回后相遇.详解:解:(1)PA=t,PC=36-t;故答案是:t;36-t;(2)①BC的长度:10-(-10)=20,点P运动到点C的时间:20÷1=20,AC的长度:10-(-26)=36,∴P、Q两点的距离:3×20-36=24;②Q返回前相遇:3(t-16)=t,解得:t=24;Q返回后相遇:3(t-16)+t=36×2,解得:t=30.综上所述,t的值是24或30.点睛:本题考查了数轴,一元一次方程的应用.解题的关键是掌握数轴上两点之间的距离,解答(2)②题,对t进行分类讨论是关键.14.(1)①-2;②24t -;(2)6或2;(3)当线段CD 在线段AB 上时或当点B 在线段CD 内,AD BC +值保持不变,值为14,当线段CD 在点B 的右侧时AD BC -的值保持不变,值为14 解析:(1)①已知点C 表示的数是-6,4CD =(点D 在点C 的右侧),即可得到点D 的坐标;②点C 与点A 重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒. AC=2t,AD=2t+4,即可表示点D 表示的数;(2)先求出2AC t =,再分当点D 在点B 左侧和当点D 在点B 右侧讨论,列方程求解即可;(3)分当线段CD 在线段AB 上时(图1)或当点B 在线段CD 内时(图2)和当线段CD 在点B 的右侧时(图3)讨论,求出AD BC +或AD BC -的值即可得出结论.详解:解:(1)①已知点C 表示的数是-6,4CD =(点D 在点C 的右侧),∴点D 表示的数是-2;②∵点C 从与点A 重合的位置出发,以每秒2个单位的速度向右运动,运动时间为t 秒, ∴AC=2t,AD=2t+4,∴点D 表示的数2t+4-8=2t-4;(2)∵0t >且线段CD 移动的速度为每秒2个单位,∴2AC t =①当点D 在点B 左侧(图1)∵2AC BD =,∴()22224t t =--⎡⎤⎣⎦∴2t =②当点D 在点B 右侧(图2,3)∵2AC BD =,∴()22242t t =--⎡⎤⎣⎦∴6t =综上所述,6t =或2t =(3)①当线段CD 在线段AB 上时(图1)或当点B 在线段CD 内时(图2)AD BC +的值保持不变,且14AD BC AB CD +=+=②当线段CD 在点B 的右侧时(图3)AD BC -的值保持不变,且14AD BC AC CD BC AB CD -=+-=+=点睛:此题主要考查了数轴和一元一次方程的应用.正确的画出图形,进行分类讨论是解决问题的关键.15.(1)1;(2) 3.5-或2;(3)1或7解析:(1)根据数轴上两点之间的距离公式即可求解;(2)分两种情况:点P 在M 的左边、点P 在N 的右边,进行讨论即可求解;(3)分两种情况:P 、Q 均沿数轴向左运动、P 、Q 均沿数轴向右运动,进行讨论即可求解. 详解:解:(1)∵M 对应的数是3-,点N 在M 的右边,且距M 点4个单位长度∴341-+=∴点N 所对应的数是1.(2)设点P 对应的数为x∵M 、N 两点的距离为4,45∴点P 只能在M 、N 的两侧∴①当点P 在M 左侧时,有3x <- 则3131226PM PN x x x x x +=--+-=--+-=--=,即 3.5x =-;②当点P 在N 右侧时,有1x > 则3131226PM PN x x x x x +=--+-=+-+=+=,即2x =;∴综上所述,点P 所对应的数是 3.5-或2.(3)①当P 、Q 均沿数轴向左运动时∵点P 每秒走2个单位长度,点Q 每秒走3个单位长度∴3秒后,点P 向左走了6个单位长度、点Q 向左走了9个单位长度∴3秒后,点P 对应的数为369--=-,点Q 对应的数为198-=-∴3秒后,点P 、Q 之间的距离是()891---=;②当P 、Q 均沿数轴向右运动时∵点P 每秒走2个单位长度,点Q 每秒走3个单位长度∴3秒后,点P 向右走了6个单位长度、点Q 向右走了9个单位长度∴3秒后,点P 对应的数为363-+=,点Q 对应的数为1910+=∴3秒后,点P 、Q 之间的距离是1037-=;∴综上所述,3秒后,点P 、Q 之间的距离是1或7.点睛:本题考查了数轴上两点之间的距离、数轴上的动点问题,渗透了分类讨论、数形结合的数学思想,稍有难度,合理的进行分类讨论是解题的关键.。
第2章 有理数及其运算 ——数轴动点问题专题(二) 2021-2022学年北师大版 数学七年级上册

第2章有理数及其运算——数轴动点问题专题(二)1.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)若以B为原点,写出点A,D,C所对应的数,并计算p的值;(2)若原点O在图中数轴上点C的右边,且CO=1,求p的值.2.已知:数轴上A.B两点表示的有理数为a、b,且(a﹣1)2+|b+2|=0.(1)A、B各表示哪一个有理数?(2)点C在数轴上表示的数是c,且与A、B两点的距离和为11,求多项式a(bc+3)﹣|c2﹣3(a﹣c2)|的值;(3)小蚂蚁甲以1个单位长度/秒的速度从点B出发向其左边6个单位长度处的一颗饭粒爬去,3秒后位于点A的小蚂蚁乙收到它的信号,以2个单位长度/秒的速度也迅速爬向饭粒,小蚂蚁甲到达后背着饭粒立即返回,与小蚂蚁乙在数轴上D点相遇,则点D表示的有理数是什么?从出发到此时,小蚂蚁甲共用去多少时间?3.如图,数轴上A、B、C三点表示的数分别为a、b、c,且a、b满足|a+8|+(b﹣12)2=0.(1)则a=,b=;(2)动点P从A点出发,以每秒10个单位的速度沿数轴向右运动,到达B点停留片刻后立即以每秒6个单位的速度沿数轴返回到A点,共用了6秒;其中从C到B,返回时从B到C(包括在B点停留的时间)共用了2秒.①求C点表示的数c;②设运动时间为t秒,求t为何值时,点P到A、B、C三点的距离之和为23个单位?4.数轴上点A,C对应的数分别是a,c,且a,c满足:|a+6|+(c﹣1)2=0,点B对应的数是﹣2.(1)填空:a=,c=;在数轴上描出点A,B,C;(2)若点M在数轴上对应的数为m,且满足|m﹣1|+|m+6|=15,则m=;(3)若A,B两点同时沿数轴正方向匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,在运动过程中,点A到点C的距离是点B到点C距离的3倍时,点A对应的数是多少?5.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,数轴上有一点C,且C 点到A点的距离是C点到B点距离的2倍,且a、b满足|a+4|+(b﹣11)2=0.(1)直接写出点C表示的数;(2)点P从A点以每秒4个单位的速度向右运动,点Q同时从B点以每秒3个单位的速度向左运动,若AP+BQ=2PQ,求时间t;(3)数轴上有一定点N,N点在数轴上对应的数为2,若点P与点M同时从A点出发,一起向右运动,P点的速度为每秒6个单位,M点的速度为每秒3个单位,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.6.数轴上A,B,C三点对应的数a,b,c满足(a+40)2+|b+10|=0,B为线段AC的中点.(1)直接写出A,B,C对应的数a,b,c的值.(2)如图1,点D表示的数为10,点P,Q分别从A,D同时出发匀速相向运动,点P的速度为6个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回到A又折返向C点运动;点Q 运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q两点相遇点在数轴上对应的数.(3)如图2,M,N为A,C之间两点(点M在N左边,且它们不与A,C重合),E,F分别为AN,CM的中点,求的值.7.如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.(1)求a、b、c的值;(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.8.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+2|+(b+2a)2=0(1)求点C表示的数;(2)若点P从A向右运动,点M为AP中点,在P点到达点B之前,求证:2BM﹣BP为定值(3)点P从A点以每秒2个单位的速度向右运动,点Q同时从B点出发以每秒1个单位的速度向左运动,若AP+BQ=2PQ,求时间t.9.如图:在数轴上A点表示数a,B点表示数b,C点表示数c,b是最大的负整数,且a、c满足|a+3|与(c﹣5)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C 分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC.①请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.②探究:在(3)的情况下,若点A、C向右运动,点B向左运动,速度保持不变,3BC﹣4AB的值是否随着时间t的变化而改变若变化,请说明理由;若不变,请求其值.10.如图,在数轴上的A点表示数a,B点表示数b,a、b满足(a+2)2+|b﹣4|=0.(1)点A表示的数为,点B表示的数为.(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒).①t=1时,甲小球到原点的距离=;乙小球到原点的距离=.当t=3时,甲小球到原点的距离=;乙小球到原点的距离=.②试探究:甲、乙两小球到原点的距离可能相等吗?若不能,请说明理由;若能,请举例说明.11.根据如图给出的数轴,解答下面的问题:(1)点A表示的数是,点B表示的数是.若将数轴折叠,使得A与﹣5表示的点重合,则B 点与数表示的点重合;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)已知M点到A、B两点距离和为8,求M点表示的数.12.已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C对应的数;(3)已知,点M从点A向右出发,速度为每秒1个单位长度,同时点N从点B向右出发,速度为每秒2个单位长度,设线段NO的中点为P,线段PO﹣AM的值是否变化?若不变求其值.13.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=;(2)数轴上a,b,c所对应的点分别为A,B,C,点M是A,B之间的一个动点,其对应的数为m,请化简|2m|(请写出化简过程);(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.14.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣2.5,﹣3观察数轴,B,C两点之间的距离为;与点A的距离为3的点表示的数是;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M、N两点表示的数分别是:M:,N:.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P,Q.(用含m,n的式子表示这两个数)15.阅读下面材料,回答问题.已知点A,B在数轴上分别表示有理数a,b.A,B两点之间的距离表示AB.(一)当A,B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|﹣|a|=b﹣a=|a﹣b|.(二)当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,AB=OB﹣OA=|b|﹣|a|=b﹣a=|a﹣b|.②如图3,点A,B都在原点的左边,AB=OB﹣OA=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|.③如图4,点A,B在原点的两边,AB=OA+OB=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|.综上,数轴A,B两点的距离AB=|a﹣b|.利用上述结论,回答以下几个问题:(1)数轴上点A表示的数是1,点B表示的数是x,且点B与点A在原点的同侧,AB=3,则x=.(2)数轴上点A到原点的距离是1,点B表示的数绝对值是3,则AB=.(3)若点A、B在数轴上表示的数分别是﹣4、2,设P在数轴上表示的数是x,当|PA|+|PB|=8时,直接写x的值.16.数轴上有A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“关联点”.例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A,C的“关联点”.(1)若点A表示数﹣2,点B表示数1,下列各数﹣1,2,4,6所对应的点分别是C1,C2,C3,C4,其中是点A,B的“关联点”的是;(2)点A表示数﹣10,点B表示数15,P为数轴上一个动点:①若点P在点B的左侧,且点P是点A,B的“关联点”,求此时点P表示的数;②若点P在点B的右侧,点P,A,B中,有一个点恰好是其它两个点的“关联点”,请直接写出此时点P表示的数.17.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON=2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M为直线AB上一点,且AM﹣BM=OM,求的值.18.已知数轴的原点为O,如图所示,点A表示﹣2,点B表示3,请回答下列问题:(1)数轴是什么图形?数轴在原点右边的部分(包括原点)是什么图形?数轴上表示不小于﹣2,且不大于3的部分是什么图形?请你分别给它们取一个合适的名字;(2)请你在射线AO上再标上一个点C(不与A点重合),那么表示点C的值x的取值范围是.19.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.2升,那么这辆货车此次送货共耗油多少升?20.如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm;(2)图中点A所表示的数是,点B所表示的数是;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?。
七年级数学上册1.2.2 数轴-数轴上的动点问题 解答题专项练习十五(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习十五1.2.2 数轴-数轴上的动点问题1.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数互为相反数,那么点C、D表示的数是多少?2.如图,点P、Q在数轴上表示的数分别是-8、4,点P以每秒2个单位的速度运动,点Q以每秒1个单位的速度运动.设点P、Q同时出发,运动时间为t秒.(1)若点P、Q同时向右运动2秒,则点P表示的数为_______,点P、Q之间的距离是______个单位;(2)经过__________秒后,点P、Q重合;(3)试探究:经过多少秒后,点P、Q两点间的距离为14个单位.3.已知在数轴上有A、B两点,点A表示的数为8,点B在A点的左边,且12AB=.若有一动点P从数轴上点A出发,以每秒3个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿着数轴向右匀速运动,设运动时间为t秒,解决以下问题:(1)写出数轴上点B所表示的数;t=秒时,写出数轴上点P,Q所表示的数;(2)当1(3)若点P,Q分别从A、B两点同时出发,问运动多少秒后点P与点Q相距3个单位长度?4.小红家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A,B,C,D,学校位于小红家西150m,邮局位于小红家东100m,图书馆位于小红家西400m.(1)用数轴表示A,B,C,D的位置;(以小红家为原点)(2)一天小红从家中去邮局寄信后,以每分钟25m的速度往图书馆方向走了16分钟,这时小红距图书馆和学校各多少米?5.如图:在数轴上 A 点表示数 a,B 点示数 b,C 点表示数 c,b 是最大的负整数,且 a、b 满足|a+ 3|+(c﹣6)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得 A点与B 点重合,则点 C与数表示的点重合;(3)点 A、B、C开始在数轴上运动,若点 A以每秒 2个单位长度的速度向左运动,同时,点 B和点 C分别以每秒1个单位长度和 4个单位长度的速度向右运动,假设 t 秒钟过后,若点 A与点 B之间的距离表示为 AB,点 A与点 C之间的距离表示为 AC,点 B与点 C之间的距离表示为 BC.则 AB= ,AC= ,BC= .(用含 t的代数式表示)(4)请问:2BC+AB - 32AC的值是否随着时间 t 的变化而改变?若变化,请说明理由;若不变,请求其值.6.已知:b是最小的正整数,且a、b满足(c−5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值,a=______,b=____,c=______.(2)数轴上a、b、c三个数所对应的分别为A、B、C,点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动.①经过2秒后,求出点A与点C之间的距离AC.②经过t秒后,请问:BC−AB的值是否随着时间t的变化而改变?若变化,请说明理上;若不变,请求其值.7.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B 两点之间的距离AB=|a-b|.已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)A,B两点之间的距离是;(2)设点P在数轴上表示的数为x,则x与-4之间的距离表示为;(3)若点P到点A、点B的距离相等,求点P对应的数;(4)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(5)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,当点A与点B之间的距离为3个单位长度时,求点A所对应的数是多少?8.一只电子跳蚤在数轴上左右跳动,最开始在数轴上的位置记为A,按如下指令运动:第一次向右跳动一格到A1.第二次在第一次的基础上向左跳动两格到A2.第三次在第二次的基础上向右跳动三格到A3.第四次在第三次的基础上向左跳动四格到A4,以此类推(1)若点A0表示原点,则跳动 10次后到点A10,它的位置在数轴上表示的数是.若每跳一格用时一秒,则跳动10次后到点A10,共用去时间是秒.(2)若跳动100次后到点A100,且所表示的数恰好是50,试求电子跳蚤的A初始位置所表示的数A.9.如图,在一条不完整的数轴上从左到右有点A,B,C,其中2AB BC=,设点A,B,C所对应数分别为a、b、c,且a b c m++=.(1)若点C为原点,1BC=,则a=__________,b=_________,m=_________;(2)若点B为原点,6AC=,求m的值.(3)若原点O到点C的距离为8,且OC AB=,求m的值.10.操作探究:已知在纸面上有一数轴左右对折纸面,折痕所在的直线与数轴的交点为“对折中心点”.(1)操作一:左右对折纸面,使1对应的点与-1对应的点重合,则-3对应的点与_____对应的点重合;(2)操作二:左右对折纸面,使-1对应的点与3对应的点重合,回答以下问题:①对折中心点对应的数为__________,对折后5对应的点与数_________对应的点重合;②若数轴上A、B两点之间的距离为11(A在B的左侧),且A、B两点经折叠后重合,通过计算求A、B两点对应的数分别是多少?(3)操作三:已知数轴上的点A对应的数是a,点B对应的数是b,对折中心点C对应的数是c,此时点A与点B对折重合,那么a,b,c三数满足的关系式为__________.11.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,52,-3.观察数轴,与点A的距离为3的点表示的数是____,A,B两点之间的距离为_____.(2)数轴上,点B关于点A的对称点表示的数是_____.(3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是_____;若此数轴上M,N两点之间的距离为2019(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是_____,点N表示的数是_____;(4)若数轴上P,Q两点间的距离为a (P在Q左侧),表示数b的点到P,Q两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是_____,点Q表示的数是_____(用含a,b的式子表示这两个数).12.已知蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记作“+”,向负半轴运动记作“-”,从开始到结束爬行的各段路程(单位:cm)依次为:+7,-5,-10,-8,+9,-6,+12,+4.(1)若A点在数轴上表示的数为-3,则蜗牛停在数轴上何处,请通过计算加以说明;(2)蜗牛在(1)题在数轴上停的位置作以下运动:第1次向左移动1个单位长度至B点,第2次从B点向右移动2个单位长度至C点,第3次从C点向左移动3个单位长度至D点,第4次从D点向右移动4个单位长度至E点,…,依此类推.这样第2019次移动到的点在数轴上表示的数为(请直接写出答案).13.已知,如图,A、B、C分别为数轴上的三个点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A距离是B点到A点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度项终点C 运动,运动时间为t 秒.①点P 点在AB 之间运动时,则BP =_______.(用含t 的代数式表示)②P 点在A 点向C 点运动过程中,何时P 、A 、B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直接写出....相遇是P 点在数轴上对应的数.14.如图 .在数轴.上有A B 、两个点(点A 在点B 的左侧) , 20AB =(1)如果点A 表示的数是5- ,那么,①点B 表示的数是_______.②如果点C 从点A 出发,沿数轴正方向运动,速度是每秒3个单位长度,运动秒后,点C 表示的数是_______.( 用含t 的代数式表示) ; 经过________秒 , CA CB =.(2)如果点A 表示的数是10-,将数轴的负半轴绕原点O 顺时针旋转60° ,得到120AOB ∠=︒,如图2所示,射线OP 从OA 出发绕点O 顺时针旋转,速度是每秒15° ,同时,射线OQ 从OB 出发绕点O 逆时针旋转,速度是每秒5° .设运动时间为t 秒,当20t =秒时, ,OP OQ 停止运动.①当t 为________秒时,OP 与OQ 重合. ②当12BOP BOQ ∠=∠时,t 的值是________.15.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为1-,正方形ABCD的面积为16.(1)数轴上点B表示的数为__________;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为''''A B C D,移动后的正方形S=时,画出图形,并求出数轴上点A B C D与原正方形ABCD重叠部分的面积记为S.当4'''''A表示的数;参考答案1.(1)点C表示的数是-1;(2)表示的数是0.5,点D表示的数是-4.5.详见解析.解析:(1)根据互为相反数的定义确定出点O的位置,再根据数轴写出点C表示的数即可;(2)根据互为相反数的定义确定出点O的位置,再根据数轴写出点C、D表示的数即可.详解:(1)如图,点C表示的数是-1.(2)如图,点C表示的数是0.5,点D表示的数是-4.5.点睛:本题考查了相反数,数轴,熟练掌握相反数的定义并确定出原点的位置是解题的关键.2.(1)-4,10(2)4,12(3)①23②26③2④263解析:(1)点P表示的数为根据数在数轴的移动列算式计算即可.点P、Q之间的距离是先求出移动后P、Q表示的数再相减即可.(2)运动问题分为相遇和追及两种情况,分别列方程求出即可.相遇:P的路程+Q的路程=PQ;追及P的路程-Q的路程=PQ详解:(1)P表示的数:-8+2×2=-4,P表示的数:4+1×2=6 所以点P、Q之间的距离是6-(-4)= 10;(2)设经t秒点P、Q重合相遇时:2t+t=12解得t=4;追及时:2t-t=12解得t=12;(3)P向左运动,Q向右运动时:①2t+t+12=14 解得 t=23.点P、Q同时向左运动②2t=26+t 解得t=26 点P、Q同时向右运动③2t+12=14+t 解得t=2.点P向右运动,Q向左运动时:④2t+t=12+14 解得t=26 3答:经过23、26、2、263秒时,P 、Q 相距14个单位. 考点:有理数的运算,数轴.3.(1)-4;(2)P 表示5,Q 表示-2;(3)1.8秒或3秒.解析:(1)根据点A 表示的数为8,点B 在A 点的左边,且12AB =,设点B 为x ,根据绝对值的意义列式即可得知B 的数值;(2)根据数轴上的数值越向左越小,越向右越大的规律,用A 的数值减去P 点运动距离,用B 的数值加上Q 运动的数值即可得出答案;(3)设点P 运动时间为t 秒时,与Q 相距3个单位长度,则AP=3t ,BQ=2t ,根据AP+BQ=AB-3,或AP+BQ=AB+3列式计算即可.详解:解:(1)设B 点为x ,∵点A 表示的数为8,且12AB =, ∴812x -=解得4,30x x =-=∵点B 在A 点的左边∴点B 为-4;(2)∵P 从数轴上点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,∴P=8-3×1=5∵Q 从点B 出发,以每秒2个单位长度的速度沿着数轴向右匀速运动∴Q=-4+2×1=-2即数轴上点P ,Q 所表示的数分别为3,-2;(3)设点P 运动t 秒时,与Q 相距3个单位长度,则AP=3t ,BQ=2t ,①如下图,当AP+BQ=AB-3时,即3t+2t=12-3,解得t=1.8秒;②如下图,当AP+BQ=AB+3时,即3t+2t=12+3,解得t=3秒,故运动1.8秒或3秒后点P与点Q相距3个单位长度.点睛:本题考查的是数轴上点的距离问题,能够结合数轴分不同情况列式结算是解题的关键.4.(1)见解析;(2)小红距图书馆100米,距学校150米解析:(1)根据题意,可设从西向东方向为正方向,小红家所在位置为原点,则很容易用数轴来表示A、B、C、D的位置;(2)根据路程=速度×时间,结合(1)中的解答回答问题.详解:(1)根据题意,可设从西向东方向为正方向,小红家所在位置为原点,则用数轴表示上述A、B、C、D的位置如下:(2)25×16=400(米),100﹣400=﹣300,﹣300﹣(﹣400)=100(米),﹣150﹣(﹣300)=150(米).故小红距图书馆100米,距学校150米.点睛:此题主要考查数轴的意义运用,熟练掌握,即可解题.5.(1)-3,-1,6;(2)-10;(3)AB=2+3t,AC=6t+9,BC=7+3t;(4)不变,2.5.解析:(1)利用|a+3|+(c-6)2=0,得a+3=0,c-6=0,解得a,c的值,由b是最大的负整数,可得b=-1;(2)先求出对称点,然后再求得点C到对称点的距离,从而求得点C的对称点;(3)利用数轴表示出A、B、C三点表示的数,进而可得AB、AC、BC的长;(4)根据题意列方程即可得到结论.详解:(1)∵|a+3|+(c-6)2=0,∴a+3=0,c-6=0,∴a=-3,c=6,∵b是最大的负整数,∴b=-1;(2)点A与点B的中点对应的数为:312--=-2,点C到-2的距离为8,所以与点C重合的数是:-2-8=-10.(3)AB=t+2t+2=3t+2,AC=2t+4t+9=6t+9,BC=(4-1)t+7=3t+7;(4)∵AB=3t+2,AC=6t+9,BC=3t+7,∴2BC+AB - 32AC=2(3t+7)+3t+2-32(6t+9)=6t+14+3t+2-9t-13.5=2.5,∴2BC+AB - 32AC的值不随着时间t的变化而改变,其值为2.5.点睛:考查了实数与数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.6.(1)a=-1,b=1,c=5;(2)14;(3)不变;2.解析:(1)根据b为最小的正整数求出b的值,再由非负数的和的性质建立方程就可以求出a、b的值;(2)分别表示出2秒钟过后A、C的位置,根据数轴上两点之间的距离公式就可以求出结论;(3)先根据数轴上两点之间的距离公式分别表示出BC和AB就可以得出BC-AB的值的情况.详解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴{c−5=0a+b=0,∴a=-1,b=1,c=5.故答案为:a=-1,b=1,c=5;(2)由题意,得2秒钟过后A点表示的数为:-1-2=-3,C点表示的数为:5+6=11,∴AC=11-(-3)=14;故答案为:14;(3)由题意,得BC=4+2t,AB=2+2t,∴BC-AB=4+2t-(2+2t)=2.∴BC-AB的值是不随着时间t的变化而改变,其值为2.点睛:本题考查了数轴的运用,数轴上任意两点间的距离的运用,代数式表示数的运用,非负数的性质的运用,一元一次方程的运用,解答时求出弄清楚数轴上任意两点间的距离公式是关键.7.(1)4;(2)|x+4|;(3)1;(4)-3或5;(5)13或813.解析:(1)(2)在数轴上A、B两点之间的距离为AB=|a-b|,依此即可求解;(3)根据中点坐标公式即可求解;(4)分两种情况:点P在点A的左边,点P在点B的右边,进行讨论即可求解;(5)分两种情况:点A在点B的左边,点A在点B的右边,进行讨论即可求解.详解:(1)A,B两点之间的距离是3-(-1)=4(2)x与-4之间的距离表示为|x-(-4)|=|x+4|(3)(-1+3)÷2=1.故点P对应的数是1;(4)点P在点A的左边,x的值是-1-(8-4)÷2=-3;点P在点B的右边,x的值是3+(8-4)÷2=5.故x的值是-3或5;(5)点A在点B的左边,(4-3)÷(2-0.5)×2+(-1)=13.点A所对应的数是1 3点A在点B的右边,(4+3)÷(2-0.5)×2+(-1)=813.点A所对应的数是813.故点A所对应的数是13或813.点睛:本题考查了数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.注意分类思想在解题中的运用.8.(1)﹣5,55;(2)100.解析:(1)根据数轴上“左加右减”的原则进行计算即可,先求出青蛙跳10次所跳过的总格数,再根据它每跳一格用时1秒即可求出结论;(2) 设A0表示的数为a,由若跳动100次后到点A100,且所表示的数恰好是50列代数式可求出a.详解:解:(1)∵在数轴原点上第一次向右跳动一格,到数1;第二次在第一次基础上向左跳两格,到数﹣1;第三次在第二次的基础上向右跳动三格;第四次在第三次的基础上向左跳四格,∴它跳10次后,它的位置在数轴上表示的数=0+1﹣2+3﹣4+5﹣6+7﹣8+9﹣10=﹣5.答:它跳10次后,它的位置在数轴上表示的数是﹣5;电子跳蚤跳10次所跳过的格数=1+2+3+4+5+6+7+8+9+10=55,∵它每跳一格用时1秒,∴它跳10次共用去的时间=55×1=55秒.答:它每跳一格用时1秒,它跳10次共用去55秒.故答案为﹣5,55;(2)设A表示的数为a,则a+1﹣2+3﹣4+…+99﹣100=50.∴a+(1﹣2)+(3﹣4)+…+(99﹣100)=50.∴a﹣50=50.∴a=100.∴点A表示的数是100.点睛:本题考查的是数轴,熟知数轴上各数的特点是解答此题的关键.9.(1)-3,-1,-4;(2)-2;(3)m=8或-40.解析:(1)根据数轴上的点对应的数、已知的线段关系以及对应数字间的关系即可解答;(2)先根据数轴上原点的位置确定其它点对应的数,然后根据a b c m++=即可解答;(3)先确定点C的对应数为±8,然后再分8和﹣8两种情况解答即可.详解:解:(1)∵点C为原点,BC=1且B在C的左边∴B所对应的数为-1,∵AB=2BC,∴AB=2,∴AC=AB+BC=3,∴点A所对应的数为-3,∵m=a+b+c=-3-1+0=-4;故答案为:-3,-1,-4;(2)∵点B为原点,AC=6,AB=2BC,∴AC=3BC=6,即BC=2,AB=AC-AB=4∴点C所对应的数为2,点A所对应的数为-4∴m= a+b+c=-4+2+0=-2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为-4,∴m=a+b+c=4-4+8=8;当点C所对应的数为-8,AB=8,AB=2BC,∴点B 所对应的数为-12,点A 所对应的数为-20。
七年级上册数学数轴上的动点定值问题

七年级上册数学数轴上的动点定值问题方法技巧 设参计算法设动点表示的数(若是行程问题一般设运动时间),从而表示出线段长(两点间的距离),计算可解. 【例1】如图,在数轴上A 、B 、C 三点表示的数分别为-10、10、50,A 、B 、C 三点同时运动,点A 以1个单位每秒的速度向左运动,点B 、C 分别以2个单位、5个单位每秒的速度向右运动,请问:BC -AB 的值是否随时间t 的变化而变化?若变化,请说明理由;若不变,请求其值.例2 如图,数轴上A 、B 两点所对应的数分别为-8、4, A 、B 两点分别以2个单位/秒和1个单位/秒的速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发也向数轴负方向运动,且 C 点总在A 、B 两点之间,并在运动过程中始终有BC AC =12,设运动t 秒钟后,点A 、B 、C 运动后的对应点分别为A 1、B 1、C 1 下列两个结论:①AA 1+BB 1的值不变;②CC 1AA 1的值不变 ,请选择正确的结论,并求其值.例3 如图,点A 在数轴上表示的数为-10,C 、D 为数轴上两个动点,点D 在点C 的右边,且CD =16,M 为AD 中点,N 为AC 的中点,当C 、D 运动时, M 、N 两点的距离即M N 的长是否改变?若不变求出其值;若变化说明理由.CBADMN﹣10A C针对练习1.如图,已知数轴上有A 、B 、C 三个点,他们表示的数分别为是18,8,-10(1)填空:AB = ,BC =(2)若点A 以每秒1个单位长度的速度向右运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向左运动,试探索:BC -AB 的值是否随着时间t 的变化而变化?请说明理由;(3)现有动点P,Q 都从A 点出发,点P,以每秒1个单位长度的速度向终点C 移动;当点P 移动到B 点时,点Q 才从A 出发,并以每秒3个单位的速度向左移动,且当点P 到达C 点时,点Q 就停止移动,设点P,移动的时间为t 秒,试用含t 的代数式表示P,Q 两点间的距离。
七年级数轴应用题

数轴应用题——涉及绝对值方程例1 已知,数轴上点A 在原点左边,到原点的距离为8个单位长度,点B 在原点的右边,从点A走到点B ,要经过32个单位长度。
(1) 求A 、B 两点所对应的数(2) 若点C 也是数轴上的点,点C 到点B 的距离是点C 到原点的距离的3倍,求点C 对应的数(3) 已知,点M 从点A 向右出发,速度为每秒1个单位长度,同时点N 从点B 向右出发,速度为每秒2个单位长度,设线段NO 的中点为P ,线段PO-AM 的值是否变化?若不变求其值 例2 有理数a 、b 、c 在数轴上的位置如图所示(1) 比较|a|、b 、c 的大小(用“<”连接)(2) 若m=|a+b|-|b-1|-|a-c|,求200512009m -⨯(+c )的值 (3) 若a=-2,b=-3 23c =,且数a 、b 、c 对应的点分别为A 、B 、C ,问在数轴上是否存在点P ,使P 与A 的距离是P 与C 的距离的13,若存在,请求出P 点对应的有理数;若不存在,请说明理由例3 数轴上A 对一个的数为a ,B 对应的数为b ,且满足1260a b -++=,O 为原点(1) 求a 、b 的值,并在数轴上标出A 、B(2) 数轴上A 以每秒3个单位,B 以每秒1个单位的速度同时出发向左运动,在C 点出A 追上了B ,求C 点对应的数是多少?(3) 若点A 原地不动,点B 仍然以每秒1个单位的速度向左运动,M 为线段OB 的中点,N 为线段AB 的中点,在点B 的运动过程中,线段MN 的长是否变化,若变化说明理由;若不变,求出其长度例4 已知数轴上两点A 、B 对应的数分别是-1,3,点P 为数轴上一动点,其对应的数为x(1) 若点P 到点A ,点B 的距离相等,求点P 对应的数(2) 数轴上是否存在点P ,是点P 到点A 、点B 的距离之和为5?若存在,请求出x 的值;若不存在,说明理由(3) 当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 为每分钟5个单位长度的速度向右运动,点B 以没分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时间P 到点A 、点B 的距离相等?练习1. 已知A 、B 在数轴上对应的数分别用a 、b 表示,且21(100)2002ab a ++-=.P 是数轴上的一个动点(1) 在数轴上标出A 、B 的位置,并求出A 、B 之前的距离(2) 数轴上一点C 距A 点24个单位长度,其对应的数c 满足ac ac =-,当P 点满足PB=2PC时,求P 点对应的数(3) 动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,……点P 能移动到与A 或B 重合的位置吗?若能,请探索第几次移动时重合;若不能,请说明理由2. 点A 在数轴上对应的数为a ,点B 对应的数为b ,且a 、b 满足25(3)0a b ++-=(1) 求线段AB 的长(2) 数轴上C 点在A 带你的右边,电子蚂蚁甲、乙在C 分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动。
初中七年级上数轴上的动点问题(最全版)

-1-2-33210O B A P0123-3-2-1B A O A B C D备用图O 数轴上的动点问题最新版1.如图,已知数轴上两点A 、B 对应的数分别为-1,3,点P 为数轴上一动点,其对应的数为x 。
(1)数轴上是否存在点P ,使点P 在点A 、点B 的距离之和为5?若存在,请求出x 的值,若不存在,请说明理由;(2)当点P 以每分钟1个单位长度的速度从O 点向左运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向左运动,问它们同时出发,几分钟时点P 到点A 、点B 的距离相等?(3)如图,若点P 从B 点出发向左运动(只在线段AB 上运动),M 为AP 的中点,N 为PB 的中点,点P 在运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出MN 的长。
2.如图,A 、B 、C 是数轴上的三点,O 是原点, BO=3,AB=2BO ,5AO=3CO . (1)写出数轴上点A 、C 表示的数;(2)点P 、Q 分别从A 、C 同时出发,点P 以每秒 2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒6个单位长度的速度沿数轴向左匀速运 动,M 为线段AP 的中点,点N 在线段CQ 上,且 CN=32CQ .设运动的时间为t (t >0)秒. ①数轴上点M 、N 表示的数分别是 (用含t 的 式子表示); ②t 为何值时,M 、N 两点到原点O 的距离相等?3.如图,数轴上有A 、B 、C 、D 四个点,分别对应数a 、b 、c 、d ,且满足a 、b 是方程91x +=的两根(a b <),2(16)c -与20d -互为相反数。
(1)求a 、b 、c 、d 的值;(2)若A 、B 两点以6个单位长度/秒的速度向右匀速运动,同时C 、D 两点以2个单位长度/秒的速度向左匀速运动,并设运动时间为t 秒。
问t 为多少时,A 、B 两点都运动在线段CD 上(不与C 、D 两个端点重合)?(3)在(2)的条件下,A 、B 、C 、D 四个点继续运动,当点B 运动到点D 的右侧时,问是否存在时间t ,使B 与C 的距离是A 与D 的距离的4倍,若存在,求时间t ,若不存在,请说明理由。
七年级数学专题:数轴与动点问题

数轴上的动点问题1.(2017秋﹒荆州区校级月考)已知,数轴上点A在原点左边,到原点的距离为8个单位长度,点B在原点的右边,从点A走到点B,要经过32个单位长度.(1)求A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点的距离的3倍,求点C对应的数;(3)已知,点M从点A向右出发,速度为每秒1个单位长度,同时点N从点B向右出发,速度为每秒2个单位长度,设线段NO的中点为P,线段PO-AM的值是否变化?若不变求其值.2.(2017秋﹒宽城区期中)已知数轴上点A在原点的左侧,到原点的距离为8个单位长度,点B在原点的右侧,从点A走到点B,要经过12个单位长度.(1)写出A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是5,求点C所对应的数.3.(2017秋﹒江都区月考)已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点的左边,距离原点8个单位长度,点B在原点的右边.(1)点A和点B两点所对应的数分别为____和____ .(2)数轴上点A以每秒1个单位长度出发向左运动,同时点B以每秒3个单位长度的速度向左运动,在点C处追上了点A,求点C对应的数.(3)已知在数轴上点M从点A出发向右运动,速度为每秒1个单位长度,同时点N从点B 出发向右运动,速度为每秒2个单位长度,设线段NO的中点为P(O为原点),在运动的过程中线段PO-AM的值是否变化?若不变,求其值;若变化,请说明理由.4.(2017秋﹒大丰市校级月考)已知数轴上的点A和点B之间的距离为28个单位长度,点A在原点的左边,距离原点16个单位长度,点B在原点的右边.(1)求A,B两点所对应的数.(2)数轴上点A以每秒6个单位长度出发向右运动,同时点B以每秒2个单位长度向左运动,在点C处相遇,求点C的对应的数.(3)点M从A点出发以每秒6个单位的速度向右运动,点P从原点出发以每秒1个单位的速度向右运动,点N从B点出发以每秒2个单位的速度向右运动,若三个点同时出发,求多长时间后,点P到点M,N的距离相等?5.(2014秋﹒九龙坡区期末)已知数轴上的点A和点B之间的距离为32个单位长度,点A 在原点的左边,距离原点5个单位长度,点B在原点的右边.(1)点A所对应的数是,点B对应的数是;(2)若已知在数轴上的点E从点A出发向右运动,速度为每秒2个单位长度,同时点F从点B出地向左运动,速度为每秒4个单位长度,求当EF=8时,点E对应的数(列方程解答).(3)若已知在数轴上的点M从点A出发向右运动,速度为每秒a个单位长度,同时点N 从点N从点B出发向右运动,速度为每秒2a个单位长度,设线段NO的中点为P(O为原点),在运动过程中线段PO-AM的值是否变化?若不变,求其值;若变化,请说明理由.6.(2013秋﹒仪征市期末)已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.(1)点A所对应的数是?点B对应的数是?(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数.(3)若已知在数轴上的点M从点A出发向右运动,速度为每秒2个单位长度,同时点N 从点B出发向右运动,速度为每秒4个单位长度,设线段NO的中点为P(O原点),在运动过程中线段PO-AM的值是否变化?若不变,求其值;若变化,请说明理由.7.(2014秋﹒江阴市校级期中)已知数轴上点A与点B的距离为16个单位长度,点A在原点的左侧,到原点的距离为26个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为,点B表示的数为,点C表示的数为;(2)用含t的代数式表示P到点A和点C的距离:P A=___ ,PC=_____ ;(3)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.①在点Q向点C运动过程中,能否追上点P?若能,请求出点Q运动几秒追上.②在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.8.(2008秋﹒重庆期中)数轴上点A到原点的距离为2个单位长度,点B在原点左边且到原点的距离为6个单位长度,则:A、B两点间相距个单位长度.9.(2016秋﹒亭湖区校级月考)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|;当A、B两点都不在原点时,如图2,点A 、B 都在原点的右边,|AB |=|OB |-|OA |=|b |-|a |=b -a =|a -b |;如图3,当点A 、B 都在原点的左边,|AB |=|OB |-|OA |=|b |-|a |=-b -(-a )=|a -b |; 如图4,当点A 、B 在原点的两边,|AB |=|OB |+|OA |=|a |+|b |=a +(-b )=|a -b |;回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;(2)数轴上若点A 表示的数是x ,点B 表示的数是-2,则点A 和B 之间的距离是 ,若|AB |=2,那么x 为 ;(3)当x 是_____时,代数式|x +2|+|x -1|=5;(4)若点A 表示的数-1,点B 与点A 的距离是10,且点B 在点A 的右侧,动点P 、Q 同时从A 、B 出发沿数轴正方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒12个单位长度,求运动几秒后,点Q 可以追上点P ?(请写出必要的求解过程)10.(2016秋﹒渝中区校级期中)数轴上,点A 到原点的距离为2个单位长度,点B 在原点右边且到原点的距离为4个单位长度,则A 、B 两点间相距个单位长度.11.(2016秋﹒盐城月考)A 、B 两点在数轴上,点A 表示的数是-6,点B 在原点的右边且与点A 相距15个单位长度.(1)求出点B 表示的数,画一条数轴并在数轴上标出点A 和点B ;(2)在数轴上有一点C ,点C 到点A 和点B 的距离之和为30,求点C 所表示的数;(3)若点A 以2个单位/秒的速度向右运动,同时点B 以3个单位/秒的速度向左远动,经过多长的时间A 、B 两点相距20个单位长度?(4)A 、B 从初始位置分别以1单位/秒和2单位/秒同时向左运动,是否存在t 的值,使t 秒后点B 到原点的距离与点A 到原点距离相等?若存在请求出t 的值;若不存在,请说明理由.12.(2016秋﹒海淀区期末)在数轴上,把表示数1的点称为基准点,记作点 ﹒ O .对于两个不同的点M 和N ,若点M 、点N 到点 ﹒ O 的距离相等,则称点M 与点N 互为基准变换点.例如:图1中,点M 表示数-1,点N 表示数3,它们与基准点 ﹒ O 的距离都是2个单位长度,点M 与点N 互为基准变换点.(1)已知点A 表示数a ,点B 表示数b ,点A 与点B 互为基准变换点.①若a =0,则b = ;若a =4,则b = ;②用含a 的式子表示b ,则b = ;(2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B .若点A 与点B 互为基准变换点,则点A 表示的数是 ;(3)点P 在点Q 的左边,点P 与点Q 之间的距离为8个单位长度.对P 、Q 两点做如下操作:点P 沿数轴向右移动k (k >0)个单位长度得到P 1,P 2为P 1的基准变换点,点P 2沿数轴向右移动k个单位长度得到P3,P4为P3的基准变换点,…,依此顺序不断地重复,得到P5,P6,…,P n.Q1为Q的基准变换点,将数轴沿原点对折后Q1的落点为Q2,Q3为Q2的基准变换点,将数轴沿原点对折后Q3的落点为Q4,…,依此顺序不断地重复,得到Q5,Q6,…,Q n.若无论k为何值,P n与Q n两点间的距离都是4,则n=_______.13.(2016秋﹒海陵区校级期末)如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?14.(2016秋﹒雨花区校级月考)A、B、C三点在数轴上,点A表示的数是-6,点B在原点的右边且与点A相距15个单位长度.(1)求出点B表示的数,画一条数轴并在数轴上标出点A和点B;(2)若此数轴在一张纸上,将纸沿某一条直线对折,此时B点与表示数-1的点刚好重合,折痕与数轴有一个交点D,求点D表示的数的相反数;(3)在数轴上有一点E,点E到点A和点B的距离之和为30,求点E所表示的数;(4)A、B从初始位置分别以1单位长度/s和2单位长度/s同时向左运动,是否存在t的值,使t秒后点B到原点的距离是点A到原点距离相等?若存在请求出t的值;若不存在,请说明理由.15.(2016秋﹒甘井子区期末)数学问题:如图,在数轴上点A表示的数为-20,点B表示的数为40,动点P从点A出发以每秒5个单位长度的速度沿正方向运动,动点Q从原点出发以每秒4个单位长度的速度沿正方向运动,动点N从点B出发以每秒8个单位的速度先沿负方向运动,到达原点后立即按原速返回,三点同时出发,当点N回到点B时,三点停止运动.(1)三个动点运动t(0<t<5)秒时,则P、Q、N三点在数轴上所表示的三个数分别为_____ ,______ ,_____ .(2)当QN=10个单位长度时,求此时点P在数轴上所表示的数.(3)尝试借助上面数学问题的解题经验,建立数轴完成下面实际问题:码头C位于A、B两码头之间,且知AC=20海里,AB=60海里,甲船从A码头顺流驶向B 码头,乙船从C码头顺流驶向B码头,丙船从B码头开往C码头后立即调头返回B码头.已知甲船在静水中航速为5海里/小时,乙船在静水中航速为4海里/小时,丙船在静水中航速为8海里/小时,水流速度为2海里/小时,三船同时出发,每艘船都行驶到B 码头停止. 在整个运动过程中,是否存某一时刻,这三艘船中的一艘恰好在另外两船之间,且与两船的距离相等?若存在,请求出此时甲船离B 码头的距离;若不存在,请说明理由.提示:如果你不用上面数学问题中的解题方法也能完成本题,可得满分.16.(2017春﹒南岗区校级期中)已知数轴上点A 、点B 对应的数分别为-4、6.(1)A 、B 两点的距离是 ____.(2)当AB =2BC 时,求出数轴上点C 表示的有理数;(3)点D 以每秒10个单位长度的速度从点B 出发沿数轴向 左运动,点E 以每秒8个单位长度的速度从点A 出发沿数轴向左运动,点F 从原点出发沿数轴向 左运动,点D 、点E 、点F 同时出发,t 秒后点D 、点E 、点F 重合,求出点F 的速度.17.(2014秋﹒朝阳区校级月考)数轴上点A 到原点的距离等于6个单位长度,并且点A 位于原点左边,则点A 所表示的数是.18.(2015秋﹒永丰县期末)如图,已知数轴上点A 表示的数为8,B 是数轴上原点左边的一点,且AB =14,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动.(1)写出数轴上点B 表示的数______ ,点P 运动t (t >0)秒后表示的数______ (用含t 的代数式表示);(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若P 、Q 两点同时出发,那么点P 运动多少时间后追上点Q ?19.(2012秋﹒白云区期中)在原点左边,距离原点5个单位长度的点A 表示的数是 ____;在原点右边,距离原点8个单位长度的点B 表示的数是_____ ,点A 与B 之间的距离是______ .20.(2012﹒石景山区一模)已知二次函数y =x 2-(2m +2)x +()m 2+4m -3中,m 为不小于0的整数,它的图象与x 轴交于点A 和点B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)点C 是抛物线与y 轴的交点,已知AD =AC (D 在线段AB 上),有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度移动,同时,另一动点Q 从点C 出发,以某一速度沿线段CB 移动,经过t 秒的移动,线段PQ 被CD 垂直平分,求t 的值;(3)在(2)的情况下,求四边形ACQD 的面积.21.(2014秋﹒成都期末)如图,数轴上点A ,C 对应的数分别是a ,c ,且a ,c 满足|a +4|+(c -1)2=0,点B对应的数是-3(1)求数a,c;(2)点A,B同时沿数轴向右匀速运动,点A的速度为每秒2个单位长度,点B的速度为每秒1个单位长度,若运动时间t秒,在运动过程中,点A,B到原点O的距离相等时,求t的值.22.(2011秋﹒深圳期末)动点A从原点出发向数轴负方向匀速运动,同时,动点B也从原点出发向数轴正方向匀速运动,已知动点A、B运动的速度比是1:4(速度单位:单位长度/秒)3秒后,两动点相距15个单位长度(1)求动点A、B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置(2)若动点A、B从(1)中的位置按原速度同时向数轴负方向匀速运动,几秒后原点恰好处在两个动点正中间?(3)A、B两动点在(2)中的位置,继续同时向数轴负方向匀速运动时,另一动点C同时从点B位置出发向点A运动,当遇到点A后,立即返向点B运动,遇到点B后立即返向点A运动,如此往返,直至点B追上点A时,点C立即停止运动,若点C一直以20单位长度/秒的速度匀速运动,那么,点C从开始到停止运动,其运动的路程是多少单位长度?24.如图所示,在数轴上点A表示的有理数为-6,点B表示的有理数为4,点P从点A出发,以每秒2个单位长度的速度在数轴上向点B运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止.设运动时间为t(单位:秒).(1)求t=1时点P表示的有理数;(2)求点P与点B重合时的t值;(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t 的代数式表示);(4)当点P表示的有理数与原点的距离是2个单位长度时,直接写出所有满足条件的t值.25.(2016秋﹒市南区期末)如图,已知数轴上点A表示的数为7,点B表示的数为-5,点P从点A出发,沿数轴以每秒3个单位长度的速度向左匀速运动,同时,另一点Q从原点O出发,也沿数轴以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒(t>0).(1)线段AB的长度为____ ,数轴上点P和点Q表示的数分别为____ 、(用含t的代数式表示);(2)在点P和点Q的运动过程中,经过多少秒点P追上点Q?经过多少秒点B恰为PQ的中点?(3)运动过程中,若时间t总满足|t+7|-|5-t|=12,则t的范围是______.26.(2015秋﹒义乌市校级期中)已知在数轴上有A,B两点,点A表示的数为8,点B在A 点的左边,且AB=12.(1个单位长度为1)(1)数轴上点B所表示的数为____ .(2)如果将B点先向右移动8个单位长度,再向左移动4个单位长度,那么终点B表示的数是,此时A、B两点间的距离是_____ .(3)若有一动点P从数轴上点A出发,以每秒a个单位长度速度沿数轴向左匀速运动,同时动点Q从点B出发,以每秒b个单位长度速度沿数轴向右匀速运动.①分别写出数轴上点P、Q所表示的数(用含a、b、t的代数式表示);②问:运动多少秒P、Q两点相距2个单位长度?(用含a、b的代数式表示).27.(2017秋﹒衡阳县期中)如图,已知数轴上点A表示的数为-7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(t>0)秒.(1)点C表示的数是_____;(2)求当t等于多少秒时,点P到达点B处;(3)点P表示的数是(用含有t的代数式表示);(4)求当t等于多少秒时,PC之间的距离为2个单位长度.28.(2017秋﹒海安县校级月考)数轴上点A对应的数为-1,点B对应的数为4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P在数轴上对应的数为x;(2)数轴上是否存在点P,使P到点A、点B的距离之和为9?若存在,请求出x的值;若不存在,说明理由;(3)若点M从点A出发以1个单位/秒的速度向右运动,同时点N从点B出发以2个单位/秒的速度向左运动,设运动的时间为t(秒),当M、N两点重合时,求t的值;(4)若点M从点A出发以1个单位/秒的速度向左运动,同时点N从点B出发以2个单位/秒的速度也向左运动,当点M、N开始出发时,点P以10个单位/秒的速度从原点出发向右运动,当遇到点N时立即返回按原速向左运动,遇到点M时又立即返回原速向右运动,遇到点N时再返回,如此反复直到M、N两点重合时停止.问点P从开始出发到停止,一共运动多少个单位长度?。
七年级数学数轴动点专题(教学版)

数轴动点专题【例1】已知数轴上两点A 、B 对应的数分别是﹣5和1.(1)若数轴上点C 到A 、B 两点的距离相等,求点C 对应的数.(2)数轴上是否存在点P ,使点P 到点B 的距离是点P 到点A 的距离的一半?若存在求出点P 对应的数;若不存在,说明理由.解:(1)由题意知,C 为AB 的中点,设C 对应的数为x ;∴x =512-+=﹣2. (2)设存在点P 为y ;因为A :﹣5;B :1;所以PA =|y +5| PB =|y ﹣1|;由题意得PB =12PA 所以|y ﹣1|=12|y +5| 解得y =7或y =﹣1;故存在P 对应的数为7或﹣1【练1】已知数轴上两点A 、B 对应的数分别是﹣5和1.点P 为数轴上一动点,其对应的数为x 。
若点P 到点A 、B 的距离之和为8,求出x 的值。
解:因为P :x ,A :﹣5,B :1;所以PA =|x +5|,PB =|x ﹣1|由题意得,PA +PB =8所以|x +5|+|x ﹣1|=8①x ≤﹣5时﹣x ﹣5+1﹣x =8解得x =﹣6②﹣5<x ≤1时,无解;③x >1时,x +5+x ﹣1=8解得:x =2;综上:x =2或x =﹣6;【 例2】如图所示,已知数轴上点A 对应的数为﹣2,另一动点P 从点A 出发向右做匀速运动,设点P 在数轴上对应的点为x 。
(1)若点P 从A 点出发向右运动了3个单位,求x 的值______;(2)若点P 从A 点出发,以每秒2个单位的速度向右运动,求当运动时间为3秒时的点P的位置__________;(3)若点P 从点A 出发,以每秒2个单位的速度向右运动,求当运动时间为t 时P 的位置__________ .【答案】:(1)﹣2+3=1(2)﹣2+2×3=4 (3)﹣2+2t【练2】如图A 、B 两点对应的数分别为﹣2和4,已知点P 从点A 出发向右匀速运动点Q 从点B 出发,向左匀速运动.P 、Q 两点的速度分别为2/s 与1/s .设运动时间为t 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴点的移动--求数轴上点所对应的数
1.数轴上点A表示-1,则把点A向左移动2个单位长度之后到达点B,点B表
示的数是______
2.点A在数轴上的位置如图所示,把点A向右移动5个单位长度到达点B,则
点B表示的数是______
3.数轴上A、B、C、D三点的位置如图所示,点A向右移动2个单位长度到达
点______
4.数轴上点A表示2,则把点A向右移动3个单位长度之后到达点B,点B表
示的数是______
5.数轴上点A表示的数是-2,已知点A是由点B连续两次向左移动得到,第一
次移动2个单位长度,第二次移动3个单位长度,则点B表示的数是______
6.数轴上点A表示的数是6,点A先向右移动2个单位长度,又向左移动5个
单位长度,再向右移动1个单位长度,最终达到点B,则点B表示的数字是
______
7.数轴上将点A向右移动5个单位长度到达点B,点B表示的数是-3,那么点
A表示的数是______
8.如果点A表示数m,将点A向右移动7个单位长度,那么终点B表示的数是
4,那么m=______
9.数轴上点A表示-4,将点A向左移动2个单位长度,再向右移动4个单位长
度到达点B,那么点B表示的数是______
10.数轴上将点A向左移动3个单位长度到达点B,点B表示的数是-7,那么点
A表示的数是______
11.数轴上点A表示的数是-3,把点B向右移动3个单位长度,再向左移动2个
单位长度可以到达点A,那么点B表示的数是______
12.点A为数轴上表示-3的点,当点A沿数轴移动5个单位长度时,它所表示的
数是______
答案
1.-3
2.2
3.D
4.5
5.3
6.4
7.-8
8.-3
9.-2
10.-4
11.-4
12.2或-8。