实际问题的函数刻画
精 品 教 学 设 计4.2.1实际问题的函数刻画等

精品教学设计4.2.1 实际问题的函数刻画一、教学目标:1.进一步感受函数与现实世界的联系,强化用数学解决实际问题的意识.2.进一步尝试用函数刻画实际问题,通过研究函数的性质解决实际问题.二、教学重点、难点:1.教学重点能对实际问题进行函数刻画,将实际问题转化为函数模型,并利用函数性质来进行研究.2.教学难点对实际问题进行函数刻画.三、学法与教学用具:1.学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.2.教学用具:多媒体.四、教学设想:(一)引入实例,创设情景.在现实世界里,事物之间存在着广泛的联系,许多联系可以用函数刻画.用函数的观点看实际问题,是学习函数的重要内容.教师引导学生阅读例1,分析其中的数量关系,由学生自己根据数量关系,归纳概括出相应的函数特征.问题1当人的生活环境温度改变时,人体代谢率也有相应的变化,表4-2给出了实验的一组数据,这组数据能说明什么?解:在这个实际问题中出现了两个变量,一个是环境温度,另一个是人体的代谢率.不难看出,对于每一个环境温度都有唯一的人体代谢率与之对应,这就决定了一个函数关系.实验数据已经给出了几个特殊环境温度时的人体代谢率,为了使函数关系更直观,我们将表中的每一对实验值在直角坐标系中表示出来.在医学研究中,为了方便,常用折线把它们连接起来(如图4-5).根据图像,可以看出下列性质:(1)代谢率曲线在小于20℃的范围内是下降的,在大于30℃的范围内是上升的;(2)环境温度在20℃~30℃时,代谢率较低,并且较稳定,即温度变化时,代谢率变化不大;(3)环境温度太低或太高时,它对代谢率有较大影响.所以,临床上做“基础代谢率”测定时,室温要保持在20℃~30℃之间,这样可以使环境温度的影响最小.教师指出:在这个问题中,通过对实验数据的分析,可以确定由{4,10,20,30,38)到{60,44,40,40.5,54}的一个函数,通过描点,并且用折线将它们连接起来,使人们得到了一个新的函数,定义域扩大到了区间[4,38].对于实际的环境温度与人体代谢率的关系来说,这是一个近似的函数关系,它的函数图像,可以帮助我们更好地把握环境温度与人体代谢率的关系.(二)实例运用,巩固提高.问题2 某厂生产一种畅销的新型工艺品,为此更新专用设备和制作模具花去了200000元.生产每件工艺品的直接成本为300元,每件工艺品的售价为500元,产量x 对总成本C 、单位成本P 、销售收入R 以及利润L 之间存在什么样的函数关系?表示了什么实际含义?解 总成本C 与产量x 的关系C =200000+300x ;单位成本P 与产量x 的关系200000300P x=+销售收入R 与产量x 的关系R =500x ;利润L 与产量x 的关系L =R -C =200x -200000.以上各式建立的是函数关系.(1)从利润关系式可见,希望有较大利润应增加产量.若x <1000,则要亏损;若x =1000,则利润为零;若x >1000,则可盈利.这也可从图4-6看出,R 和C 的图像是两条直线,在它们的交点处利润为零.(2)从单位成本与产量的关系200000300P x=+可见,为了降低成本,应增加产量,以形成规模效益.问题3如图4-7,在一条弯曲的河道上,设置了六个水文监测站.现在需要在河边建一个情报中心,从各监测站沿河边分别向情报中心铺设专用通信电缆,怎样刻画专用通信电缆的总长度?解:情报中心在河边的位置一旦确定,每一个 水文监测站到情报中心的通信电缆长度(曲线段长度) 就唯一确定了,因此,表示情报中心位置的数值与专 用通信电缆的总长度就构成一个函数关系.现在将弯 曲的河道“拉直”,使刻画曲线段长度的问题变成了 刻画直线段长度的问题.将“变直了”的河道当作一 个数轴,不妨设A 为原点,AB =b ,AC =c ,AD =d ,AE =e ,AF =f 于是,水文监测站A ,B ,C ,D ,E 和F 的坐标就可以用0,b ,c ,d ,e ,f 表示出来.表示情报中心位置的数值可以看作一个变量,用x 表示,这样,对于给定的x 的值,就能计算出情报中心到每一个水文监测站的长度,从而可以得出所需电缆的总长度()||||||||||||f x x x b x c x d x e x f =+-+-+-+-+-.(三)课堂练习教材P 116练习1、2,并由学生演示,进行讲评。
实际问题与反比例函数课件人教版数学九年级下册

截面积)S(mm2)的反比例函数,其图象如图所示.由图可知: (1)y与S之间的函数解析式为__y_=__1_S2_8______; (2)当面条粗1.6 mm2时,面条的总长度是__8_0_m______
6.(5分)李老师参加了某电脑公司推出的分期付款购买电脑活动,他 购买的电脑价格为9 800元,交了首付之后每月付款y元,x个月结清余款, y与x满足如图的函数关系式,通过以上信息可知李老师的首付款为 ______3___8_0_0_________元.
(2) 公司决定把储存室的底面积 S 定为 500 m2,施工队
施工时应该向地下掘进多深? 解:把 S = 500 代入 S 104 ,得 d 500 104 , d 解得 d = 20 (m) . 如果把储存室的底面积定为 500 m²,施工时应向地下掘 进 20 m 深.
(3) 当施工队按 (2) 中的计划掘进到地下 15 m 时,公 司临时改变计划,把储存室的深度改为 15 m. 相应地,储存 室的底面积应改为多少 (结果保留小数点后两位)?
解:(1)3×10×60=1 800(个) (2)依题意得3×60xy=1 800,∴y=1x0 (3)当x=20时,y=1200 =12 (小时)=30(分钟),故 最少30分钟可以使就餐学生全部就餐
归纳新知
反实 比际 例问 函题 数中
的
过程: 分析实际情境→建立函数模型→明确数学问题
用函数模型解决实际问题

数学建模
演推 算理
关键
数学模型的解
实际问题的解
读出新概念丶新字母丶 读出相关制约.
在抽象、简化、明确变量和 参数的基础上建立一个明确 的数学关系
01 作业:
02 P130A组:1、2.
解:根据上表这些点的分布 特征,可考虑以二次函数或 指数函数模型(y=a·bx)作 为刻画这个地区未成年男性 的体重与身高关系的函数模 型.
1
若选二次函数,设为 y=ax2+bx+c,取其中的 三组数据(60,6.13),(80, 99.9),(100,15.02),代 入y=ax2+bx+c,可得 y=0.00146x20.01175x+1.579
0.8125.66ab, 2.86189ab.
解得
a=0.01547,b=-0.0635
பைடு நூலகம்这条直线是
身高/cm 120 130 140 150 160 170
体重/kg 20.92 26.86 31.11 38.85 47.25 55.05
以下是某地不同身高的未成年男性的体重平 均值表
身高/cm 60 70 80 90 100 110
当且仅当
,即n=4时,总费用最小.
解:设总花费为F,则总花费与进货次数的关系是F=500n+x+C且
则
问题2、电声器材厂在生产扬声器的过程中,有一 道重要的工序:使用胶水粘合扬声器中的磁钢和 夹板.长期以来,由于对胶水的用量没有一个确定 的标准,经常出现用胶过多,胶水外溢;或用胶 过少,产生脱胶,影响了产品质量,经过实验, 已有一些恰当用胶量的具体数据.
体重/kg
6.1 7.9 9.9 12. 3 0 9 15
实际问题的函数刻画

作业
P130 习题4-2 A组
B组
1
1
课堂练习
某中学的研究性学习小组为考察闽江口的一个小岛的湿
地开发情况,从某码头乘汽艇出发,沿直线方向匀速开往该岛,靠
近岛时,绕小岛环行两周后,把汽艇靠岸,上岛考察,然后乘汽艇 沿远航线提速返回,t为出发后的某一时刻,S为汽艇与码头在
8 7 6 5
4
3
2
1
50 100 150 200 250 300 350 400 450 500
X
从图中可知:这些点基本分布在一条直线上。
所以,可以用函数 y=ax+b 表示用胶量与磁 钢面积的关系。 取点(56.6 ,0.812),(189.0 ,2.86)代入:
0.812=56.6a+b 2.86=189.0a+b
10
20
30
40
温度/(℃ )
例2、 某厂什生产一种畅销的新型工艺品,为此更新专用设备 花去了200 000元,生产每件产品的成本为300元,每件工艺品 的售价为500元,产量x对总成本C、销售收入R以及利润L之间 存在怎么样的关系?表示了什么实际意义?
解:总成本C与产量x的关系: C=200 000+300x
时刻t下的距离,下列图像中大致能表示S=f(t)的函数关系
的是( )
销售收入R与产量x的关系:
R=500x 利润L与产量x的关系: L=R - C=200x – 200 000
y
R C 500 000
200 000
O
1 000
x
例3、 电声器材厂在生产扬声器过程中,有一道重要的工序:
使用胶水粘合标准,经常出现胶水过多,往外溢;过少,产
高中数学必修一 函数模型及其应用复习小结

函数模型及其应用复习小结复习目标:1.能用函数刻画实际问题,强化函数的应用意识.2.能利用计算器或计算机,比较指数函数、对数函数、及幂函数的增长差异,体会直线上升、指数爆炸、对数增长等不同函数模型增长的含义. 3.掌握实际问题的数学建模过程,能把所学的知识真正应用到实际生活中去.知识要点:一.不同函数模型能够刻画现实世界不同的变化规律.例如,指数函数、对数函数以及幂函数就是常用的描述现实世界中不同增长规律的函数模型.你能说说这三种函数模型的增长差异吗?你能举例说明直线上升、指数爆炸、对数增长等不同函数类型增长的含义吗?二.函数模型的应用,一方面是利用已知函数模型解决问题;另一方面是建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.你能结合实例说明应用函数模型解决问题的基本过程吗?三.用函数模型解决实际问题的过程中,往往涉及复杂的数据处理.在处理复杂数据的过程中,需要大量使用信息技术.因此在函数应用的学习中要注意充分发挥信息技术的作用.典型例题解析:例1. 某蛋糕厂生产某种蛋糕的成本为40元/个,出厂价为60元/个,日销售量为1000个.为适应市场需求,计划提高蛋糕档次,适度增加成本,若每个蛋糕成本增加的百分率为x (0<x <1),则每个蛋糕的出厂价相应提高的百分率为0.5x ,同时预计日销售量增加的百分率为0.8x ,已知日利润=(出厂价—成本)×日销售量,且设增加成本后的日利润为y . (Ⅰ)写出y 与x 的关系式;(Ⅱ)为使日利润有所增加,问x 应在什么范围内?分析:由于成本的增加,相应的出厂价也提高了,日销售量也增加,因此在计算增加成本后的日利润y时,要考虑这三个量的变化. 解:(Ⅰ)由题意得).10)(1034(2000)8.01(1000)]1(40)5.01(60[2<<++-=+⨯⨯+⨯-+⨯=x x x x x x y(Ⅱ)要保证日利润有所增加,当且仅当⎩⎨⎧<<>⨯--1001000)4060(x y本例主要是利用二次函数来解决实际问题,这是本节中的一个重点,也是难点,更是易错点.在解决实际问题时,常把实际问题转化为二次函数的有关知识来解决,如求最值问题等,但要注意函数的定义域.即 ⎩⎨⎧<<>+-100342x x x , 解得 430<<x点评:本例是实际应用问题,解题过程是从问题出发,引进数学符号,建立函数关系式,再研究函数关系式的定义域,并结合问题的实际意义做出回答,这个过程实际上就是建立数学模型的一种最简单的情形。
实际问题的函数刻画

L = R C = 200 x 200 000
以上各式建立的是函数关系 (1)从利润关系式可见,希望 (1)从利润关系式可见, 从利润关系式可见 有加大利润映增加产量. 有加大利润映增加产量. 500 000 则要亏损; 若 x < 1 000 , 则要亏损; 则利润为零; 若 x = 1 000 , 则利润为零; 200 000 0 则可盈利. 若 x > 1 000 , 则可盈利. 如图所示,R和C的图象是两条 如图所示, 直线,在它们的交点处利润为零. 直线,在它们的交点处利润为零.
E D B A C F
问题1 当环境温度改变时,人体代谢率也有相应的变化, 问题1:当环境温度改变时,人体代谢率也有相应的变化, 通过对实验数据的分析, 通过对实验数据的分析,它可以确定由环境温度值到人体 代谢率各数值的一个函数,通过对这个函数的学习, 代谢率各数值的一个函数,通过对这个函数的学习,我们 体会到用函数能够刻画(社会的)人的代谢率与温度( 体会到用函数能够刻画(社会的)人的代谢率与温度(自 然的)的关系。 然的)的关系。 问题2 总成本C 单位成本P 销售收入R 利润L 问题2:总成本C,单位成本P,销售收入R,利润L都是产 的函数。 量x的函数。 问题3 以直代曲”的办法, 问题3:用“以直代曲”的办法,可确定电缆总长度的函 通过以上实例可以看出函数作为描述变量之间依赖关系的 数。 数学模型在刻画现实问题中具有广泛的应用。 数学模型在刻画现实问题中具有广泛的应用。小到一个人 的成长过程,大到一个国家的人口增长; 的成长过程,大到一个国家的人口增长;小到一架飞机的 飞行路线,大到天体的运动轨迹; 飞行路线,大到天体的运动轨迹;小到冰块的温度变化过 大到全球温度的变暖,都可利用函数进行刻画和研究。 程,大到全球温度的变暖,都可利用函数进行刻画和研究。
人教版高中数学必修第一册4.2实际问题的函数建模

题型探究
重点难点 个个击破
类型一 利用已知函数模型求解实际问题 例1 某列火车从北京西站开往石家庄,全程277 km.火车出发10 min开出 13 km后,以120 km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶 的时间t之间的关系,并求火车离开北京2 h内行驶的路程. 解 因为火车匀速运动的时间为(277-13)÷120 =151 (h),所以 0≤t≤151. 因为火车匀速行驶时间t h所行驶路程为120t, 所以,火车运行总路程S与匀速行驶时间t之间的关系是S=13+120t(0≤t≤151 ). 2 h 内火车行驶的路程 S=13+120×(2-1600)=233 (km).
年份 1950 1951 1952 1953 1954 人数/万人 55 196 56 300 57 482 58 796 60 266
知识点三 数据拟合 思考 自由落体速度公式v=gt是一种函数模型.类比这个公式的发现过程, 简述什么是数据拟合? 答案 函数模型来源于现实(伽利略斜塔抛球),通过收集数据(打点计时器 测量),画散点图分析数据(增长速度、单位时间内的增长量等),寻找或选 择函数(假说)来作为函数模型,再检验这个函数模型是否符合实际,这就 是数据拟合. 由优惠办法①得函数关系式为y1=20×4+5(x-4)=5x+60(x≥4,x∈N+).
由 优 惠 办 法 ② 得 函 数 关 系 式 为 y2 = (20×4 + 5x)×92% = 4.6x + 73.6(x≥4 ,
x∈N+).
当该顾客购买茶杯40个时,采用优惠办法①应付款y1=5×40+60=260元;
已知此生产线年产量最大为210吨.若每吨产品平均出厂价为40万元,那么当
年产量为多少吨时,可以获得最大利润?最大利润是多少?
2024届新高考一轮复习北师大版 第2章 第9节 实际问题中的函数模型 课件(54张)

A.当 T=220,P=1 026 时,二氧化碳处于液态 B.当 T=270,P=128 时,二氧化碳处于气态 C.当 T=300,P=9 987 时,二氧化碳处于超临界状态 D.当 T=360,P=729 时,二氧化碳处于超临界状态
返回导航
[对点查验]
1.在某个物理实验中,测得变量 x 和变量 y 的几组数据,如下表:
x 0.50 0.99 2.01 3.98 y -0.99 -0.01 0.98 2.00
则对 x,y 最适合的拟合函数是( )
A.y=2x
B.y=x2-1
C.y=2x-2
D.y=log2x
返回导航
D 根据 x=0.50,y=-0.99,代入计算,可以排除 A;根据 x=2.01, y=0.98,代入计算,可以排除 B,C;将各数据代入函数 y=log2x,可知满 足题意.故选 D.
则1200
×23
n
≤1
1 000
,即23
n ≤210 ,
由 n lg
2 3
≤-lg 20,即 n(lg 2-lg 3)≤-(1+lg 2),
得 n≥lg1+3-lglg22 ≈7.4,故选 BC.
返回导航
4.已知某种动物繁殖量 y(只)与时间 x(年)的关系为 y=alog3(x+1),设 这种动物第 2 年有 100 只,到第 8 年它们发展到________________只.
随 x 的增大逐渐表 随 x 的增大逐渐表 随 n 值变化而 现为与_y_轴__平行 现为与_x_轴__平行 各有不同
返回导航
2.常见的函数模型 (1)反比例函数模型:f (x)=kx (k 为常数,k≠0); (2)一次函数模型:f (x)=kx+b(k,b 为常数,k≠0); (3)二次函数模型:f (x)=ax2+bx+c(a,b,c 为常数,a≠0); (4)指数函数模型:f (x)=abx+c(a,b,c 为常数,a≠0,b>0,b≠1); (5)对数函数模型:f (x)=mlogax+n(m,n,a 为常数,m≠0,a>0,a≠ 1); (6)幂函数模型:f (x)=axn+b(a,b,n 为常数,a≠0,n≠1).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题的函数刻画
【学习目标】
1.尝试用函数刻画实际问题。
2.了解常见的函数模型,体验数学建模的基本思想。
3.培养学生用数学的眼光看问题,用数学语言表述实际问题。
【学习重点】
用函数观点刻画实际问题。
【学习难点】
准确理解题意,把实际问题抽象成函数问题。
【课前预习案】
一、课本助读
常见的函数模型:
二、预习自测
商店的一种商品每个进价80元,零售价100元. 为了促进销售,开展购一件商品赠送一个小礼品的活动,在一定的范围内,礼品价格每增加1元,销售量增加10%. 求利润与礼品价格n之间的函数关系.
三、我的疑惑
【课堂探究案】
一、探究问题
1.当人的生活环境温度改变时,人体代谢率也有相应的变化,下表给出了实验的一组数据,这组数据说明了什么?
环境温度
4 10 20 30 38 代谢率/[4185J/(2
m h )] 60
44
40
40.5
54
(1)在这个实际问题出现了几个变量?它们之间能确定函数关系吗?为什么?
(2)结合上图分析代谢率在什么范围下降,什么范围上升?
(3)温度在什么范围内代谢率变化较小比较稳定?什么范围内代谢率变化较大?
2.某厂生产一种畅销的新型工艺品,为此更新专用设备和制作模具花去200000元,生产每件工艺品的直接成本为300元,每件工艺品的售价为500元,产量x 对总成本C 、单位成本P 、销售收入R 以及利润L 之间存在什么样的函数关系?表示了什么实际含义?
(1)总成本C 与产量x 的关系是什么? (2)单位成本P 与产量x 的关系是什么? (3)销售收入R 与产量x 的关系是什么? (4)利润L 与产量x 的关系是什么? 3. 如图,在一条弯曲的河道上,设置了6个水文监测站. 现在需要在河边建一个情报中心,从各监测站沿河边分别向情报中心铺设专用通信电缆,怎样刻画专用通信电缆的总长度?
二.课堂小结
怎样用数学知识刻画实际问题(即怎样解答应用题)呢?一般可以分为几步?
【课后检测案】
在测量某物理量的过程中,因仪器和观察的误差,使得n 次测量分别得到
n a a a ,,,21 ,共n 个数据,我们规定所测量物理量的“最佳近似值”a 是这样一
个:与其他近似值比较,a 与各数据差的平方和最小. 依此规定,请用n a a a ,,,21 表示出a .。