高中数学随机变量分布列知识点

合集下载

分布列知识点总结

分布列知识点总结

分布列知识点总结一、概念介绍1.1 分布列的定义分布列是离散随机变量的取值和相应概率的列。

对于离散型随机变量X,其所有可能取值x1,x2,……,xn及其上对应的概率P(X=x1),P(X=x2),……,P(X=xn)就构成了X的分布列。

1.2 分布列的性质(1)分布列的概率和为1对于任意一个随机变量X,其分布列中所有可能取值的概率之和为1,即∑P(X=xi)=1。

(2)随机变量的取值是有限个或可列无限个分布列中的随机变量的取值只能是有限个或可列无限个,不可能是连续的。

二、分布列的应用2.1 用分布列计算期望和方差分布列是计算离散随机变量的期望和方差的有力工具。

根据期望和方差的公式,可以直接利用分布列中的取值和概率来计算期望和方差。

2.2 利用分布列进行概率计算通过分布列,可以计算得到随机变量取某个值的概率,或者计算随机变量在某个范围内取值的概率等。

这对于一些概率问题的求解非常有用。

三、分布列的例子3.1 二项分布二项分布是一种常见的离散型概率分布,用于描述在n次独立重复的伯努利试验中成功的次数。

设X为二项分布随机变量,其分布列为:X 0 1 2 …… nP C(n,0) * p^0 * (1-p)^n C(n,1) * p^1 * (1-p)^(n-1) C(n,2) * p^2 * (1-p)^(n-2) …… C(n,n) * p^n * (1-p)^0其中,p为成功的概率,n为试验的次数。

3.2 泊松分布泊松分布描述了单位时间内随机事件发生的次数。

设X为泊松分布随机变量,其分布列为:X 0 1 2 3 4 ……P e^(-λ) * λ^0 / 0! e^(-λ) * λ^1 / 1! e^(-λ) * λ^2 / 2! e^(-λ) * λ^3 / 3! e^(-λ) * λ^4 / 4! ……其中,λ为单位时间内随机事件发生的平均次数。

四、分布列与其他概率分布的关系4.1 分布列与连续型概率分布分布列适用于离散型随机变量,而连续型随机变量则需要用概率密度函数进行描述。

高中数学知识点总结及公式:离散型随机变量的分布列

高中数学知识点总结及公式:离散型随机变量的分布列

高中数学知识点总结及公式:离散型随机变量的分布列>常用公式1.离敢型随机变量的分布列的性质土(O Pi > Or </=1, 2, 3,…,n);〔2) Pi 5 十…十%二1-2.离散型随机变量朋g从参数为M M, Ti的超几何分布』则P(Z= m) = (0 < m- < 0^ E和M中较小的—个.C N3.条件概率公式:F〔E ⑷二鶴^ P(A)>0.4.如果事件眉一生,…「山就互相独立"那么讴个事件都发生的概率等于每个事件发生的概率的积,即卩(久门彼门…PM』=P(A) P(4Q • P(A n) “N如果在一次试验中事件4发生的概率是戸那么在加吹独立重复试验中事件?1恰好发生花次的概率:P n (fc) = C^p ft (1 - p)n-ft (fc = Q7 1, 2,…,n).6・离散型随机变量X的均值或数学期EQO =扫巧 + x 佃+ …+ x rt p n(p i+ 宀+ …+ % = 1).特别地二Q)若*服从两点分布,贝fjE(X)-p(2)^X-B(n f p),则E(X} = xp(3)E(aX ± b) = aE(X) ± b7.离散型随机变量X的方差!D(X)=站一EC?)]% + [x2一E(Z)hi + …+ 必一E(Z)]%・特别地2(1)若X服从两点分布,则D(JQ = p(l - p)(2)若X~B(m p),则D(X) = np(l-p)(3)D(aX + &) = a2D(X)8.正态变量概率密度曲线的函数表达式,i _d)2fM = V^e 2ff2 , %GR,其中“,CT是参数,且CT > 0, —OO < fl <十8,式中“和CT分别是正态变量的数学期望和标准差.期望为如标准差为(J的正态分布通常记作N(/l,。

2).当“ =0,(7=1时,正态总体称为标准正态分布:记作N(0, 1).标准正态分布的函数表示式是/(x) = -7= e~T, r e R.。

高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解11 离散型随机变量及其分布列

高考数学总复习考点知识专题讲解 专题11离散型随机变量及其分布列知识点一 随机变量的概念、表示及特征1.概念:一般地,对于随机试验样本空间Ω中的每个样本点ω都有唯一的实数X (ω)与之对应,我们称X 为随机变量.2.表示:用大写英文字母表示随机变量,如X ,Y ,Z ;用小写英文字母表示随机变量的取值,如x ,y ,z .3.特征:随机试验中,每个样本点都有唯一的一个实数与之对应,随机变量有如下特征:(1)取值依赖于样本点. (2)所有可能取值是明确的. 知识点二 离散型随机变量可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量. 判断离散型随机变量的方法 (1)明确随机试验的所有可能结果; (2)将随机试验的结果数量化;(3)确定试验结果所对应的实数是否可以一一列出,如能一一列出,则该随机变量是离散型随机变量,否则不是.【例1】((2023•丰台区期末)下面给出的四个随机变量中是离散型随机变量的为() ①高速公路上某收费站在半小时内经过的车辆数1X ;②一个沿直线2y x 进行随机运动的质点离坐标原点的距离X;③某同学射击3次,命中的次数3X;④某电子元件的寿2命X;4A.①②B.③④C.①③D.②④【例2】(2023•从化区期中)袋中有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球的号码之和为随机变量X,则X所有可能取值的个数是()A.25B.10C.9D.5知识点三离散型随机变量的分布列及其性质1.定义:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个值x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.2.分布列的性质(1)p i≥0,i=1,2,…,n.(2)p1+p2+…+p n=1.分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.【例3】(2023•辽宁期末)随机变量X的分布列如下表所示,则(2)(…)P XA .0.1B .0.2C .0.3D .0.4【例4】(2022•朝阳区开学)设随机变量X 的分布列为()(1P X k k k λ===,2,3,4),则λ的值为() A .10B .110C .10-D .110-【例5】(2023•珠海期末)已知某离散型随机变量ξ的分布列为:则(q =)A .13和1-B .13C .12D .1-【例6】(2022•多选•天津模拟)设随机变量ξ的分布列为()(15kP ak k ξ===,2,3,4,5),则()A .115a =B .141()255P ξ<<= C .112()10215P ξ<<=D .23()510P ξ=…【例7】(2023•湖北模拟)设随机变量ξ的分布列如表:则下列正确的是()A .当{}n a 为等差数列时,5615a a += B .数列{}n a 的通项公式可以为109(1)n a n n =+C .当数列{}n a 满足1(1,2,9)2n na n ==时,10912a =D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,10)时,1110(1)n a n n =+知识点四 两点分布如果P (A )=p ,则P (A )=1-p ,那么X 的分布列为我们称X 服从两点分布或0-1【例8】(多选)若离散型随机变量X 的分布列如下表所示,则下列说法错误的是()A .常数c 的值为23或13B .常数c 的值为23C .1(0)3P X ==D .2(0)3P X ==【例9】(2023•阜南县期末)从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【例10】(2023•崂山区期末)某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是2 3,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X的分布列.(3)求这位挑战者闯关成功的概率.同步训练1.(2022•多选•临朐县开学)下列X是离散型随机变量的是()A.某座大桥一天经过的某品牌轿车的辆数XB .一天内的温度为XC .某网页一天内被点击的次数XD .射击运动员对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该运动员在一次射击中的得分2.(2023•上蔡县校级月考)设随机变量ξ的概率分布列如下表:则(|2|1)(P ξ-==) A .712B .12C .512D .163.(2023•周至县期末)设随机变量X 的分布列为()(1,2,3,4,5,6)2kcP X k k ===,其中c 为常数,则(2)P X …的值为() A .34B .1621C .6364D .64634.(2023•多选•宝安区期中)已知随机变量ξ的分布如下:则实数a 的值为()A .12-B .12C .14D .14-5.(2023•和平区校级期末)设随机变量与的分布列如下:则下列正确的是()A .当{}n a 为等差数列时,5615a a +=B .当数列{}n a 满足1(12n na n ==,2,⋯,9)时,10912a = C .数列{}n a 的通项公式可以为109(1)n a n n =+D .当数列{}n a 满足2()(1k P k k a k ξ==…,2,⋯,10)时,1110(1)n a n n =+6.(2023•郫都区模拟)甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.。

离散型随机变量及其分布列知识点

离散型随机变量及其分布列知识点

离散型随机变量及其分布列知识点离散型随机变量及其分布列知识点离散型随机变量是指在有限个或无限个取值中,只能取其中一个数值的随机变量。

离散型随机变量可以用分布列来描述其概率分布特征。

离散型随机变量的概率分布列概率分布列是描述离散型随机变量的概率分布的表格,通常用符号P 表示。

其一般形式如下:P(X=x1)=p1P(X=x2)=p2P(X=x3)=p3…P(X=xn)=pn其中,Xi表示随机变量X的取值,pi表示随机变量X取值为Xi的概率。

离散型随机变量的特点1. 离散型随机变量只取有限或无限个取值中的一个,变化不连续。

2. 取值之间具有间隔或间距。

3. 每个取值对应一个概率,概率分布可用概率分布列来体现。

4. 概率之和为1。

离散型随机变量的常见分布1. 0-1分布0-1分布是指当进行一次伯努利试验时,事件发生的概率为p,不发生的概率为1-p的离散型随机变量的分布。

其分布列为:P(X=0)=1-pP(X=1)=p2. 二项分布二项分布是进行n次伯努利试验中,事件发生的概率为p,不发生的概率为1-p时,恰好出现k次事件发生的离散型随机变量的分布。

其分布列为:P(X=k)=C(n,k)p^k(1-p)^(n-k)其中,C(n,k)为从n中选出k个的组合数。

3. 泊松分布泊松分布是指在某个时间段内,某一事件发生的次数符合泊松定理的离散型随机变量的分布。

其分布列为:P(X=k)=λ^ke^(-λ)/k!其中,λ为这段时间内事件的平均发生次数。

总结离散型随机变量及其分布列是概率论中的重要基础概念之一,具有广泛的应用。

掌握离散型随机变量及其分布列的知识点对于深入理解概率论及其实际应用有重要意义。

高二数学选修2-3离散型随机变量及分布列(一)

高二数学选修2-3离散型随机变量及分布列(一)

〔1〕求常数a;〔2〕求P(1<ξ<4)
例3:一袋中装有6个同样大小的小球,编号为1、2、3、4、5、
6,现从中随机取出3个小球,以 表示取出球的最大号码,
求 的分布 列.
解: 的所有取值为:3、4、5、6.
“ 3” 表示其中一个球号码等于 “3〞,另两个都比“3〞小
“ 4” 表示其中一个球号码等于“4
Y=
0,掷出奇数点 1,掷出偶数点
思考2:
随机变量与函数有类似的地方吗?
随机变量和函数都是一种映射,随机变量把随 机试验的结果映为实数,函数把实数映为实数。在 这两种映射之间,试验结果的范围相当于函数的定 义域,随机变量的取值范围相当于函数的值域。我 们把随机变量的取值范围叫做随机变量的值域。
例如,在含有10件次品的100件产品中,任意抽取 4件,可能含有的次品件数X将随着抽取结果的变化而 变化,是一个随机变量。其值域是{0,1,2,3,4}.
〔4〕接连不断地射击,首次命中目标需要的射击次数 .
Байду номын сангаас( =1、2、3、···、n、···)

〔5〕某一自动装置无故障运转的时间 .

( 取0,内的一切值)

〔6〕某林场树木最高达50米,此林场树木的高度 .
( 取0,50内的一切值)
注1:随机变量分为离散型随机变量和连续型 随机变量。
注2:某些随机试验的结果不具备数量性质, 但仍可以用数量来表示它。
P1
2
1 1 …1
48
2 n1
P
1 3
1 2 33
1 3
2 3
2

1 3
2 3
n
2、设随机变量的分布列为 P( i) a1i, i 1,2,3

高中数学离散型随机变量的分布列、均值与方差

高中数学离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差 结 束
抓高考命题的“形”与“神” 离散型随机变量均值与方差的计算
1.均值与方差的一般计算步骤 (1)理解X的意义,写出X的所有可能取的值; (2)求X取各个值的概率,写出分布列; (3)根据分布列,由均值的定义求出均值E(X),进一步由公
n
式D(X)= xi-EX2pi=E(X2)-(E(X))2求出D(X).
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[易错提醒] 利用分布列中各概率之和为1可求参数的值,此 时要注意检验,以保证每个概率值均为非负数.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
求离散型随机变量的分布列 [例2] 某商店试销某种商品20天,获得如下数据:
i=1
了随机变量X与其均值E(X)的_平__均__偏__离__程__度__,其算术平方根 DX为随机变量X的标准差. 2.均值与方差的性质 (1)E(aX+b)=_a_E__(X__)+__b__, (2)D(aX+b)=_a_2_D_(_X_)_ (a,b为常数).
突破点一
突破点二
课时达标检测
考点贯通
(2)设X为选出的2人参加义工活动次数之差的绝对值,求 随机变量X的分布列.
突破点一
突破点二
课时达标检测
离散型随机变量的分布列、均值与方差 结 束
[解] (1)由已知,有P(A)=C31CC41+120 C23=13.
所以事件A发生的概率为13.
(2)随机变量X的所有可能取值为0,1,2.
P(X=0)=C23+CC21320+C24=145,
突破点一

2022年人教A版高中数学选择性必修第三册第七章随机变量及其分布列 章末知识梳理

2022年人教A版高中数学选择性必修第三册第七章随机变量及其分布列 章末知识梳理

返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
事实上,对于具体问题,若能设出 n 个事件 Ai(i=1,2,…,n),使之 满足AA1iA+j=A2∅+…+An=Ω,(任意两个事件互斥,i,j=1,2,…,n,i≠j).(1) 就可得 B=BΩ=BA1+BA2+…+BAn.(2)这样就便于应用概率的加法公 式和乘法公式.
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
③二项分布与超几何分布的区别:有放回抽样,每次抽取时的总体 没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复 试验,此种抽样是二项分布模型.而不放回抽样,取出一个则总体中就 少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模 型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回 抽样还是不放回抽样.
i=1
i=1
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
P(Ai|B)=PAPiPBB |Ai

PAiPB|Ai
k
,i=1,2,…,n
PAkPB|Ak
i=1
3.独立性与条件概率的关系:当 P(B)>0 且 P(AB)=P(A)P(B)时,
有 P(A|B)=PPABB=PAPPBB=P(A)
率公式求解.
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
[解析] 解法一:记“至少出现 2 枚正面朝上”为事件 A,“恰好出 现 3 枚正面朝上”为事件 B,所求概率为 P(B|A),事件 A 包含的基本事 件的个数为 n(A)=C52+C53+C54+C55=26,

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结

概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章随机变量及其分布
内容提要:
一、随机变量的定义
设是一个随机试验,其样本空间为,若对每一个样本点,都有唯一确定的实数与之对应,则称上的实值函数是一个随机变量(简记为)。

二、分布函数的概念和性质
1.分布函数的定义
设是随机变量,称定义在上的实值函数
为随机变量的分布函数。

2.分布函数的性质
(1),
(2)单调不减性:,
(3)
(4)右连续性:。

注:上述4个性质是函数是某一随机变量的分布函数的充要条件。

在不同的教科书上,分布函数的定义可能有所不同,例如,其性质也会有所不同。

(5)
注:该性质是分布函数对随机变量的统计规律的描述。

三、离散型随机变量
1.离散型随机变量的定义
若随机变量的全部可能的取值至多有可列个,则称随机变量是离散型随机变量。

2.离散型随机变量的分布律
(1)定义:离散型随机变量的全部可能的取值以及取每个值时的概率值,称为离散型随机变量的分布律,表示为
或用表格表示:
x1x2…x n…
p k P1p2…p n…
或记为
~
(2)性质:,
注:该性质是是某一离散型随机变量的分布律的充要条件。

其中。

注:常用分布律描述离散型随机变量的统计规律。

3.离散型随机变量的分布函数
=,它是右连续的阶梯状函数。

4.常见的离散型分布
(1)两点分布(0—1分布):其分布律为

0 1
p 1–p p
(2)二项分布
(ⅰ)二项分布的来源—重伯努利试验:设是一个随机试验,只有两个可能的结果及,,将独立重复地进行次,则称这一串重复的独立试验为重伯努利试验。

(ⅱ)二项分布的定义
设表示在重伯努利试验中事件发生的次数,则随机变量的分布律为
,,
称随机变量服从参数为的二项分布,记作。

注:即为两点分布。

(3)泊松分布:若随机变量的分布律为
,,
则称随机变量服从参数为的泊松分布,记作(或。

高中数学系列2—3练习题(2.1)
一、选择题:
1、如果X是一个离散型随机变量,则假命题是( )
A. X取每一个可能值的概率都是非负数;
B. X取所有可能值的概率之和为1;
C. X取某几个值的概率等于分别取其中每个值的概率之和;
D. X在某一范围内取值的概率大于它取这个范围内各个值的概率之和
2①某寻呼台一小时内收到的寻呼次数X;②在(0,1)区间内随机的取一个数X;③某超市
一天中的顾客量X 其中的X 是离散型随机变量的是( )
A .①;
B .②;
C .③;
D .①③
3、设离散型随机变量ξ的概率分布如下,则a 的值为( )
X
1 2 3 4
P
1
6 13
16
a
A .12
B .16
C .13
D .14
4、设随机变量X 的分布列为()()1,2,3,,,k P X k k n λ===⋯⋯,则λ的值为( )
A .1;
B .
12; C .13; D .14
5、已知随机变量X 的分布列为:()1
2
k p X k ==, ,3,2,1=k ,
则()24p X <≤=( ) A.163 B. 41 C. 161 D. 16
5 6、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )
A. 4
B. 6
C. 10
D. 无法确定 7、投掷两枚骰子,所得点数之和记为X ,那么4X
=表示的随机实验结果是( )
A. 一枚是3点,一枚是1点
B. 两枚都是2点
C. 两枚都是4点
D. 一枚是3点,一枚是1点或两枚都是2点 8、设随机变量X 的分布列为()()21,2,3,,,k
P X k k n λ
==⋅=⋯⋯,则λ的值为( )
A .1;
B .12;
C .13;
D .1
4
二、填空题:
9 、下列表中能成为随机变量X 的分布列的是 (把全部正确的答案序号填上)
X -1 0 1 p
0.3
0.4
0.4
X
1 2 3
p
0.4
0.7 -0.1
X
5 0 -5 p
0.3
0.6
0.1
()1
2,1,2,3,
,21
k n P X k k n -===-
10、已知2Y X =为离散型随机变量,Y 的取值为1,2,3,,10,则X 的取值为
11、一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为
三、解答题:
12、某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从
这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量
(1)求租车费η关于行车路程ξ的关系式;
(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?
13、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列. 分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率.
14、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,
()1
,2,3,4,5,P X k k k
===


而随机终止.设分裂n 次终止的概率是n
21
(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X .
高中数学系列2—3练习题(2.1)参考答案
一、选择题:
1、D
2、D
3、C
4、B
5、A
6、C
7、D
8、C
二、填空题: 9、 ③④ 10、
13579,1,,2,,3,,4,,522222
11、 3,4,5 三、解答题:
12、解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2
(2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟.
13、解:设黄球的个数为n ,由题意知
绿球个数为2n ,红球个数为4n ,盒中的总数为7n . ∴ 44(1)77n P X n ==
=,1(0)77n P X n ===,22(1)77
n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为
X 1 0 -1
P
74
71 7
2
14、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为
X 2 4 8 16 ... n 2
...
P
21 41 81 16
1 ...
n 2
1
... ∴ (10)(2)(4)(8)P X P X P X P X ≤==+=+==8
842=++.。

相关文档
最新文档