常微分方程作业答案
常微分方程第一、二、三次作业参考答案

1、给定一阶微分方程2dyx dx=: (1) 求出它的通解;解:由原式变形得:2dy xdx =.两边同时积分得2y x C =+.(2) 求通过点(2,3)的特解;解:将点(2,3)代入题(1)所求的得通解可得:1C =-即通过点(2,3)的特解为:21y x =-.(3) 求出与直线23y x =+相切的解;解:依题意联立方程组:223y x Cy x ⎧=+⎨=+⎩故有:2230x x C --+=。
由相切的条件可知:0∆=,即2(2)4(3)0C --⨯-+=解得4C =故24y x =+为所求。
(4) 求出满足条件33ydx =⎰的解。
解:将 2y x C =+代入330dy =⎰,可得2C =-故22y x =-为所求。
2、求下列方程的解。
1)3x y dydx-= 2)233331dy x y dx x y -+=--解:依题意联立方程组:23303310x y x y -+=⎧⎨-+=⎩ 解得:2x =,73y =。
则令2X x =-,73Y y =-。
故原式可变成:2333dY x ydX x y-=-. 令Yu X =,则dy Xdu udx =+,即有 233263u dxdu u u x-=-+.两边同时积分,可得122(263)||u u C X --+= .将732y u x -=-,2X x =-代入上式可得: 12227()614323|2|2(2)y y C x x x -⎛⎫- ⎪--+=- ⎪-- ⎪⎝⎭.即上式为所求。
3、求解下列方程:1)24dyxy x dx+=. 解:由原式变形得:22dyxdx y=-. 两边同时积分得:12ln |2|y x C --=+. 即上式为原方程的解。
2)()x dyx y e dx-=. 解:先求其对应的齐次方程的通解: ()0dyx y dx -=. 进一步变形得:1dy dx y=.两边同时积分得:x y ce =.利用常数变异法,令()x y c x e =是原方程的通解。
常微分方程试题及答案

常微分方程试题及答案一、单项选择题(每题5分,共20分)1. 下列哪一项不是常微分方程的特点?A. 未知函数是连续的B. 未知函数是可微的C. 未知函数的导数是未知的D. 方程中包含未知函数的导数答案:A2. 常微分方程的解是指满足方程的函数,下列哪一项不是解的性质?A. 唯一性B. 存在性C. 可微性D. 可积性答案:D3. 一阶线性微分方程的一般形式是:A. \( y' + p(x)y = q(x) \)B. \( y' = p(x)y + q(x) \)C. \( y' - p(x)y = q(x) \)D. \( y' + p(x)y = q(x) \) 或 \( y' - p(x)y = q(x) \)答案:A4. 已知微分方程 \( y'' - y = 0 \) 的一个特解是 \( y = e^x \),那么它的通解是:A. \( y = C_1e^x + C_2e^{-x} \)B. \( y = C_1e^x + C_2 \)C. \( y = C_1e^x + C_2e^x \)D. \( y = C_1 + C_2e^{-x} \)答案:A二、填空题(每题5分,共20分)1. 微分方程 \( y'' + y' + y = 0 \) 的通解是 \( y = C_1e^{-x}+ C_2e^{-\frac{1}{2}x} \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
2. 微分方程 \( y'' - 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
3. 微分方程 \( y'' + 4y = 0 \) 的通解是 \( y = C_1\cos(2x) +C_2\sin(2x) \),其中 \( C_1 \) 和 \( C_2 \) 是常数。
常微分方程课后习题答案

1 dy y
2xdx, 两边同时积分得:ln y
x2 c,即y
e c x2 把x
0, y
1代入得
e c 1,故它的特解为y
x
2
。
y 2. 2 dx (x 1)dy 0, 并求满足初始条件:x=0,y=1 的特解.
解:对原式进行变量分离得:
1 dx 1 dy,当y 0时,两边同时积分得;ln x 1 1 c,即y 1
解: dy ( y3 )2 2x2 dy3 3[(y3 )2 2x2 ],,令y3 u,则原方程化为
dx y 2 (2xy3 x2 dx
解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0
dxy-d(y 2 -y)-dx 2 +x=c
xy-y 2 +y-x 2 -x=c
14: dy = x y 5 dx x y 2
解:原方程为:(x-y-2)dy=(x-y+5)dx
1 du - 1 =u 2 +3 4 dx 4 du =4 u 2 +13 dx u= 3 tg(6x+c)-1
2 tg(6x+c)= 2 (x+4y+1).
3
16:证明方程 x dy =f(xy),经变换 xy=u 可化为变量分离方程,并由此求下列方程: y dx
1) y(1+x 2 y 2 )dx=xdy
1 u2
x
arcsin y =sgnx ln|x|+c x
7. tgydx-ctgxdy=0
《常微分方程》答案_习题4.2

习题4.21. 解下列方程(1)045)4(=+''-x x x 解:特征方程1122045432124-==-===+-λλλλλλ,,,有根故通解为x=tt t t e c e c e c e c --+++432221 (2)03332=-'+''-'''x a x a x a x 解:特征方程0333223=-+-a a a λλλ有三重根a =λ故通解为x=at at at e t c te c e c 2321++ (3)04)5(=''-x x解:特征方程0435=-λλ有三重根0=λ,=4λ2,=5λ-2 故通解为54232221c t c t c e c e c x t t ++++=-(4)0102=+'+''x x x解:特征方程01022=++λλ有复数根=1λ-1+3i,=2λ-1-3i故通解为t e c t e c x t t 3sin 3cos 21--+= (5) 0=+'+'x x x解:特征方程012=++λλ有复数根=1λ,231i +-=2λ,231i-- 故通解为t ec t ec x t t 23sin 23cos 212211--+=(6) 12+=-''t s a s 解:特征方程022=-a λ有根=1λa,=2λ-a当0≠a 时,齐线性方程的通解为s=at at e c e c -+21Bt A s +=~代入原方程解得21aB A -== 故通解为s=at at e c e c -+21-)1(12-t a当a=0时,)(~212γγ+=t t s 代入原方程解得21,6121==γγ 故通解为s=t c c 21+-)3(612+t t(7) 32254+=-'+''-'''t x x x x解:特征方程025423=-+-λλλ有根=1λ2,两重根=λ 1 齐线性方程的通解为x=t t t te c e c e c 3221++又因为=λ0不是特征根,故可以取特解行如Bt A x +=~代入原方程解得A=-4,B=-1故通解为x=t t t te c e c e c 3221++-4-t (8) 322)4(-=+''-t x x x解:特征方程121201224-===+-λλλλ重根,重根有 故齐线性方程的通解为x=t t t t te c e c te c e c --+++4321取特解行如c Bt At x ++=2~代入原方程解得A=1,B=0,C=1 故通解为x=t t t t te c e c te c e c --+++4321+12+t (9)t x x cos =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=--取特解行如t B t A x sin cos ~+=代入原方程解得A=21,21-=B 故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--)sin (cos 21t t +-(10) t x x x 2sin 82=-'+''解:特征方程022=-+λλ有根=1λ-2,=2λ 1 故齐线性方程的通解为x=t t e c e c 221-+ 因为+-2i 不是特征根取特解行如t B t A x 2sin 2cos ~+=代入原方程解得A=56,52-=-B 故通解为x=t t e c e c 221-+t t 2sin 562cos 52-- (11)t e x x =-'''解:特征方程013=-λ有复数根=1λ,231i +-=2λ,231i--13=λ 故齐线性方程的通解为t t t e c t e c t ec x 321221123sin 23cos ++=-- =λ1是特征方程的根,故t Ate x =~代入原方程解得A=31故通解为t t t e c t e c t ec x 321221123sin 23cos ++=--+t te 31(12)t e s a s a s =+'+''22解:特征方程0222=++a a λλ有2重根=λ-a 当a=-1时,齐线性方程的通解为s=t tte c e c 21+,=λ1是特征方程的2重根,故t e At x 2~=代入原方程解得A=21通解为s=22121t te c e c t t ++,当a ≠-1时,齐线性方程的通解为s=at atte c e c --+21,=λ1不是特征方程的根,故t Ae x =~代入原方程解得A=2)1(1+a故通解为s=at at te c e c --+21+te a 2)1(1+ (13)t e x x x 256=+'+''解:特征方程0562=++λλ有根=1λ-1,=2λ-5 故齐线性方程的通解为x=tte c e c 521--+=λ2不是特征方程的根,故t Ae x 2~=代入原方程解得A=211 故通解为x=t t e c e c 521--++t e 2211 (14)t e x x x t cos 32-=+'-''解:特征方程0322=+-λλ有根=1λ-1+2i,=2λ-1-2i故齐线性方程的通解为t e c t e c x t t 2sin 2cos21+=i ±-1不是特征方程的根, 取特解行如t e t B t A x -+=)sin cos (~代入原方程解得A=414,415-=B 故通解为t e c t e c x t t 2sin 2cos21+=+t e t t --)sin 414cos 415((15) t t x x 2cos sin -=+''解:特征方程012=+λ有根=1λi,=2λ- i 故齐线性方程的通解为t c t c x sin cos 21+=t x x sin =+'',=1λi,是方程的解 )sin cos (~t B t A t x +=代入原方程解得 A=21- B=0 故t t x cos 21~-=t x x 2cos -=+'' t B t A x 2sin 2cos ~+=代入原方程解得 A=31B=0 故t x 2cos 31~= 故通解为t c t c x sin cos 21+=t t cos 21-t 2cos 31+习 题 6-11. 求出齐次线性微分方程组y t A dtdy)(=的通解,其中A (t )分别为:(1)⎪⎪⎭⎫ ⎝⎛=1011)(t A ;(2)⎪⎪⎭⎫⎝⎛-=0110)(t A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000010100)(t A 。
15春华师《常微分方程》在线作业答案

D. y'+y^2=0
正确答案:ABC
7.下列微分方程中,哪些不是可分离变量?()。
A. dy/dx+y/x=e
B. dy/dx=k(x-a)(b-y)(k,a,b是常数)
C. dy/dx-siny=x
D. y'+xy=y^2*e^x
正确答案:ACD
8.在下列函数中,不可能是微分方程y''+y=0的解的函数有()。
D. y''+y=cosx
正确答案:C
19. f(y)连续可微是保证方程dy/dx=f(y)解存在且唯一的()条件.
A.必要
B.充分
C.充分必要
D.必要非充分
正确答案:B
20.方程dy/dx=y^(1/2)+1()奇解.
A.有一个
B.有两个
C.无
D.有无数个
正确答案:C
华师《常微分方程》在线作业
二、多选题(共10道试题,共20分。)
1.下列哪些不可以作为变量可分离方程M(x)N(y)dx+p(x)q(y)dy=0的积分因子?()
A. 1/(N(y)+P(x))
B. 1/(N(y)-P(x))
C. 1/(N(y)P(x))
D. 1/(P(x)-N(y))
正确答案:ABD
2.下列函数中,哪些不是微分方程xdy+ydy=0的通解?()。
C. e^x+1
D. 2-e^x
正确答案:A
13.微分方程y''-4y'+4y=0的两个线性无关解是()。
A. e^(2x)与2e^(2x)
常微分方程第三版答案.doc

1.dxdy=2xy,并满足初始条件:x=0,y=1的特解。
解:ydy=2xdx 两边积分有:ln|y|=x 2+c y=e2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x .2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。
解:y 2dx=-(x+1)dy2y dy dy=-11+x dx 两边积分: -y1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c-另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1+x c3.dx dy =yx xy y 321++解:原方程为:dxdy =y y 21+31x x + y y 21+dy=31xx +dx 两边积分:x(1+x 2)(1+y 2)=cx 24. (1+x)ydx+(1-y)xdy=0 解:原方程为:y y -1dy=-xx 1+dx两边积分:ln|xy|+x-y=c另外 x=0,y=0也是原方程的解。
/5.(y+x )dy+(x-y)dx=0 解:原方程为:dx dy =-yx y x +-令xy=u 则dx dy =u+x dx du 代入有:-112++u u du=x 1dxln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2xy. 6. xdxdy-y+22y x -=0 解:原方程为:dx dy =x y +xx ||-2)(1x y -》则令xy=u dx dy =u+ x dx du211u - du=sgnxx1dx arcsinxy=sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgxdx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=xccos 另外y=0也是原方程的解,而c=0时,y=0.所以原方程的通解为sinycosx=c.8 dx dy +ye x y 32+=0 解:原方程为:dx dy =ye y 2e x 3》2 ex3-3e2y -=c.(lnx-lny)dy-ydx=0 解:原方程为:dx dy =x y ln xy令xy=u ,则dx dy =u+ x dx duu+ xdx du=ulnu ln(lnu-1)=-ln|cx| 1+lnxy=cy. 10.dxdy =e yx - 解:原方程为:dxdy =e x e y- ,e y=cex11dxdy =(x+y)2解:令x+y=u,则dx dy =dxdu -1 dx du -1=u 2211u +du=dx arctgu=x+carctg(x+y)=x+c12.dx dy =2)(1y x + 解:令x+y=u,则dx dy =dxdu -1dx du -1=21u、u-arctgu=x+cy-arctg(x+y)=c. 13.dx dy =1212+-+-y x y x 解: 原方程为:(x-2y+1)dy=(2x-y+1)dx xdy+ydx-(2y-1)dy-(2x+1)dx=0 dxy-d(y 2-y)-dx 2+x=c xy-y 2+y-x 2-x=c14:dx dy =25--+-y x y x解:原方程为:(x-y-2)dy=(x-y+5)dx xdy+ydx-(y+2)dy-(x+5)dx=0 :dxy-d(21y 2+2y)-d(21x 2+5x)=0 y 2+4y+x 2+10x-2xy=c.15: dxdy=(x+1) 2+(4y+1) 2+8xy 1+ 解:原方程为:dxdy=(x+4y )2+3令x+4y=u 则dx dy =41dx du -4141dx du -41=u 2+3 dx du =4 u 2+13 u=23tg(6x+c)-1 tg(6x+c)=32(x+4y+1).16:证明方程y x dxdy=f(xy),经变换xy=u 可化为变量分离方程,并由此求下列方程: 1) (2)y(1+x 2y 2)dx=xdy3) y x dx dy =2222x -2 y x 2y +证明: 令xy=u,则x dx dy +y=dxdu 则dx dy =x 1dx du -2x u,有:u x dxdu=f(u)+1)1)((1+u f u du=x1dx所以原方程可化为变量分离方程。
常微分方程习题及答案
第十二章常微分方程(A)、是非题任意微分方程都有通解。
()6. y sin y是一阶线性微分方程。
()7. ■ y x y xy不是一阶线性微分方程。
()8. ■ y 2y 5y 0的特征方程为r2 2r 5 0。
( )9. dy 1 x y2 xy2是可分离变量的微分方程。
()dx填空题1. .在横线上填上方程的名称①y 3 In xdx xdy 0 是。
②xv 2 xdx y x2y dy 0是。
③X鱼ylnY是。
dx x④xy y x2 si nx 是。
⑤y y 2y 0 是。
2. .y sin xy x cosx的通解中应含个独立常数。
3. .y e 2x的通解是。
4. .y sin 2x cos x的通解是。
5. .xy 2x2y 2 x3y x4 1 是阶微分方程。
6. ■微分方程y y y 60是一阶微分方程。
2. 微分方程的通解中包含了它所有的解。
3. 函数y 3sinx 4cosx是微分方程y 0的解。
()4. 函数y x2 e x是微分方程y 2y 0的解。
()5. 微分方程xy In x 0的通解是y 1一InxC (C为任意常数)。
()7.oy 1所满足的微分方程是xA . y a sinx8 .微分方程y y sin x的一个特解具有形式C . y x asin x bcos x y a cosx bsinx9.下列微分方程中, 欢迎下载是二阶常系数齐次线性微分方程。
8. 勿的通解为x9. dx dy 0的通解为x10.dydx耳x 12,其对应的齐次方程的通解为11.方程xy 1 x20的通解为12.3阶微分方程x3 *的通解为、选择题1.微分方程xyy 0的阶数是()2 .微分方程x5 6 7 * *1的通解中应含的独立常数的个数为3.下列函数中,哪个是微分方程dy 2xdx 0的解(A . y 2xB . y x2C .2x Dcosx其中C1, C2为任意常数。
常微分方程习题及答案
第十二章常微分方程(A)一、就是非题1.任意微分方程都有通解。
()2.微分方程的通解中包含了它所有的解。
()3.函数y=3sin x-4cos x就是微分方程y''+y=0的解。
()4.函数y=x2⋅e x就是微分方程y''-2y'+y=0的解。
()5.微分方程xy'-ln x=0的通解就是y=12(ln x)2+C(C为任意常数)。
(6.y'=sin y就是一阶线性微分方程。
()7.y'=x3y3+xy不就是一阶线性微分方程。
()8.y''-2y'+5y=0的特征方程为r2-2r+5=0。
()9.dydx=1+x+y2+xy2就是可分离变量的微分方程。
()二、填空题1.在横线上填上方程的名称①(y-3)⋅ln xdx-xdy=0就是。
②(xy2+x)dx+(y-x2y)dy=0就是。
③x dydx=y⋅lnyx就是。
④xy'=y+x2sin x就是。
⑤y''+y'-2y=0就是。
2.y'''+sin xy'-x=cos x的通解中应含个独立常数。
3.y''=e-2x的通解就是。
4.y''=sin2x-cos x的通解就是。
5.xy'''+2x2y'2+x3y=x4+1就是阶微分方程。
6.微分方程y⋅y''-(y')6=0就是阶微分方程。
7.y=1x所满足的微分方程就是。
)8.y '=9.2y的通解为。
x dx dy +=0的通解为。
y x5dy 2y 10.-=(x +1)2,其对应的齐次方程的通解为。
dx x +111.方程xy '-(1+x 2)y =0的通解为。
12.3阶微分方程y '''=x 3的通解为。
三、选择题1.微分方程xyy ''+x (y ')-y 4y '=0的阶数就是( )。
常微分方程习题与答案
第十二章常微分方程(A)、是非题1.任意微分方程都有通解。
()2 •微分方程的通解中包含了它所有的解。
()3. 函数y =3si nx-4cosx是微分方程y,y=0的解。
()4. 函数y = x2・e x是微分方程y';"-2y ' y = 0的解。
()5. 微分方程xy"T nx=0的通解是y =丄(1 nx)2+C (C为任意常数)。
()26. y"=siny是一阶线性微分方程。
()7. / = x3y3 xy不是一阶线性微分方程。
()8 . /-2/ 5^0的特征方程为『-2—5=0。
()9. dy = 1 x y2 xy2是可分离变量的微分方程。
()dx、填空题1 .在横线上填上方程的名称①y _ 3 ln xdx _ xdy 二0 是__________________________ 。
②xy2 x dx y _ x2 y dy = 0 是__________________________ 。
③x-d^ = y l n 丫是。
dx x④xy := y x2 sin x 是__________________ 。
⑤y y -2y =0是________________________ 。
2 . y si nxy"-x=cosx的通解中应含____________ 个独立常数。
3. _____________________________________ y “ = e Qx的通解是。
4. ______________________________________ y = sin 2x - cos x 的通解是。
5. _______________________________ x^ 2x2y 2,x3y=x4,1是阶微分方程。
6•微分方程y y - y Q =0是________________ 阶微分方程。
i7. y-丄所满足的微分方程是。
常微分方程课后习题部分答案
18. 设),(y x f 及连续,试证方程0),(=-dx y x f dy 为线性方程的充要条件是它有仅依赖于x 的积分因子.证:必要性 若该方程为线性方程,则有)()(x Q y x P dx dy+= ,此方程有积分因子⎰=-dx x P e x )()(μ,)(x μ只与x 有关 .充分性 若该方程有只与x 有关的积分因子)(x μ .则0),()()(=-dx y x f x dy x μμ为恰当方程 , 从而dx x d y y x f x )()),()((μμ=∂-∂ ,)()(x x y f μμ'-=∂∂ ,)()()()()()()()(x Q y x P x Q y x x x Q dy x x f +=+'-=+'-=⎰μμμμ . 其中)()()(x x x P μμ'-= .于是方程可化为0))()((=+-dx x Q y x P dy即方程为一阶线性方程.20.设函数f(u),g(u)连续、可微且f(u)≠g(u),\,试证方程yf(xy)dx+xg(xy)dy=0 有积分因子u=(xy[f(xy)-g(xy)])1-证:在方程yf(xy)dx+xg(xy)dy=0两边同乘以u 得:uyf(xy)dx+uxg(xy)dy=0 则y uyf∂∂=uf+uy y f∂∂+yf y u∂∂=)(g f xy f-+)(g f xy y f y -∂∂-yf 222)()(g f y x ygxyy f xy g f x -∂∂+∂∂+- =2)(g f xy y f gy y g yf -∂∂-∂∂=2)(g f x y xyxy f g y xy xy g f -∂∂∂∂-∂∂∂∂ =2)(g f xyfg xy gf -∂∂-∂∂ 而x uxg ∂∂=ug+ux x g ∂∂+xg x u ∂∂=)(g f xy g -+)(g f xy x g x -∂∂- xg 222)()(g f y x xgxyx f xy g f y -∂∂-∂∂+-=2)(g f xy x xy xy f xg x xy xy g xf-∂∂∂∂-∂∂∂∂=2)(g f xy f g xy g f -∂∂-∂∂ 故y uyf ∂∂=xuxg ∂∂,所以u 是方程得一个积分因子 21.假设方程(2.43)中得函数M (x,y )N(x,y)满足关系xN y M ∂∂-∂∂= Nf(x)-Mg(y),其中f(x),g(y)分别为x 和y 得连续函数,试证方程(2.43)有积分因子u=exp(⎰dx x f )(+⎰dy y g )()证明:M(x,y)dx+N(x,y)dy=0 即证x uN y uM ∂∂=∂∂)()(⇔u y M ∂∂+M y u ∂∂=u x N ∂∂+N xu ∂∂⇔ u(y M ∂∂-x N ∂∂)=N xu ∂∂- M y u ∂∂⇔u(y M ∂∂-x N ∂∂)=Ne ⎰⎰+dy y g dx x f )()(f(x) -M e ⎰⎰+dy y g dx x f )()(g(y)⇔u(y M ∂∂-x N ∂∂)=e ⎰⎰+dy y g dx x f )()((Nf(x)-Mg(y)) 由已知条件上式恒成立,故原命题得证。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.第1题设是n 阶齐次线性方程的线性无关的解, 其中是连续函数. 则A. 的朗斯基行列式一定是正的;B. 的朗斯基行列式一定是负的;C. 的朗斯基行列式可有零点, 但不恒为零;D. 的朗斯基行列式恒不为零.您的答案:B题目分数:2此题得分:2.第2题满足初始条件和方程组的解为( ).A. ;B. ;C. ;D. .A..B..C..D..您的答案:B题目分数:2此题得分:3.第6题下列四个微分方程中, 三阶常微分方程有( )个.(i) , (ii) ,(iii) , (iv) .您的答案:C题目分数:2此题得分:4.第8题是某个初值问题的唯一解,其中方程是, 则初始条件应该是( ).A. ,B. ,C. ,D. .您的答案:A题目分数:2此题得分:5.第9题可将一阶方程化为变量分离方程的变换为A. ;B. ;C. ;D. .A..B..C..D..您的答案:C题目分数:2此题得分:6.第15题可将六阶方程化为二阶方程的变换是( ).A.;B. ;C.;D..A..B..C..D..您的答案:B题目分数:2此题得分:7.第16题设,及是连续函数,和是二阶变系数齐次线性方程的两个线性无关的解, 则以常数变易公式作为唯一解的初值问题是A. B.C. D.A..B..C..D..您的答案:B题目分数:2此题得分:8.第18题设和是方程组的两个基解矩阵, 则A. 存在某个常数方阵C使得, 其中;B. 存在某个常数方阵C使得, 其中;C. 存在某个常数方阵C使得, 其中;D. 存在某个常数方阵C使得, 其中.A..B..C..D..您的答案:A题目分数:2此题得分:9.第20题微分方程的一个解是( ).A. ,B. ,C. ,D. .A..B..C..D..您的答案:D题目分数:2此题得分:10.第22题设有四个常微分方程:(i) , (ii) ,(iii) , (iv) .A.线性方程有一个;B.线性方程有两个;C.线性方程有三个;D.线性方程有四个.您的答案:C题目分数:2此题得分:11.第23题微分方程是( ).阶变系数非齐次线性常微分方程;阶变系数齐次线性常微分方程;阶常系数非齐次线性常微分方程;阶常系数齐次线性常微分方程.您的答案:A题目分数:2此题得分:12.第24题设有四个常微分方程:(i) , (ii) ,(iii) , (iv) .A.非线性方程有一个;B.非线性方程有两个;C.非线性方程有三个;D.非线性方程有四个.您的答案:B题目分数:2此题得分:13.第25题是某个初值问题的唯一解,其中方程是, 则初始条件应该是( ).A. ,B. ,C. ,D. .A..B..C..D..您的答案:A题目分数:2此题得分:14.第29题已知是某一三阶齐次线性方程的解, 则和的伏朗斯基行列式( ).A. ;B. ;C. ;D. .您的答案:A题目分数:2此题得分:15.第30题初值问题, 的第二次近似解可以写为( ).+A.6; B. ;C. ;D. +.A..B..C..D..您的答案:D题目分数:2此题得分:16.第5题利用降阶法求解二阶方程的过程中, 下划线所指出的那些步骤中, 哪些是关键性的:解答:这是不显含自变量的二阶方程, 因此可以用第二种降阶法。
令(A), 则.代入到原方程中可将原方程化为如下的一阶方程:(B).这是一个变量分离型的方程. 如果, 可得是原方程的解,故不妨假设(C), 因此可以约掉一个z, 分离变量后有:,两边积分可得:,又由, 代入上述方程, 再次分离变量(D),在等式两边积分可得原方程的通解(E):.A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:17.第11题设有方程:, 以下步骤中正确的是:A. 利用变量变换,B. 由,有,C. 代入原方程得到,D. 整理后可得,E. 分离变量得到.您的答案:A,B,C,D,E题目分数:5此题得分:18.第12题以下各个步骤中的哪些能够证明方程的任何两个解之差当x 趋向于正无穷大时趋向于零:A. 原方程的任何两个解的差是对应齐次方程的解,B. 对应齐次方程的特征根是,C. 对应齐次方程的基本解组是,D. =0, =0,E. 原方程的任何两个解的差当x 趋向于正无穷大时趋向于零.A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:19.第13题求解方程时, 以下的解题步骤中不能省略的有哪几步:A. 因为,B. 所以原方程是恰当方程;C. 将方程中的重新分项组合,D. 凑出全微分:,E. 得到通解:.您的答案:A,B,C,D,E题目分数:5此题得分:20.第14题以下利用参数法求解一阶隐方程的过程中, 下划线所指出的那些步骤中, 哪些是不能省略的: 解答:引入参数(A),则原方程可以写为, 将此方程两边对x求导 (B), 可得:, 或(C).这是一个关于p和x的方程, 且是未知函数p的导数可以解出的一阶常微分方程, 进而还是变量分离型方程. 因此我们将这个方程分离变量:.(D)两边积分并求出积分可以得到(C是任意常数):,因此, 将此式和参数的表达式联立, 即得原方程的参数形式解: (E).A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:21.第19题如下求解三阶常系数线性方程的过程中, 下划线所指出的部分哪些计算有错误或叙述有错误:解答:(i) 先求对应齐方程的通解:对应齐方程的特征方程及特征根分别为(A), , , .故对应齐方程的通解为(B).(ii) 因为有特征根非零(C), 故应设原方程的特解有形如, 这里a,b是待定常数.代入原方程可得.利用对应系数相等便得到代数方程组:.由此可解得(D), 故.(iii) 原方程的通解可以表示为(E).A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:22.第21题试求方程组的基解矩阵,并求满足初始条件的解其中, . 判断哪些步骤所得到的结果是正确的:A. 齐次线性方程组的特征方程是,B. 矩阵A 的特征根为, 对应的特征向量可分别取为, .C. 原方程组基解矩阵可取为: .D. 标准基解矩阵为=.E. 原方程组满足所给初始条件的解为A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:23.第26题设为方程(A 为常数矩阵)的一个基解矩阵,试指出如下的断言中哪些是错误的:A. 可以是也可以不是原方程组的解矩阵,B. 因为不知道是否有, 故无法判断是否是原方程组的基解矩阵,C. 存在奇异的常数矩阵C, 使得,D. 取, 可得到.E. .A..B..C..D..E..您的答案:A,B,C,D,E题目分数:5此题得分:24.第27题以下是一阶微分方程的求解过程, 请说明下划线所指出那些步骤中, 哪些是可以省略的: 解答:记, 则(A),注意到(B),因此方程不是恰当方程(C). 可以计算, 因而方程有只与x 有关的积分因子,并且该积分因子可以求出为:.将该积分因子乘在原方程的两端:(D),分项组合为,或可整理为(E), 最后得到原方程的通解.您的答案:A,B,C,D,E题目分数:5此题得分:25.第28题请查出求解一阶线性微分方程的过程中有错误的步骤:A. 先求解对应齐方程:,分离变量可得,B. 两边积分求出积分可以得到(C是任意常数):,C. 再将常数C 变易为函数:.D. 代入到原方程中可以得到:,E. 原方程的通解(C 是任意常数):.您的答案:A,B,C,D,E题目分数:5此题得分:26.第3题欧拉方程的一个基本解组为.您的答案:正确题目分数:4此题得分:27.第4题利用变换可将伯努利方程化为线性方程.您的答案:错误28.第7题当用比较系数法求方程的一个特解时, 可将这个待定系数的特解设为.您的答案:错误29.第10题对于初值问题可判定其解在的某邻域内存在且唯一, 理由是在整个平面上连续并且关于y满足李普希茨条件.您的答案:正确30.第17题平面上过点的曲线为, 该曲线上任一点处的切线与切点和原点的连线的夹角为, 则这个曲线应满足的常微分方程是, 初始条件为.您的答案:正确。