main 四重引物ARMS方法
ARMSPCR技术介绍

ARMSPCR技术介绍基因的变异类型有多种(点击查看),对应的分⼦检测⽅法亦有多种,当前资本市场驱动着分⼦检测市场,并极⼒追捧NGS技术,因为其通量⾼,灵敏度⾼且性价⽐⾼。
⼩编承认NGS是分⼦检测的必然发展趋势,但是短时间内,NGS并不会取代其他分⼦检测⽅法,因为针对不同的需求,都有对应的理想检测⽅法,每个检测平台都有着⾃⼰的优势,⽐如:操作简单:PCR,ARMS-PCR,HRM等时间快速:ARMS-PCR,HRM等成本低:PCR,PCR-RFLP,MassARRAY等准确:Sanger等通量⾼:NGS等灵活性:Pyrosequencing等结果分析简单:ARMS-PCR等⾃动化:核酸提取等......⼩编⼀直认为:没有最好的技术,只有最合适的技术!最好的,不⼀定是最合适的;最合适的,才是真正最好的。
今天,我们聊⼀聊⼀直以来都⽐较⽕的ARMS-PCR技术,⾸先,我们先了解下什么是ARMS-PCR?ARMS-PCR:扩增阻滞突变系统PCR(Amplification Refractory Mutation SystemPCR,ARMS-PCR),⼜称为等位基因特异性PCR(Allele-Specific PCR,AS-PCR)。
ARMS-PCR技术建⽴在等位基因特异性延伸反应基础上,只有当某个等位基因特异性引物的3’末端碱基与突变位点处碱基互补时,才能进⾏延伸反应。
常规PCR扩增DNA所⽤的上、下游引物与靶序列完全匹配,⽽等位基因PCR采⽤等位基因特异的两条上游引物,两者在3’端核苷酸不同,⼀个对野⽣型等位基因特异,另⼀个对突变型等位基因特异,在Taq DNA聚合酶作⽤下,与模板不完全匹配的上游引物将不能退⽕,不能⽣成PCR产物,⽽与模板匹配的引物体系则可扩增出产物,通过凝胶电泳或者qPCR就能很容易地分辨出扩增产物的有⽆,从⽽确定SNP 基因型,⽬前市场主流为ARMS+qPCR技术,采⽤TaqMan探针进⾏检测。
ARMS技术与ARMS-PCR

ARMS技术与ARMS-PCR一、ARMS技术的原理突变阻滞扩增系统(ARMS-PCR(amplification refractory mutation system)),又名等位基因特异PCR(allele specific PCR,ASPCR)。
基本原理:TaqDNA聚合酶缺少3-5'外切酶活性。
在一定条件下PCR引物3'末端的错配导致产物的急剧减少,针对不同的已知突变,设计适当的引物可以通过PCR方法直接达到区分突变型和野生型基因的目的。
二、ARMS技术的特点由于ARMS所用的引物是从一段序列在3'末端及其附近人为的加入错配的突变位点的一套引物组合中,通过筛选出来的能够区分单个位点等位基因的引物,所以说ARMS技术具有高特异性。
三、ARMS-PCR简介ARMS-PCR:扩增阻滞突变系统PCR(Amplification Refractory Mutation System PCR,ARMS-PCR),又称为等位基因特异性PCR(Allele-Specific PCR,AS-PCR)。
ARMS-PCR技术建立在等位基因特异性延伸反应基础上,只有当某个等位基因特异性引物的3’末端碱基与突变位点处碱基互补时,才能进行延伸反应。
常规PCR扩增DNA所用的上、下游引物与靶序列完全匹配,而等位基因PCR采用等位基因特异的两条上游引物,两者在3’端核苷酸不同,一个对野生型等位基因特异,另一个对突变型等位基因特异,在Taq DNA聚合酶作用下,与模板不完全匹配的上游引物将不能退火,不能生成PCR产物,而与模板匹配的引物体系则可扩增出产物,通过凝胶电泳或者qPCR就能很容易地分辨出扩增产物的有无,从而确定SNP基因型,目前市场主流为ARMS+qPCR技术,采用TaqMan探针进行检测。
(比如肿瘤靶向用药EGFR基因检测,CFDA批准的检测试剂盒,90%以上都是ARMS检测方法)简而言之:引物3’端错配的碱基会导致PCR引物延伸速度变慢,当错配达到一定程度时,引物延伸将终止,得不到特异长度的PCR扩增产物,从而提示模板DNA没有与引物3’端配对的碱基,反之则有。
AMRS-PCR原理

定位:专注分子诊断领域,提供卓越的产品和一流的服务 使命:提升医疗诊断水平,促进人类健康事业发展 价值:
市场向导 成就客户 优势互补 合作共赢 爱岗敬业 诚信正直 结果向导 赢在执行
四、鑫诺美迪产品背景及应用
肿瘤相关通路示意图
表皮生长因子受体(EGFR)是一种受 体酪氨酸蛋白激酶,其广泛分布于细 胞表面,通过受体酪氨酸蛋白激酶 →Ras→Raf→MAPK信号通路对细 胞的生长、增值和分化等生理过程发 挥重要作用。EGFR等蛋白酪氨酸激 酶功能确实或其相关信号通路中关键 因子的活性或细胞定位异常,均会引 起肿瘤、免疫缺陷及心血管疾病等发 生。EGFR信号通路重要靶标的检测 机靶向也治疗一直是国际肿瘤个体化 医疗领域关注的焦点。
法规的安全防护培训。
• 仪器要求:
• 荧光定量PCR仪、高速离心机、微型离心机(带八联排转头)、 漩涡振荡器
四、鑫诺美迪产品背景及应用
• 个体化治疗基本背景:
必须强制管理假设的省文物标记应用与临床试验,但是那种“一处突变, 一种疗法”的观念可能太简单了。我们需要知道既定通路或类似通路所有可 能的基因改变情况,从而预测靶向治疗的疗效。
外控
突变型
不存在的 突变型
实验室要求
• 环境要求:
•
独立,完善的分子实验室:临床基因扩增实验室应该分
为以下三个区域(试剂准备区、标本制备区、扩增区)、并且
各个区域应具备普通分子实验的基本配置。
• 人员要求:
• 操作人员应经过以下专业培训,具有合格的操作技能方能上岗。 • (a) 本产品说明书要求的操作培训。 • (b) 临床基因扩增实验室各个区域仪器设备的操作培训。 • (c) 《微生物生物医学实验室生物安全通用准则》和《医疗废物管理条例》
arms法 荧光定量

arms法荧光定量荧光定量是一种常用的实验方法,用于测量样品中的荧光强度,以获取相关的定量信息。
这种方法基于荧光现象,利用物质在激发光照射下发出的荧光信号来定量分析样品中的物质含量或反应程度。
本文将介绍一种常用的荧光定量方法——Arms法,并探讨其原理和应用。
Arms法(Amplification Refractory Mutation System)是一种荧光定量PCR技术,用于检测和定量分析DNA中的特定序列。
该方法结合了PCR技术和荧光探针技术,通过引入特定的荧光探针和引物,实现对目标DNA序列的扩增和定量。
Arms法的原理基于PCR技术,PCR是一种体外合成DNA的技术,可以在短时间内扩增特定的DNA片段。
在Arms法中,引物是设计用于扩增目标DNA序列的短链DNA片段,荧光探针则是用于检测目标DNA序列的特定荧光标记的DNA探针。
Arms法的步骤如下:1. 设计引物和荧光探针:根据目标DNA序列的特点,设计适当的引物和荧光探针。
引物通常包括一对外部引物和一对内部引物,外部引物用于扩增目标DNA序列,内部引物用于扩增特定的突变位点。
2. PCR扩增:将待测样品的DNA与引物和荧光探针一起加入PCR反应体系,进行PCR扩增。
PCR反应通过多次循环变性、退火和延伸步骤,使目标DNA序列得以扩增。
3. 荧光信号检测:PCR反应过程中,荧光探针与目标DNA序列特异结合,产生荧光信号。
荧光信号的强度与目标DNA序列的含量成正比。
4. 荧光定量分析:通过荧光信号的强度,可以定量分析目标DNA序列的含量。
通常可以使用荧光定量仪或PCR仪器进行荧光信号的检测和数据分析。
Arms法的应用非常广泛,特别适用于基因突变检测、单核苷酸多态性(SNP)分析等领域。
通过引入特定的内部引物和荧光探针,Arms 法可以实现对突变位点或SNP的高度特异性检测和定量分析。
该方法具有灵敏度高、特异性强、操作简便等优点,因此在医学诊断、病理学研究和药物研发等领域得到了广泛的应用。
ARMS-PCR

ARMS-PCR基本原理
操作流程及数据解读
DNA
ARMS-PCR
数据分析
谢!
ARMS技术
• 等位基因特异性扩增法(Allele-specific amplification,ASA)ASA 于1989年建立,是PCR技术应用的发展,也称扩增阻碍突变系 统(amplification refractory mutation system, ARMS)、等位基因 特性PCR(allele-specific PCR, ASPCR)等,用于对已知突变基因 进行检测。 • 该法通过设计两个5’端引物,一个与正常DNA互补,一个与突 变DNA互补,对于纯合性突变,分别加入这两种引物及3’端引 物进行两个平行PCR,需有与突变DNA完互补的引物才可延伸并 得到PCR扩增产物。如果错配位于引物的3’端则导致PCR不能延 伸,则称为ARMS。 • ARMS和ASPCR借鉴多重PCR原理,可在同一系统中同时检测两 种或多种等位基因突变位点。
实时荧光定量PCR
——TaqMan技术
• 该技术的基本原理是利用Taq酶的5’外切酶活性,当引物延伸至 被荧光探针结合的模板处,Taq酶即从5’ →3’方向降解并释放荧 光探针5’端的核苷酸。 • 由于探针的两端均有一个荧光分子标记,其中3’端的荧光分子 (荧光淬灭基团)能够吸收5’端荧光分子(荧光报告基团)的 荧光信号,当探针完整时,报告基团发射的荧光信号正好被淬 灭基团接收,因此就检测不到荧光信号; • 当Taq酶将探针5’端带有荧光报告基团的核苷酸降解下来时,破 坏了两荧光分子间的荧光共振能量转移(FRET),从而发出荧 光,每扩增一条DNA链,就有一个荧光分子形成,荧光分子数 与PCR数量成比例,从而实现了荧光信号的累积与PCR产物形成 完全同步。因此,根据PCR反应液的荧光强度即可计算出初始 模板的数量。TaqMan荧光探针常用报告基团有FAM、TET、VIC 和HEX,淬灭基团有TAMRA。
肥胖MC4R重组腺病毒表达载体的构建及鉴定

葡萄糖摄取与转运增加 。通过增加脂肪代谢相关基 因的表达 , 响糖 代谢 , 影 减少 I R引起 的高血糖 ; 通 过抑 制肝 脏 中长链 脂 肪 酸 氧化 , 抑制 16二磷 酸 ,~ 果 糖激 酶 , 少 肝 脏 中 葡 萄 糖 生 成 , 进 葡 萄 糖 利 减 促 用 , 而 降 低 血 糖 , 善 糖 毒 性 。 临 床 试 验 证 从 改 实 J盐 酸 毗格 列 酮不 论 单 独使 用 或 与 磺 脲 类 、 , 双 胍类抗糖尿病药物联合使用 , 均可使血糖 和 H A C b 明显降低 。
Hn D A Makr152 10b ) 小量 质粒提 取 i m N re(2 -33 p ; d
穿梭 载体 phteC Suf —MV. 4 l MC R载 体 , 全 部 酶 切 产 取 物 l 琼脂糖 凝胶 电泳 , A ye % 用 xgn胶 回收 试 剂盒 回 收纯 化 酶 切 产 物 。将 该 线 性 化 的 ph teC / Suf—MV 犬 l MC R载体 转 化进含 p day1的 E elB5 8 4 A es一 .o J13感 i
[ ]R df e A R v i o ,d d a ,t 1 S — ot e et ee 5 or uz , eie P a  ̄ e a i m n f i n s g rg J P . x h c v s
a d tl r b l y o ig i z n n c mb n to ih s l n l r a r n o e a i t f p o l a o e i o i ai n w t u f yu c s o i t o
吡格 列酮 保 护 胰 岛 B细 胞 的机 制 复 杂 。 本 研
[ ]陈灏 珠. 3 实用内科 学 [ .2版. M]1 北京 : 民卫 生 出版 社 。05 人 20 :
ARMS PCR and ddPCR
ddPCR&ARMS-PCR
ARMS-PCR点突变的检出率依 赖于反应条件的优化和防止引 物与靶DNA错配时可能发生的 错配延伸,这可通过调整实验 条件如:引物、靶DNA、Taq 酶的浓度和反应温度等来提高 特异性
!错配不可以是t:t,这样 即使错配也能很有效地延伸, 引物末端与模板最好选用a:a, a:g错配,其他需要摸索条件
技术应用
已知突变基因或者基因多态性进行检测
ARMS&Agar
TNF gene -308G>A polymorphism
凝胶电泳检测
ARMS&Taqman
扩增结果为:“野生”模板阻碍,“突变”引物 放大;或“突变”模板阻碍,“野生”引物放大。
ARMS&qPCR
实时荧光定量PCR
ARMS引物设计
ddPCR技术应用
上海张江转化医学研发中心
1、微滴式数字PCR(ddPCR)-肿瘤早期检测(康乃尔卡) (6600元)
2、微滴式数字PCR(ddPCR)-肿瘤早期筛查通过5mL血液一 次性检测 14种肿瘤、常见的11个肿瘤基因、60余个突变 位点,实现了癌症的超早期监测甚至细胞阶段发现肿瘤的 发生状况
软件自动分析数据,并以多种方 式显示检测结果
Readout:copies/ul Dynamicrange: 1~10,000copies/well (~330ng human gDNA)
四引物法arms-pcr检测技术原理
四引物法(ARMS-PCR)检测技术原理1. 引言在当前的医学与生命科学研究领域中,四引物法(ARMS-PCR)检测技术作为一种高效、准确的分子生物学技术,广泛应用于基因突变、多态性等研究领域。
本文将就四引物法(ARMS-PCR)检测技术的原理和应用进行深入探讨,帮助读者更全面地了解该技术。
2. 四引物法(ARMS-PCR)检测技术原理四引物法(ARMS-PCR)检测技术是一种用于检测核酸序列变异的高效方法。
其原理主要基于引物的设计和PCR扩增技术。
在该方法中,通过合理设计特定引物,实现对目标基因的突变或多态性位点进行检测。
对于要检测的位点,设计两对引物,其中一对引物是特异性引物(allele-specific primers),另一对引物是控制引物(external control primers)。
特异性引物用于特异扩增突变或多态性位点的目标基因片段,而控制引物则用于扩增相邻的正常基因片段。
在PCR扩增反应中,特异性引物能够选择性地结合目标基因的突变或多态性位点,从而实现对其扩增;而控制引物则能够扩增相邻的正常基因片段。
通过两对引物的配合作用,可以在同一PCR反应中同时检测靶基因的突变和正常等位基因,从而实现对目标基因的位点检测。
3. 四引物法(ARMS-PCR)检测技术的应用四引物法(ARMS-PCR)检测技术在遗传疾病、肿瘤学、药物代谢等领域具有广泛的应用价值。
在遗传疾病领域,该技术可用于检测单核苷酸多态性(SNP)、突变引起的遗传病等。
在肿瘤学领域,四引物法(ARMS-PCR)检测技术可用于鉴定肿瘤特异性突变,指导个体化治疗。
在药物代谢领域,该技术可用于检测与药物代谢相关的基因突变,从而指导临床用药。
4. 个人观点与理解四引物法(ARMS-PCR)检测技术是一种高效、灵敏的分子生物学技术,对于基因突变、多态性等研究具有重要意义。
通过合理设计特异性引物和控制引物,该技术能够实现对目标基因位点的准确检测,为医学研究和临床应用提供了强有力的工具。
ARMS技术介绍
三、Taqman MGB探针及其原理
Taqman MGB(Taqman minor groove binder)探针由普通 taqman探针和MGB基团两部分组成。
Taqman-MGB RT-PCR原理
四、MGB探针的特点
4.1 MGB探针的高Tm值 由于MBG基团对DNA双链小沟具有高的亲和性,因此在PCR 反应中,MGB探针相较于普通探针Tm值要高很多,通常要高 出10-20℃。
2.2 ARMS技术具有高灵敏性 检测限可以达到100copies/mL,对于肿瘤组织检测限可 以达到0.5%的突变率。
以BRAF V600E为例
ARMS
直接测序
2.3 检测时耗短,成本低,结果直观好判读 ARMS结合QPCR或者电泳技术,均只需进行一次PCR 反应,时耗短。 ARMS技术需要优化的仅仅是上游引物,这相对于使用 MGB探针的荧光定量PCR技术来说,成本低而且结果直观好 判读。
ARMS技术的介绍
(the amplification refractory mutation system)
主要内容
一、ARMS技术的原理 二、ARMS技术的特点 三、MGB探针及原理 四、MGB探针的特点 五、ARMS技术的应用 六、ARMS实例:β-地中海贫血位 点
一、ARMS技术的原理
突变阻滞扩增系统(ARMS-PCR(amplification refractory mutation system)),又名等位基因特异 PCR(allele specific PCR,ASPCR)。 基本原理:TaqDNA聚合酶缺少3’-5’外切酶活性。在一 定条件下PCR引物3’末端的错配导致产物的急剧减少, 针对不同的已知突变,设计适当的引物可以通过PCR 方法直接达到区分突变型和野生型基因的目的。
四引物法arms-pcr检测技术原理
四引物法arms-pcr检测技术原理四引物法(ARMS-PCR)检测技术原理Four Amplification Refractory Mutation System Polymerase Chain Reaction (ARMS-PCR)是一种用于检测基因突变的分子生物学技术。
它结合了引物设计与聚合酶链式反应(PCR),可以高效且特异性地鉴定特定基因序列上的突变。
本文将介绍ARMS-PCR的原理及其在基因突变检测中的应用。
一、ARMS-PCR原理ARMS-PCR的原理基于聚合酶链式反应(PCR)和特异性引物的设计。
其基本步骤如下:1. 引物设计:设计特异性的引物,包括ARMS正向引物、ARMS逆向引物和内部控制引物。
ARMS正向引物与ARMS逆向引物的3'端分别与基因突变位点的等位基因和野生型等位基因互补。
内部控制引物与ARMS逆向引物的3'端互补,用于确定PCR反应的成功与否。
2. PCR反应:将待检测的DNA模板与ARMS正向引物、ARMS逆向引物和内部控制引物共同进行PCR反应。
PCR反应过程中,ARMS引物与DNA模板的互补部分能够与其结合,在特定条件下发生延伸反应。
3. 扩增产物分析:通过凝胶电泳等方法,将PCR扩增产物分离并测量其大小。
野生型等位基因和突变型等位基因分别在不同条件下扩增,形成不同大小的扩增产物带。
4. 解释结果:根据PCR扩增产物的出现与否,可以判断样本中的基因是否存在突变。
若顺利扩增出ARMS引物对应的扩增产物带,即可确定基因型;反之,无扩增产物带则代表相应的基因突变。
二、ARMS-PCR技术的应用ARMS-PCR技术在基因突变检测中具有广泛的应用。
以下是几个常见的应用领域:1. 遗传病突变检测:ARMS-PCR可用于检测与遗传疾病相关的基因突变。
通过对突变位点设计不同的ARMS引物,可以区分野生型和突变型基因,进一步了解遗传病的发生机制。
2. 癌症基因突变分析:许多癌症与特定基因突变相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Designing,optimization and validation oftetra-primer ARMS PCR protocol for genotypingmutations in caprine Fec genesSonika Ahlawat ⁎,Rekha Sharma,A.Maitra,Manoranjan Roy,M.S.Tantia National Bureau of Animal Genetic Resources,Karnal,Haryana 132001,Indiaa r t i c l e i n f o ab s t r ac tArticle history:Received 12February 2014Received in revised form 27May 2014Accepted 31May 2014Available online xxxx New,quick,and inexpensive methods for genotyping novel caprine Fecgene polymorphisms through tetra-primer ARMS PCR were developedin the present investigation.Single nucleotide polymorphism (SNP)genotyping needs to be attempted to establish association between theidenti fied mutations and traits of economic importance.In the currentstudy,we have successfully genotyped three new SNPs identi fied incaprine fecundity genes viz.T(-242)C (BMPR1B ),G1189A (GDF9)andG735A (BMP15).Tetra-primer ARMS PCR protocol was optimized andvalidated for these SNPs with short turn-around time and costs.Theoptimized techniques were tested on 158random samples of BlackBengal goat breed.Samples with known genotypes for the describedgenes,previously tested in duplicate using the sequencing methods,were employed for validation of the assay.Upon validation,completeconcordance was observed between the tetra-primer ARMS PCR assaysand the sequencing results.These results highlight the ability of tetra-primer ARMS PCR in genotyping of mutations in Fec genes.Any asso-ciated SNP could be used to accelerate the improvement of goat repro-ductive traits by identifying high proli fic animals at an early stage of life.Our results provide direct evidence that tetra-primer ARMS-PCR is arapid,reliable,and cost-effective method for SNP genotyping of muta-tions in caprine Fec genes.©2014The Authors.Published by Elsevier B.V.This is an open accessarticle under the CC BY-NC-SA license(/licenses/by-nc-sa/3.0/).Keywords:Tetra-primer ARMS-PCR BMPR1B GDF9BMP15Meta Gene 2(2014)439–449⁎Corresponding author at:Core Lab,NBAGR,India.Tel.:+919416161369;fax:+911842267654.E-mail address:sonika.ahlawat@ (S.Ahlawat)./10.1016/j.mgene.2014.05.004Contents lists available at ScienceDirectMeta GeneIntroductionGrowth factors synthesized from mammalian oocytes popularly known as oocyte secreted factors play numerous roles in ovarian folliculogenesis.In particular,a growing body of evidence in recent years has indicated that members of transforming growth factor-βsuperfamily genes and proteins are expressed in ovarian tissues(Ergin et al.,2008;Hatzirodos et al.,2011).Most notable members of TGFβsuperfamily viz.Bone Morphogenetic Protein Receptor1B(BMPR1B),Growth differentiation factor9(GDF9)and Bone Morphogenetic Protein15(BMP15)are intra-ovarian regulators of folliculogenesis in mammals.The identification of BMPR1B,GDF9and BMP15gene mutations(Table1)as the causal mechanisms underlying either the highly prolific or infertile phenotypes of several sheep breeds in a dosage-sensitive manner highlighted the crucial role these genes play in ovarian function.BMPR1B has been implicated as one of the type1receptors downstream of BMP15in sheep,mouse and rat granulosa cells.The Booroola sheep mutation FecB is a Q249R mutation in the kinase domain of BMPR1B, thereby increasing the fertility of females(Wilson et al.,2001).BMPR1B null mice are infertile and have cumulus expansion defects(Yi et al.,2001).GDF9and BMP15act synergistically to affect development of the cumulus–oocyte complexes in mice(Yan et al.,2001).GDF9plays critical roles in granulosa and theca cell growth as well as in differentiation and maturation of the oocyte(Hreinsson et al.,2002).BMP15has also been thought to be involved in oocyte maturation and follicular development alone or along with GDF9.Both the proteins are progressively expressed by the oocytes of growing follicles throughout folliculogenesis(Dube et al.,1998;Laitinen et al.,1998).In an attempt to screen Indian goats for prolificacy associated mutations in sheep,we have previously reported that none of the mutations in the candidate genes associated with fecundity in sheep was detected in Indian goats.Two novel SNPs T(-242)C and G(-623)A in the promoter region of BMPR1B gene(Ahlawat et al.,2014),three non-synonymous SNPs(C818T,A959C and G1189A)in exon2of GDF9gene and two novel SNPs(G735A and C808G)in exon2of BMP15gene were detected(Ahlawat et al.,2013).These novel polymorphisms need to be associated with prolificacy trait for identification of molecular markers that can be used to identify high prolific animals at an early stage of life using robust and less costly genotyping techniques.A plethora of methods for genotyping of specific polymorphic loci are currently used and these include Polymerase Chain Reaction-Restriction Fragment Length Polymorphism(PCR-RFLP),Single Strand Conformation Polymorphism(SSCP),direct DNA sequencing,and tetra-Primer Amplification Refractory Mutation System-Polymerase Chain Reaction(ARMS-PCR).In developing countries it is very difficult and costly to genotype large number of animals by methods involving PCR and post-PCR manipulations.To circumvent these problems,simple,fast and cost effective genotyping methods need to be developed.Amplification refractory mutation system(ARMS)-PCR,also referred to as allele-specific oligonucleo-tide PCR is a technique that was originally designed by Newton et al.(1989)for the detection of known sequence polymorphisms.In ARMS-PCR,2pairs of primers in a single PCR tube,can simultaneously amplify both mutant and normal alleles as well as allow amplification of an internal DNA control.This technique hasTable1Genetic variants associated with prolificacy phenotype in sheep.Gene Mutation Amino acid change Founder breed ReferenceBMPR1B FecB Q249R Booroola Merino,Garole and Javanese Mulsant et al.(2001) Souza et al.(2001) Wilson et al.(2001)BMP15FecX I V299D Romney Galloway et al.(2000) FecX H Q291ter Romney Galloway et al.(2000)FecX B S367I Belclare Hanrahan et al.(2004)FecX G Q239ter Belclare and Cambridge Hanrahan et al.(2004)FecX L C321Y Lacaune Bodin et al.(2007)FecX R17bp deletion Rasa Aragonesa Martinez-Royo et al.(2008)Monteagudo et al.(2009) GDF9FecG H S395F Belclare and Cambridge Hanrahan et al.(2004) FecG T S427R Icelandic Nicol et al.(2009)440S.Ahlawat et al./Meta Gene2(2014)439–449been applied to study different mutations(Old et al.,1990;Vannucchi et al.,2006;Wanga et al.,2014).Ye et al.(1992)were thefirst to describe tetra-primer PCR in which allele-specific amplification is achieved in a single PCR reaction using two outer primers and two allele-specific inner primers.Ye et al.(2001) combined tetra-primer PCR with ARMS to form the tetra-primer ARMS-PCR or T-ARMS technique by introducing deliberate mismatches at position−2from the3′end of inner primers to improve allele specificity.In a single step reaction,the outer primers amplify a large fragment of the target gene, irrespective of its genotype although each inner primer combines with a particular opposite outer primer to generate smaller allele-specific amplicons,which are of different sizes and can easily be discriminated on gel electrophoresis either as homozygous or heterozygous.In the present study,we developed rapid, efficient,cost effective and allele specific tetra-primer ARMS PCR for genotyping T(-242)C(BMPR1B), G1189A(GDF9)and G735A(BMP15)mutations so that these methods can be used to genotype large animals of animals in order to estimate association of these mutations with the prolificacy trait in goats. Materials and methodsSample collectionBlood samples(158)from Black Bengal goat breed from Kotulpur goat cum fodder farm,Bankura,West Bengal were collected from the jugular vein into EDTA containing vacutainer tubes.Genomic DNA was isolated and purified from the blood cells using the standard phenol–chloroform–isoamyl alcohol extraction followed by ethanol precipitation(Sambrook and Russell,2001).The quality and quantity of isolated DNA were determined using agarose gel electrophoresis(0.8%)and NanoDrop spectrophotometer(GE Healthcare). Purified DNA ran as a single band on agarose gel and the OD260/280ratio for all the samples was between1.8 and2indicating good quality of extracted DNA.The DNA samples were dissolved in TE buffer(pH8.0)and stored at−20°C until use.Primer designingTetra-primer ARMS PCR was developed for genotyping T(-242)C,G1189A and G735A mutations in BMPR1B,GDF9and BMP15genes respectively.Primers were designed by the original software on the website:.The mutation points were positioned asymmetrically with respect to the common(outer)primers so that allele specific amplicons with different product lengths could be easily separated by standard agarose gel electrophoresis.‘BLAST’program at http://www.ncbi. /blast was used to check for the specificity of the primers.The primers used in this study are listed in Table2.Table2Sequence of primers used,product size and annealing temperature for T-ARMS PCR.Gene Primer sequence Product size Annealingtemp.°CBMPR1B Forward inner primer:GTCAAATACAACTATTATAGCTTAAGGT Reverse inner primer:TAAACCTTTCAGAGTAGTAGCTTATGForward outer primer:ATAATATTTACTCACAGTATTACATGCAReverse outer primer:AAATAGTAAGGATTTGTAACACTTAAAG Control fragment:238bpT allele:168bpC allele:124bp54GDF9Forward inner primer:TGCTTTTGTATCTGAACGACACAAGGGT Reverse inner primer:GGAATGCCACCTGTGAAAAGCCTTAGForward outer primer:CCTCCCACAAGAGGAATATTCACATGTCTReverse outer primer:AACCAGAGGCTTCTTCAATTCAGAGCTG Control fragment:323bpT allele:207bpC allele:170bp68BMP15Forward inner primer:TTTCAATGACACTCAGAGTGTTCAGCAA Reverse inner primer:TCAGGCCTTTAGGGAGAGGTTTGTTCForward outer primer:CTTGGACAGAGATGGATATCATGGAACA Control fragment:425bpA allele:257bpG allele:216bp67441S.Ahlawat et al./Meta Gene2(2014)439–449PCR methodGradient PCR was carried out on BIORAD iCycler to determine the best annealing temperature for each primer set.The optimal annealing temperatures for primers specific for−T242C(BMPR1B),C818T(GDF9) and G735A(BMP15)loci were54,68and67°C respectively.For all sets of outer–inner primer pair, optimum concentration of MgCl2producing the highest yield of specific PCR products was2mM.Outer–inner primer ratio for tetra-primer ARMS PCR was1:1for−T(242)C(BMPR1B)and1:10for C818T(GDF9) and G735A(BMP15)loci.Finally,optimized PCR was performed in a single tube containing25μl of reaction volume made up of the following components:10μl master mix,50–100ng of genomic DNA and optimized concentrations of each primer.PCR cycling was performed at95°C for4min followed by 32cycles of denaturation at95°C for30s,annealing at specific temperature for45s,extension at72°C for45s andfinal extension at72°C for8min.The PCR products were separated by running on3%agarose gel with DNA size marker of50–1000bp followed by staining with ethidium bromide and visualized and semi-automatically analyzed by the gel documentation system.Validation of the assayTo evaluate the efficiency and accuracy of the assay,selected PCR-amplified DNA samples(n=3, respectively,for each genotype)were examined by DNA sequencing and the results obtained by T-ARMS PCR were compared with those determined by sequencing.ResultsThree point mutations in important candidate genes for fecundity,one each in BMPR1B,GDF9and BMP15 were genotyped by tetra-primer ARMS PCR based methodology.PCR fragments were generated as per expectations for all the loci.All the PCR products were well resolved and sized by agarose gel electrophoresis, allowing easy identification of different genotypes.Heterozygotes and homozygotes were unambiguously assigned from the gel profile.The size of DNA fragments amplified with these four primers for−T242C of BMPR1B(239bp control fragment,168bp T allele,125bp C allele),C818T of GDF9(323bp control fragment, 207bp T allele,170bp C allele)and G735A of BMP15(425bp control fragment,222bp G allele,257bp A allele)was suitable for separation on3%agarose gels(Figs.1,2,3).Several factors,including primer concentration and PCR cycling conditions,which can affect PCR specificity and efficiency were optimized.For all sets of outer–inner primer pairs we tested Mg2+concentrations from1.5mM to4mM and best results were obtained at Mg2+concentration of2mM for all the primer sets.Gradient PCR was carried out on theBIORAD iCycler to determine the best annealing temperature for each primer set(change per reactionwasFig.1.Agarose gel electrophoresis(3%)of polymerase chain reaction(PCR)product of tetra-primer ARMS-PCR for T(−242)C locus of 442S.Ahlawat et al./Meta Gene2(2014)439–4491°C)and optimum annealing temperatures were finalized to be 54,68and 67°C for −T242C (BMPR1B ),C818T (GDF9)and G735A (BMP15)loci.To improve the ampli fication ef ficiency of the shorter and allele-speci fic products,titration of primer concentrations is of paramount importance in tetra-primer ARMS PCR (Etlik et al.,2008;Okayama et al.,2004;Ye et al.,2001).In our study also,optimization of primer concentrations was the trickiest one,since the usually suggested outer –inner ratio (1:10)for tetra-primer ARMS PCR was not useful for one of the primer sets (−T242C,BMPR1B ).Thus,we performed PCR with three more ratios (1:5,1:2,1:1)of outer –inner primers and 1:1was found to give best results for −T(242)C (BMPR1B )and 1:10for the other two loci.Validation of the developed methodology was done by direct sequencing of representative samples from each set using the outer primers for each SNP.We observed complete concordance between the methods.The genotypes scored from the assay were in 100%accordance with direct sequencing (Figs.4,5,6).Allele and genotype frequencies for the three SNPs in 158animals of Black Bengal goats are given in Table 3.All the three possible genotypes were expressed for the three investigated loci.The predominant alleles were T,C and G for −T242C (BMPR1B),C818T (GDF9)and G735A (BMP15)mutations,respectively.Black Bengal goat population deviated from Hardy –Weinberg equilibrium (P b 0.05)with respect to all the three loci.DiscussionSingle nucleotide polymorphism (SNP),a novel molecular marker technology,refers to a sequence polymorphism caused by a single nucleotide mutation at a speci fic locus in the DNA sequence.This sort of polymorphism includes single base transitions,transversions,insertions and deletions (Lander,1996),and the minor allele frequency should be 1%or greater (Vignal et al.,2002).Of all the SNP mutation types,transitions are the most common (approx.66.6%)(Zhao and Boerwinkle,2002).Currently,SNP markersare Fig.2.Agarose gel electrophoresis (3%)of polymerase chain reaction (PCR)product of tetra-primer ARMS PCR for C818T locus of GDF9gene.Fig.3.Agarose gel electrophoresis (3%)of polymerase chain reaction (PCR)product of tetra-primer ARMS PCR for G735A locus of 443S.Ahlawat et al./Meta Gene 2(2014)439–449TT CTCCFig.4.Genotypes for T(−242)C mutation of BMPR1B gene.444S.Ahlawat et al./Meta Gene 2(2014)439–449CC TCTT Fig.5.Genotypes for C818T mutation of GDF9gene.445S.Ahlawat et al./Meta Gene 2(2014)439–449GG GAAAFig.6.Genotypes for G735A mutation of BMP15gene.446S.Ahlawat et al./Meta Gene 2(2014)439–449one of the preferred genotyping approaches,because they are abundant in the genome,genetically stable and amenable to high throughput automated analysis.Variation in candidate genes for traits of economic importance in livestock species may be useful in guiding genetic selection for desirable traits and thus designing a genotyping protocol for the differentia-tion of polymorphic nucleotides is required for investigation of an animal population for which phenotypic data is available.The workers in the past have used techniques like Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP),Single Strand Conformation Polymorphism (SSCP),direct DNA sequencing,and tetra-primer Ampli fication Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR)for genotyping of speci fic polymorphic nucleotide loci.Among these the tetra-primer ARMS-PCR could be a useful tool for genotyping,since SSCP may not be repeatable some times,direct DNA sequencing is a cumbersome,time consuming,technically demanding and costly procedure and the possibility of getting a restriction site for an enzyme could be rare for genotyping by RFLP.In our study also PCR-RFLP protocol could be developed and standardized for SNP G(−623)A in the promoter region of BMPR1B gene,two SNPs (A959C and G1189A)in exon 2of GDF9gene and one SNP (C808G)in exon 2of BMP15gene but no restriction enzyme site was identi fied for the three loci dealt with in the present study viz.T(−242)C of BMPR1B ,C818T of GDF9and G735A of BMP15.For genetic analysis,fast and economical assays that can be performed with standard PCR instruments are highly pared to other genotyping techniques,tetra-primer ARMS-PCR has been reported to be a rapid,reliable,simple and economical assay for SNP genotyping (Little,2001;Okayama et al.,2004;Ye et al.,2001).Etlik et al.,2011compared tetra-primer ARMS assay with routinely used methods such as typical PCR-RFLP analysis,real time PCR assay and DNA sequencing.They concluded that although real time PCR and DNA sequencing are sensitive and accurate techniques,tetra-primer ARMS PCR assay could be bene ficial in terms of total time,cost and applicability in a typical laboratory.Hence tetra-primer ARMS-PCR based methodology was developed for genotyping three mutations in Black Bengal goats in the present study.The assay described here is more convenient than the traditional PCR-RFLP since it eliminates the need for incubation with restriction enzymes.This not only avoids any consequent errors and artifacts from such procedures but also reduces the amount of DNA required for the digestion step in PCR-RFLP.No special equipment and only a small amount of standard PCR reagents are needed in tetra-primer ARMS-PCR.Black Bengal goat is a proli fic and major meat producing animal in eastern states of India (Zeshmarani et al.,2007).They kid twice a year or more commonly thrice in two years and the number of kids at one time varies from single to quadruplet (Zeshmarani et al.,2007).Twinning is more frequent (56.32%)and quadruplet is least frequent (2.11%)litter size (Hassan et al.,2007).The allele and genotype frequencies for the three SNPs showed signi ficant differences among the population studied.If phenotypic data (litter size)is available for the investigated animals,an association between genotype and proli ficacy can be conveniently established.SNPs are the most widely tested markers in association studies.These SNPs were tested for Hardy –Weinberg equilibrium (HWE)by comparing the observed genotype counts in Black Bengal goats with those expected under HWE.Since all the three loci deviated signi ficantly from HWE it may indicate non-random mating and possibly population strati fication,non-random genotyping error or missing genotype data so that one allele or genotype is more often misclassi fied or missing than the other.Table 3Allele and genotype frequencies for the SNPs in three Fec genes in Black Bengal goats (158).GeneMutation Genotypes Genotype frequency Allele frequency H-W test BMPR1B T(−242)C TT-139TC-8CC-11TT —0.88TC —0.05CC —0.06T —0.905C —0.095χ2=78.61⁎P value =0.0000GDF9C818T CC-94CT-46TT-18CC —0.60CT —0.30TT —0.10C —0.75T —0.25χ2=9.29⁎P value =0.0023BMP15G735AGG-70GA-60AA-28GG —0.44GA —0.38AA —0.18G —0.63A —0.37χ2=5.28⁎P value =0.0216⁎Allele frequency differs signi ficantly at P b 0.05.447S.Ahlawat et al./Meta Gene 2(2014)439–449448S.Ahlawat et al./Meta Gene2(2014)439–449there is a need to increase the population size in actual association studies to fulfill the assumptions for HWE,that there is random mating(with respect to that locus),no selection,no mutation,no geneflow and a population large enough to avoid the random effects of genetic drift.The tetra-primer ARMS-PCR methods described above are thefirst reported methods allowing one to genotype three novel SNPs in goat Fec genes with no post-PCR treatment other than electrophoresis.These methods are rapid,simple,reliable,easy to perform,economical and require minimum level of expertise that can be used for both large-and small-scale genotyping studies.ConclusionWith the rapid advances in molecular techniques,various methods for genotyping single-nucleotide polymorphisms(SNPs)are available.Still,the search for easy,robust,and less costly techniques continues. We wished to develop a tetra-primer Amplification Refractory Mutation System-Polymerase Chain Reaction based technique for genotyping the SNPs in Fec genes so that these methodologies could be used to establish association between the studied mutations and prolificacy trait,provided that the phenotypic data is available.Any such associated SNP could be used to accelerate the improvement of goat reproductive traits by identifying high prolific animals at an early stage of life.AcknowledgmentWe acknowledge thefinancial support provided by Network Project on Animal Genetic Resources (ICAR)for carrying out the work.ReferencesAhlawat,S.,Sharma,R.,Maitra,A.,2013.Screening of indigenous goats for prolificacy associated DNA markers of sheep.Gene517, 128–131.Ahlawat,S.,Sharma,R.,Maitra,A.,Tantia,M.S.,Roy,M.,Mandakmale,S.,2014.New genetic polymorphisms in Indian goat BMPR1B gene.Indian J.Anim.Sci.84(1),37–42.Bodin,L.,Di Pasquale,E.,Fabre,S.,Bontoux,M.,Monget,P.,Persani,L.,Mulsant,P.,2007.A novel mutation in the bone morphogenetic protein15gene causing defective protein secretion is associated with both increased ovulation rate and sterility in Lacaune sheep.Endocrinology148,393–400.Dube,J.L.,Wang,P.,Elvin,J.,Lyons,K.M.,Celeste,A.J.,Matzuk,M.M.,1998.The bone morphogenetic protein-15gene is X-linked and expressed in oocytes.Mol.Endocrinol.12,1809–1817.Ergin,K.,Gursoy,E.,Basimoglu,K.Y.,Basaloglu,H.,Seyrek,K.,2008.Immunohistochemical detection of insulin-like growth factor-I, transforming growth factor-beta2,basicfibroblast growth factor and epidermal growth factor-receptor expression in developing rat ovary.Cytokine43,209–214.Etlik,O.,Koksal,V.,Arican-Baris,S.T.,Baris,I.,2008.An improved tetra-primer PCR approach for the detection of the FGFR3G380R mutation responsible for achondroplasia.Mol.Cell.Probes22(2),71–75.Etlik,O.,Koksal,V.,Arican-Baris,S.T.,Baris,I.,2011.Development and validation of a cost-effective in-house method,tetra-primer ARMS PCR assay,in genotyping of seven clinically important point mutations.Mol.Cell.Probes25,177–181.Galloway,S.M.,McNatty,K.P.,Cambridge,L.M.,Laitinen,M.P.,Juengel,J.L.,Jokiranta,T.S.,McLaren,R.J.,Luiro,K.,Dodds,K.G., Montgomery,G.W.,Beattie,A.E.,Davis,G.H.,Ritvos,O.,2000.Mutations in an oocyte-derived growth factor gene(BMP15)cause increased ovulation rate and infertility in a dosage-sensitive manner.Nat.Genet.25,279–283.Hanrahan,J.P.,Gregan,S.M.,Mulsant,P.,Mullen,M.,Davis,G.H.,Powell,R.,Galloway,S.M.,2004.Mutations in the genes for oocyte-derived growth factors GDF9and BMP15are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep(Ovis aries).Biol.Reprod.70,900–909.Hassan,M.M.,Niaz Mahmud,S.M.,Azizul Islam,S.K.M.,Faruk Miazi,O.,2007.A comparative study on reproductive performance and productivity of the Black Bengal and crossbred goat at Atrai,Bangladesh.Univ.J.Zool.Rajshahi Univ.26,55–57.Hatzirodos,N.,Bayne,R.A.,Irving-Rodgers,H.F.,Hummitzsch,K.,Sabatier,L.,Lee,S.,Bonner,W.,Gibson,M.A.,Rainey,W.E.,Carr,B.R., Mason,H.D.,Reinhardt,D.P.,Anderson,R.A.,Rodgers,R.J.,2011.Linkage of regulators of TGF-beta activity in the fetal ovary to polycystic ovary syndrome.FASEB J.25,2256–2265.Hreinsson,J.,Scott,J.,Rasmussen,C.,Swahn,M.,Hsueh,A.,Hovatta,O.,2002.Growth differentiation factor-9promotes the growth, development,and survival of human ovarian follicles in organ culture.J.Clin.Endocrinol.Metab.87(1),316–321.Laitinen,M.,Vuojolainen,K.,Jaatinen,R.,Ketola,I.,Aaltonen,J.,Lehtonen,E.,Heikinheimo,M.,Ritvos,O.,1998.A novel growth differentiation factor-9(GDF-9)related factor is co-expressed with GDF-9in mouse oocytes during folliculogenesis.Mech.Dev.78,135–140.Lander,E.S.,1996.The new genomics:global views of biology.Science274,536–539.Little,S.,2001.Amplification-refractory mutation system(ARMS)analysis of point mutations.Curr.Protoc.Hum.Genet.http://dx./10.1002/0471142905.hg0908s07(Chapter9:Unit9.8).Martinez-Royo,A.,Jurado,J.J.,Smulders,J.P.,Marti,J.I.,Alabart,J.L.,Roche,A.,Fantova,E.,Bodin,L.,Mulsant,P.,Serrano,M.,Folch,J.,Monteagudo,L.V.,Ponz,R.,Tejedor,M.T.,Lavina,A.,Sierra,I.,2009.A 17bp deletion in the bone morphogenetic protein 15(BMP15)gene is associated to increased proli ficacy in the Rasa Aragonesa sheep breed.Anim.Reprod.Sci.110,139–146.Mulsant,P.,Lecerf,F.,Fabre,S.,Schibler,L.,Monget,P.,Lanneluc,I.,Pisselet,C.,Riquet,J.,Monniaux,D.,Callebaut,I.,Cribiu,E.,Thimonier,J.,Teyssier,J.,Bodin,L.,Cognie,Y.,Chitour,N.,Elsen,J.E.,2001.Mutation in bone morphogenetic protein receptor-IB is associated with increased ovulation rate in Booroola Merino ewes.Proc.Natl.Acad.Sci.U.S.A.98,5104–5109.Newton,C.R.,Graham,A.,Heptinstall,L.E.,Powell,S.J.,Summers,C.,Kalsheker,N.,Smith,J.C.,Markham,A.F.,1989.Analysis of anypoint mutation in DNA.The ampli fication refractory mutation system (ARMS).Nucleic Acids Res.17,2503–2516.Nicol,L.,Bishop,S.C.,Pong-Wong,R.,Bendixen,C.,Holm,L.E.,Rhind,S.M.,McNeilly,A.S.,2009.Homozygosity for a single base-pairmutation in the oocyte-speci fic GDF9gene results in sterility in Thoka sheep.Reproduction 138,921–933.Okayama,N.,Fujimura,K.,Nakamura,J.,Suehiro,Y.,Hamanaka,Y.,Hinoda,Y.,2004.Evaluation of a new ef ficient procedure forsingle-nucleotide polymorphism genotyping:tetra-primer ampli fication refractory mutation system-polymerase chain b.Med.42,13–16.Old,J.M.,Varawalla,N.Y.,Weatherall,D.J.,1990.Rapid detection and prenatal diagnosis of beta-thalassaemia:studies in Indian andCypriot populations in the ncet 336(8719),834–837.Sambrook,J.,Russell,D.W.,2001.Molecular Cloning:A Laboratory Manuel III.Cold Spring Laboratory Press,NY,Cold Spring Harbour,.Silva,B.D.,Castro,E.A.,Souza,C.J.,Paiva,S.R.,Sartori,R.,Franco,M.M.,Azevedo,H.C.,Silva,T.A.,Vieira,A.M.,Neves,J.P.,Melo,E.O.,2011.A new polymorphism in the growth and differentiation factor 9(GDF9)gene is associated with increased ovulation rate and proli ficacy in homozygous sheep.Anim.Genet.42,89–92.Souza,C.J.,MacDougall,C.,Campbell,B.K.,McNeilly,A.S.,Baird,D.T.,2001.The Booroola (FecB)phenotype is associated with amutation in the bone morphogenetic receptor type 1B (BMPR1B)gene.J.Endocrinol.169,R1–R6.Vannucchi,A.M.,Pancrazzi,A.,Bogani,C.,Antonioli,E.,Guglielmelli,P.,2006.A quantitative assay for JAK2(V617F)mutation inmyeloproliferative disorders by ARMS-PCR and capillary electrophoresis.Leukemia 20,1055–1060.Vignal,A.,Milan,D.,SanCristobal,M.,2002.A review on SNP and other types of molecular markers and their use in animal genetics.Genet.Sel.Evol.34,275–305.Wanga,Y.Z.,Zhua,Z.,Zhang,H.Y.,Zhu,M.Z.,Xu,X.,Chen,C.H.,Liu,L.G.,2014.Detection of hepatitis B virus A1762T/G1764A mutantby ampli fication refractory mutation system.Braz.J.Infect.Dis.18(3),261–265.Wilson,T.,Wu,X.Y.,Juengel,J.L.,Ross,I.K.,Lumsden,J.M.,Lord,E.A.,Dodds,K.G.,Walling,G.A.,McEwan,J.C.,O'Connell,A.R.,McNatty,K.P.,Montgomery,G.W.,2001.Highly proli fic Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6)that is expressed in both oocytes and granulosa cells.Biol.Reprod.64,1225–1235.Yan,C.,Wang,P.,DeMayo,J.,Elvin,J.A.,Carino,C.,Prasad,S.V.,Skinner,S.S.,Dunbar,B.S.,Dube,J.L.,Celeste,A.J.,Matzuk,M.M.,2001.Synergistic roles of bone morphogenetic protein 15and growth differentiation factor 9in ovarian function.Mol.Endocrinol.15,854–866.Ye,S.,Humphries,S.,Green,F.,1992.Allele speci fic ampli fication by tetra-primer PCR.Nucleic Acids Res.(20),1152.Ye,S.,Sahar,D.,Xiayi,K.,Andrew,R.C.,Day,I.N.M.,2001.An ef ficient procedure for genotyping single nucleotide polymorphisms.Nucleic Acids Res.29,88–94.Yi,S.E.,LaPolt,P.S.,Yoon,B.S.,Chen,J.Y.,Lu,J.K.,Lyons,K.M.,2001.The type I BMP receptor BMPRIB is essential for femalereproductive function.Proc.Natl.Acad.Sci.U.S.A.98,7994–7999.Zeshmarani,S.,Dhara,K.C.,Samanta,A.K.,Samanta,R.,Majumder,S.C.,2007.Reproductive performance of goats in Eastern andNorth-eastern India.Livest.Res.Rural.Dev.19(8).Zhao,Z.M.,Boerwinkle, E.,2002.Neighboring-nucleotide effects on single nucleotide polymorphisms:a study of 2.6millionpolymorphisms across the human genome.Genome Res.12,1679–1686.449S.Ahlawat et al./Meta Gene 2(2014)439–449。